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Abstract: Fusarium wilt (FW) of cucumber (Cucumis sativus L.) caused by Fusarium oxysporum f.
sp. cucumerinum (Foc) is a destructive soil-borne disease that severely decreases cucumber yield
and quality worldwide. MicroRNAs (miRNAs) are small non-coding RNAs (sRNAs) that are
important for regulating host immunity because they affect target gene expression. However, the
specific miRNAs and the miRNA/target gene crosstalk involved in cucumber resistance to FW
remain unknown. In this study, we compared sRNA-seq and RNA-seq data for cucumber cultivar
‘Rijiecheng’, which is resistant to FW. The integrated analysis identified FW-responsive miRNAs
and their target genes. On the basis of verified expression levels, we detected two highly expressed
miRNAs with down-regulated expression in response to Foc. Moreover, an analysis of 21 target genes
in cucumber inoculated with Foc indicated that JRL3 (Csa2G362470), which is targeted by miR319a,
and BEE1 (Csa1G024150), DAHP1 (Csa2G369040), and PERK2 (Csa4G642480), which are targeted
by miR6300, are expressed at high levels, but their expression is further up-regulated after Foc
inoculation. These results imply that miR319a-JRL3, miR6300-BEE1, miR6300-DAHP1 and miR6300-
PERK2 regulate cucumber defenses against FW, and provide the gene resources that may be useful
for breeding programs focused on developing new cucumber varieties with enhanced resistance
to FW.
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1. Introduction

Cucumber (Cucumis sativus L.) is an important vegetable crop cultivated worldwide [1].
Fusarium wilt (FW) of cucumber, which is a typical and destructive soil-borne disease caused
by Fusarium oxysporum f. sp. cucumerinum (Foc), is one of the major factors restricting
global cucumber yield and quality [2–5].

During an infection, Foc easily penetrates cucumber plants and quickly spreads to the
vascular tissues, where it occludes xylem vessels and produces a toxin that kills host cells,
ultimately leading to FW. The disease results in the wilting of leaves or even the entire
plant, with plant death occurring several days or weeks after infection [6,7]. Fusarium wilt
is extremely difficult to control because it can occur during all cucumber growth stages [2].
Additionally, Foc can survive in the soil, straw or seeds for many years or even decades,
leading to long-term disease cycles [8,9]. Furthermore, the changeable pathogenicity of
Foc has limited the effectiveness of certain fungicides [3,10]. The most sustainable way to
control FW involves the development and application of resistant cultivars. Thus, effective
resistance genes need to be identified and the mechanism mediating disease resistance
must be thoroughly characterized to develop FW-resistant cucumber cultivars.
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Plant microRNAs (miRNAs) are endogenous small non-coding RNAs (sRNAs) that
serve as crucial molecular regulators of the expression of functional genes by targeting
mRNAs or by inhibiting translation [11–13]. Plant miRNAs participate in almost all biolog-
ical processes, such as growth and development [14,15], hormone signal transduction [16]
and responses to abiotic and biotic stresses (e.g., pathogen attack) [17,18]. For example, in
rice, overexpression of Osa-miR812w increases resistance to Magnaporthe oryzae, whereas
CRISPR/Cas9-mediated miR812w editing enhances disease susceptibility, suggesting that
miR812w positively contributes to blast resistance [18]. In cotton, cleavage of GhNAC100
mRNA by ghr-miR164 decreases the amount of GhNAC100 that can bind to the CGTA-box
of GhPR3 promoter to repress expression, thereby enhancing the resistance to Verticillium
dahliae [19]. Tomato lncRNA23468 functions as a decoy RNA for miR482b to modulate
the expression of NBS-LRR genes, resulting in increased resistance to Phytophthora infes-
tans [20]. These results suggest that miRNAs mediate crucial plant defense gene regulatory
pathways. Therefore, resistance-related miRNAs must be identified and their target genes
associated with responses to pathogens should be functionally characterized. However,
to date, very few miRNA-seq and RNA-seq analyses of cucumber defense responses to
FW have been conducted. Thus, the miRNAs associated with FW resistance and their
underlying mechanisms in cucumber remain unknown.

On the basis of an earlier examination of germplasm resources inoculated with Foc,
we had confirmed that the cucumber cultivar ‘Rijiecheng’ was high-resistant against Foc,
and might possess the resistant genes performing Foc defense [21]. In this study, we
performed the integrated miRNA-seq and RNA-seq analyses to identify the FW-responsive
miRNAs and their target genes in the FW-resistant cucumber cultivar ‘Rijiecheng’. Through
the miRNA-seq from the Rijiecheng roots infected with Foc, we identified that eleven
differentially expressed miRNAs (DEMs) were related to FW resistance. We further found
that two miRNAs (miR319a and miR6300) had high expression levels and were down-
regulated expression affected by the inoculation with Foc. Followed the RNA-seq analysis
of Rijiecheng infected with Foc, 21 corresponding target genes of miR319a and miR6300 had
adverse expression tendencies and were expressed differently in cucumber roots inoculated
with Foc. Based on the expression verification, we determined that JRL3 (Csa2G362470),
which is putatively targeted by miR319a, and BEE1 (Csa1G024150), DAHP1 (Csa2G369040),
and PERK2 (Csa4G642480), which are putatively targeted by miR6300, were abundantly
expressed, with expression levels that were higher than those in the controls. These findings
indicate that miR319a-JRL3, miR6300-BEE1, miR6300-DAHP1 and miR6300-PERK2 might be
important for cucumber defenses against FW. Moreover, they may be useful for generating
FW-resistant cucumber cultivars via breeding.

2. Materials and Methods
2.1. Plant Materials and Foc Treatment

This study was conducted using cucumber cultivar ‘Rijiecheng’, which was confirmed
to be resistant to Foc during an earlier examination of germplasm resources inoculated
with Foc [21]. Seeds were germinated on wet gauze in a Petri dish at 28 ◦C. The resulting
seedlings were incubated in a growth chamber with the same conditions of 25 ◦C/18 ◦C
cycle under a 16 h light/8 h dark cycle.

The Foc strain used in this study was isolated from cucumber roots exhibiting FW
symptoms and then propagated on potato dextrose agar with different antibiotics inhibiting
bacteria growth in plates at 28 ◦C for 4 days. The conidia were harvested and isolated
for several times. Followed the inoculation phenotypes and sequencing verification, the
Foc strain was confirmed and then cultured in potato dextrose broth in plates on a shaker
(180 rpm) at 28 ◦C for 3 days. The concentration was adjusted to 106 spores/mL using
sterile distilled water prior to the inoculation of 14-day large cucumber seedlings at second
true-leaf stage via a published dip-inoculation method [22]. Three replicates of seedling
roots were harvested at 0, 24, 48, 96, and 192 h after the Foc inoculation. All samples were
flash-frozen in liquid nitrogen and stored at −80 ◦C until analyzed.
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2.2. Total RNA Isolation and Library Preparation for sRNA Sequencing

We collected three replicates of Foc-inoculated cucumber roots at different post-
inoculation time-points (0, 48, and 96 h); non-inoculated roots were collected as the controls
refer to the method as described by Dong and associates (2020) [22]. Total RNA for the
real-time polymerase chain reaction (PCR) was extracted from flash-frozen cucumber roots
using the MiniBEST Plant RNA Extraction Kit (TaKaRa, Dalian, China), after which RNA
degradation and contamination were monitored on 2% agarose gels. Additionally, RNA
purity was assessed using the NanoPhotometer® spectrophotometer (IMPLEN, Calabasas,
CA, USA), whereas the RNA concentration was determined using the Qubit® RNA Assay
Kit and the Qubit® 2.0 Fluorometer (Life Technologies, Gaithersburg, MD, USA).

For each sample, 3 µg total RNA was used as the input material for constructing sRNA
libraries. The sequencing libraries were generated using the NEBNext® Multiplex Small
RNA Library Prep Set for Illumina® (New England Biolabs, Beverly, MA, USA) and index
codes were added to attribute sequences to each sample. The sRNA sequencing analysis
was completed using the AllPrep DNA-RNA-miRNA Universal kit (Qiagen, Duesseldorf,
Germany), with DNA contaminants removed by an on-column DNase treatment.

2.3. miRNA-Seq Analysis

The miRNA sequencing analysis was performed by Novogene using the Illumina
NextSeq 500 system. Expression levels were calculated as the number of transcripts per
million (TPM). To identify the known miRNAs, the clean reads were used as queries
for a BLAST search of the miRNA database miRbase 21.0 (http://www.mirbase.org/,
accessed on 7 September 2021). The sRNA tags were mapped to the reference sequence
using Bowtie (with no mismatches) to analyze their expression and distribution on the
reference sequence [23]. We analyzed the miRNA families and their sequence conservation
in miRbase, and the DEMs were further screened according to the following criterion:
|log2FPKM (fold-change)| > 1 and p value < 0.05. For the unannotated sequences, we
predicted new miRNAs using mireap (http://sourceforge.net/projects/mireap/, accessed
on 7 September 2021). As miRNAs are primarily bound to the target site by complementary
pairing, the data were analyzed using Miranda (http://www.microrna.org/microrna/
home.do, accessed on 7 September 2021) to identify the targets of the mature miRNA
sequences. The sRNA raw data were deposited in the NCBI Sequence Read Archive
(accession number PRJNA760453).

2.4. MicroRNA Family Identification and Target Prediction

The miRNA families in other species were identified. In our analysis pipeline, known
miRNAs were used along with miRNA.dat (http://www.mirbase.org/ftp.shtml, accessed
on 7 September 2021) to search for families, whereas novel miRNA precursors were sub-
mitted to Rfam (http://rfam.xfam.org/, accessed on 7 September 2021) to screen for Rfam
families. The miRNA expression levels were estimated as the number of TPM according to
the following criteria [24]. The differential expression between two conditions/groups was
analyzed using the DESeq R package (1.8.3). The p-values were adjusted according to the
Benjamini and Hochberg method. A corrected p-value of 0.05 was set as the threshold for
determining significant differences in expression. The target genes of miRNAs in plants
were predicted using psRobot_tar in psRobot [25].

The TargetFinder software was used to predict miRNA target genes [26]. The candidate
target genes of the DEMs were functionally characterized by a Gene Ontology (GO) enrich-
ment analysis on the basis of the genome annotate of cucumber (http://cucurbitgenomics.
org/organism/20, accessed on 7 September 2021).

2.5. Quantitative Real-Time RT-PCR (qRT-PCR) Assay of the miRNAs

The known and novel miRNAs were assayed by qPCR to validate relative expression
patterns. The reverse transcription reaction was performed using the miRNA 1st Strand
cDNA Synthesis Kit (by stem-loop) (Vazyme, Nanjing, China). The qPCR analysis was

http://www.mirbase.org/
http://sourceforge.net/projects/mireap/
http://www.microrna.org/microrna/home.do
http://www.microrna.org/microrna/home.do
http://www.mirbase.org/ftp.shtml
http://rfam.xfam.org/
http://cucurbitgenomics.org/organism/20
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performed using the miRNA Universal SYBR® qPCR Master Mix (Vazyme, Nanjing, China),
with U6 snRNA used as the internal control. The miRNAs gene expression was calculated
using qRT-PCR analysis, and expression data represent as the 2−∆Ct method followed by
further statistical analysis [27]. The standard deviation was measured for three biological
replicates. The primers of the miRNAs used in the experiment were designed by miRNA
Design V1.01 software and listed in Additional file 1: Table S1.

2.6. Identification and Validation of Target Differentially Expressed Target Genes

We had analyzed the transcriptome of Foc-inoculated cucumber roots collected at
different time-points after inoculation (0, 24, 48, 96, and 192 h). The generated data were
submitted to the NCBI database (accession number PRJNA472169). The differentially
expressed genes were considered with an adjusted FDR < 0.01 identified by DESeq and
|log2FPKM (fold-change)| ≥ 1. The transcriptome was used to further screen for target
genes of the miRNAs. Differences in the expression of the candidate genes were indicated
by the color scale of the Toolbox for Biologists software.

The expression verification of the candidate genes was performed by the qRT-PCR
analysis in the cucumber cultivar ‘Rijiecheng’ infected with Foc. The RNA samples of the
Foc-inoculated cucumber roots were reverse transcribed into cDNA using the HiScript
Q RT SuperMix for qPCR (Vazyme, Nanjing, China). The target gene-specific qRT-PCR
primers were designed using the Beacon Designer 7.0 software. The cucumber tubulin
alpha chain gene (Csa4G000580) was used as the internal reference control. The qRT-PCR
analysis was performed using the Iqtm5 Multicolor qPCR detection system (Bio-Rad,
Hercules, CA, USA) and the AceQ SYBR Green Master Mix (Vazyme, Nanjing, China), with
three technical replicates per biological replicate. The expression data for three biological
replicates were analyzed and are presented herein as the mean ± standard deviation.
Primer information is provided in Additional file 1: Table S1.

3. Results
3.1. Identification of miRNAs Responsive to Foc

To identify the miRNAs involved in plant responses to Foc, 15 sRNA libraries for
three biological replicates of the Foc-inoculated roots at 48 and 96 h post-inoculation and
the non-inoculated controls were prepared for a high-throughput sequencing analysis
to identify miRNAs. We used the 18- to 24-nt sRNA sequences as queries to search for
matches among the plant miRNA sequences in the miRBase 21.0 database. A total of
1185 miRNAs, including 1115 known miRNAs and 70 novel miRNAs, were identified in all
the samples (Figure 1A). On the basis of detecting significant differences in expression in
different groups using various methods, we further identified six differentially expressed
miRNAs (DEMs) between the inoculated roots (R_48h_F) and the control (mock-inoculated)
roots (R_48h_C) at 48 h post-inoculation, and seven DEMs between the inoculated roots
(R_96h_F) and the control roots (R_96h_C) at 96 h post-inoculation, including two overlap
DEMs in the two compare combinations (Figure 1B). The expression of these 11 independent
miRNAs was significantly induced by Foc with the expression value from the different
sequencing libraries visualized according to the changing colors (Figure 1C), suggesting
these DEMs may be important for cucumber defense responses to FW.

3.2. Validation of miRNA Expression by qRT-PCR

To validate the identified DEMs, we completed a qRT-PCR assay to analyze the miRNA
expression levels in the Foc-inoculated and control cucumber roots at three post-inoculation
time-points (0, 48 and 96 h). The expression trends of the 11 selected miRNAs revealed
by qRT-PCR were consistent with the sRNA sequencing data, and further reflected the
reliability of the sRNA sequencing data obtained in this study (Figure 2). Among them,
the five miRNAs contained the miR6300, miR398, miR398-3p miR319a and miR319a-3p
had higher expression levels relative to other miRNAs and were obviously induced after
inoculation with Foc. We aimed to use the FW-resistant cultivar ‘Rijiecheng’ to identify the
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resistant genes, and the accumulating evidence showed that miRNAs negatively regulate
the corresponding target genes to defend against the disease infection [20]. Hence, we
selected the miR319a and miR6300 that had high expression value and were significantly
down-regulated expression relative to the mock-inoculated controls, suggesting that they
might regulate the increased expression of defense-related genes to enhance the resistance
of cucumber cultivar ‘Rijiecheng’ to FW.
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3.3. Identification of miRNA Target Genes and Profile Analyses

To further clarify the miRNA-mediated regulatory networks in cucumber inoculated
with Foc, we predicted the target genes of miRNAs using psRobot_tar in psRobot [25]. The
1147 target genes identified for the 11 DEMs were subsequently analyzed on the basis of
the transcriptome data for the ‘Rijiecheng’ samples inoculated with Foc. The miR319a and
miR6300 respectively possessed 51 and 501 target genes, and among them, 273 genes were
further performed classification based on the functional analysis of the GO enrichment with
the p value < 0.05 and were mainly classified in 14 groups (e.g., protein binding, protein
kinase activity, transcription factors, oxidoreductase activity) associated with diversity
functions (http://cucurbitgenomics.org/goenrich, accessed on 7 September 2021). How-
ever, the function characteristics of other genes were not annotated (Figure 3, Additional
file 2: Table S2). Based on the screening of differentially expressed genes via transcriptome
of cucumber cultivar ‘Rijiecheng’ infected with Foc, we identified that 21 target genes were
obviously affected by Foc. We also analyzed the association between miR6300 and miR319a
and their target genes via a functional characterization based on the bioinformatics method
(Figure 4A, Additional file 3: Table S3). Moreover, the expression of these 21 target genes
was significantly up-regulated induced by Foc with the expression data from the differ-
ent transcriptome libraries visualized according to the changing colors, in contrast to the
miRNA expression trends (Figure 4B), indicative of a positive role for these up-regulated
genes in cucumber cultivar ‘Rijiecheng’ defense responses to FW.

http://cucurbitgenomics.org/goenrich


Biomolecules 2021, 11, 1620 6 of 12Biomolecules 2021, 11, x FOR PEER REVIEW 6 of 12 
 

 

Figure 2. Validation of 11 DEMs in cucumber roots infected with Foc by stem-loop qPCR. Relative miRNA expression 

levels in the Foc-inoculated cucumber roots and the mock-inoculated control roots at 48 and 96 h post-inoculation were 

calculated according to the 2−ΔCt method, with U6 snRNA used as the internal reference control. Data are presented as the 

mean ± standard deviation of three biological replicates. *: significantly different at p < 0.05; **: significantly different at p 

< 0.01. 

3.3. Identification of miRNA Target Genes and Profile Analyses 

To further clarify the miRNA-mediated regulatory networks in cucumber inoculated 

with Foc, we predicted the target genes of miRNAs using psRobot_tar in psRobot [25]. 

The 1147 target genes identified for the 11 DEMs were subsequently analyzed on the basis 

of the transcriptome data for the ‘Rijiecheng’ samples inoculated with Foc. The miR319a 

and miR6300 respectively possessed 51 and 501 target genes, and among them, 273 genes 

were further performed classification based on the functional analysis of the GO enrich-

ment with the p value < 0.05 and were mainly classified in 14 groups (e.g., protein binding, 

protein kinase activity, transcription factors, oxidoreductase activity) associated with di-

versity functions (http://cucurbitgenomics.org/goenrich, accessed on 7 September 2021). 

However, the function characteristics of other genes were not annotated (Figure 3, Addi-

tional file 2: Table S2). Based on the screening of differentially expressed genes via tran-

scriptome of cucumber cultivar ‘Rijiecheng’ infected with Foc, we identified that 21 target 

genes were obviously affected by Foc. We also analyzed the association between miR6300 

and miR319a and their target genes via a functional characterization based on the bioin-

formatics method (Figure 4A, Additional file 3: Table S3). Moreover, the expression of 

these 21 target genes was significantly up-regulated induced by Foc with the expression 

data from the different transcriptome libraries visualized according to the changing col-

ors, in contrast to the miRNA expression trends (Figure 4B), indicative of a positive role 

for these up-regulated genes in cucumber cultivar ‘Rijiecheng’ defense responses to FW. 

Figure 2. Validation of 11 DEMs in cucumber roots infected with Foc by stem-loop qPCR. Relative miRNA expression
levels in the Foc-inoculated cucumber roots and the mock-inoculated control roots at 48 and 96 h post-inoculation were
calculated according to the 2−∆Ct method, with U6 snRNA used as the internal reference control. Data are presented as the
mean ± standard deviation of three biological replicates. *: significantly different at p < 0.05; **: significantly different at
p < 0.01.

Biomolecules 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

Figure 3. Functional classification of the targets of the miR319a and miR6300. The gene classification 

analysis was on the basis of GO enrichment. The ordinate represents the gene functions, and ab-

scissa represents the number of genes. 

.  

Figure 4. Target genes of selected miRNAs analyzed on the basis of the transcriptome of cucumber inoculated with Foc. 

(A) Predicted regulatory networks between miR6300 and miR319a and the differentially expressed target genes; (B) Anal-

ysis of target gene expression profiles in cucumber roots after the Foc inoculation. ‘Rijiecheng’ roots inoculated with Foc 

collected at different post-inoculation time-points (0, 24, 48, 96 and 192 h) were used to analyze the target gene expression 

Figure 3. Functional classification of the targets of the miR319a and miR6300. The gene classification
analysis was on the basis of GO enrichment. The ordinate represents the gene functions, and abscissa
represents the number of genes.



Biomolecules 2021, 11, 1620 7 of 12

Biomolecules 2021, 11, x FOR PEER REVIEW 7 of 12 
 

 

Figure 3. Functional classification of the targets of the miR319a and miR6300. The gene classification 

analysis was on the basis of GO enrichment. The ordinate represents the gene functions, and ab-

scissa represents the number of genes. 

.  

Figure 4. Target genes of selected miRNAs analyzed on the basis of the transcriptome of cucumber inoculated with Foc. 

(A) Predicted regulatory networks between miR6300 and miR319a and the differentially expressed target genes; (B) Anal-

ysis of target gene expression profiles in cucumber roots after the Foc inoculation. ‘Rijiecheng’ roots inoculated with Foc 

collected at different post-inoculation time-points (0, 24, 48, 96 and 192 h) were used to analyze the target gene expression 

Figure 4. Target genes of selected miRNAs analyzed on the basis of the transcriptome of cucumber inoculated with Foc.
(A) Predicted regulatory networks between miR6300 and miR319a and the differentially expressed target genes; (B) Analysis
of target gene expression profiles in cucumber roots after the Foc inoculation. ‘Rijiecheng’ roots inoculated with Foc collected
at different post-inoculation time-points (0, 24, 48, 96 and 192 h) were used to analyze the target gene expression patterns.
Genes more highly or more weakly expressed in the roots were colored red and blue, respectively. The RNA-seq data were
submitted to the NCBI database (accession number PRJNA472169).

3.4. Verification of the Expression of Target Genes in Cucumber Infected with Foc

To confirm the Foc-induced expression of candidate target genes, the expression
patterns revealed by the transcriptome analysis of cucumber roots infected with Foc were
investigated by qRT-PCR analysis. We found that the expression of 21 target genes of
two miRNAs were up-regulated after the Foc inoculation relative to the mock-inoculated
controls, and these genes were highly or weakly expressed in the roots colored red and
blue, respectively (Figure 5A). In detail, among them, the JRL3 gene with a putative target
site of miR319a as well as the BEE1, DAHP1, and PERK2 genes with a putative target site of
miR6300 were better detected by a miRNA-target gene matching analysis. Additionally,
these four genes had higher expression levels relative to the others and were significantly
up-regulated affected by Foc at certain post-inoculation time-points, relative to the control
levels (Figure 5B), indicating that these miRNA-target pairs might participate in cucumber
defenses against FW.
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as the mean ± standard error of three biological replicates. *: significantly different at p < 0.05; **: significantly different at
p < 0.01.

4. Discussion

Fusarium wilt is a serious factor restricting global cucumber productivity [2,3]. The
most sustainable method to control FW disease is the use of resistant cultivars to mine
disease-resistance genes and better investigate disease-resistance mechanisms to develop
FW-resistant cucumber cultivars.

Increasing research attention focus on the utility of functional miRNAs that directly
regulate target genes for modulating host immune responses to enhance fungal disease
resistance. For example, cotton ghr-miR164 cleaves GhNAC100 mRNA to regulate the
expression of downstream disease-related genes and increase plant resistance to Verticil-
lium wilt [19]. Additionally, in cotton, miR5272a-GhMKK6, miR414c-GhFSD1 and miR477-
CBP60A help regulate plant defenses against pathogens [28–30]. In potato, over-expression
of miR482e results in the silencing of NBS-LRR protein-encoding genes and enhanced
plant sensitivity to V. dahliae infections [31]. Other studies proved that miR482b negatively
regulates tomato resistance to P. infestans [20,32]. In the model plant Arabidopsis thaliana,
many miRNA regulatory networks, including those involving miR156-SPL9, miR396-GRF,
miR400-PPR, miR472-RDR6, miR773-MET2, miR844-CDS3 and miR858-MYB, mediate the
resistance to pathogens [33–39]. In rice, miRNAs with functions influencing blast resistance
have been reported, including miRNAs that positively (miR7695, miR160, miR398, miR162,
and miR166k-166h) and negatively (miR156, miR164, miR167, miR168, miR169, miR319,
miR396 and miR1873) regulate immune responses [17,40–51]. Many miRNAs or target
genes have been applied to protect various transgenic plants against diseases. However,
to date, there have been relatively few reports describing miRNAs or their regulatory
networks associated with cucumber immunity to FW.

Based on an earlier examination of germplasm resources inoculated with Foc, we had
determined that the cucumber cultivar ‘Rijiecheng’ was highly resistant against Foc and
might possess the resistant genes performing Foc defense [21]. Hence, we performed a
comparative analysis of miRNA and transcript profiles in cucumber cultivar ‘Rijiecheng’
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roots inoculated with Foc, we wanted to identify the DEMs and their target genes related to
the FW responsive to better investigate the resistant mechanism of the cultivar ‘Rijiecheng’.
In detail, we identified 11 independent DEMs from the miRNA sequencing (Figure 1), we
further analyzed the expression patterns of these miRNAs in the Rijiecheng roots infected
with Foc (Figure 2). Accumulating evidence shows that miRNAs negatively regulate the
corresponding target genes to defend against the disease infection [20,31,32]. Therefore,
we selected the miR319a and miR6300 that had high expression levels and were obviously
down-regulated after Foc infection, suggesting that these two miRNAs might affect the
up-regulated expression of their target genes in the cucumber cultivar Rijiecheng to defense
FW disease. The target genes of miR319a and miR6300 were further screened by the
transcriptome of Rijiecheng roots infected with Foc, and found that 21 genes differentially
expressed after Foc attack (Figure 4). We further verified the disease-related variations in
miRNAs and target genes, and revealed that the expression levels of miR319a and miR6300
and their target genes JRL3, BEE1, DAHP1 and PERK2 are obviously affected by Foc
(Figures 2 and 5). Furthermore, the regulatory networks or functions of these two modules
will be further investigated with phenotypes by the cucumber transgenic method. The other
up-regulated miRNAs and their target genes will be further verified in the FW-susceptible
cultivars and better identify the susceptibility genes to analyze the molecular mechanism of
susceptibility of cucumber against FW. In the future, the availability of efficient multiplex
transgene-free systems using new genome editing tools will be performed to introduce the
broad-spectrum FW resistance by targeting multiple susceptibility genes simultaneously.

The miR319a-JRL3, miR6300-BEE1, miR6300-DAHP1 and miR6300-PERK2 pairs were
confirmed that were obviously induced by the Foc. Additionally, the accumulated ev-
idence shows that JRL3 contains three jacalin-like lectin domains, and additionally, the
effects of JRL3 expression on plant defenses against pathogens have been investigated
in several species. For example, in wheat (Triticum aestivum), TaJRLL1 encodes mannose-
specific jacalin-like lectin domains and regulates the salicylic acid-dependent and jasmonic
acid-dependent pathways during defense responses to the fungal pathogen Fusarium
graminearum and the biotrophic fungal pathogen Blumeria graminis [52]. The BEE1 gene
(brassinosteroid enhanced expression 1) encodes a bHLH domain. In soybean (Glycine
max), the expression of a bHLH transcription factor gene, GmPIB1, is significantly induced
by Phytophthora sojae, which results in the repressed expression of GmSPOD1 and enhanced
reactive oxygen species production to increase plant resistance to P. sojae [53]. DAHP1
encodes a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase and significantly in-
duce by pathogenic Pseudomonas syringae strains [54]. Considered together, these findings
indicate that miR319a and miR6300 might affect JRL3, BEE1, DAHP1 and PERK2 expres-
sion accordingly to regulate the resistance of cucumber to FW. This information may be
relevant for future studies conducted to elucidate the genetic basis of FW resistance, with
implications for the breeding of FW-resistant cucumber cultivar.

5. Conclusions

Based on a comparative analysis of sRNA-seq and RNA-seq data from the FW-resistant
cucumber cultivar ‘Rijiecheng’ inoculated with Foc, we identified the Foc-responsive
miRNAs and their target genes. Among them, miR319a and miR6300 were highly down-
regulated expression by the inoculation with Foc, and on the basis of RNA-seq analysis,
21 corresponding target genes were screened in cucumber roots inoculated with Foc. We
further determined that JRL3, which is putatively targeted by miR319a, and BEE1, DAHP1
and PERK2, which are putatively targeted by miR6300, were abundantly expressed, with
expression levels that were higher than those in the controls. These results revealed
that miR319a-JRL3, miR6300-BEE1, miR6300-DAHP1 and miR6300-PERK2 pairs might be
important for cucumber defenses against FW.
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