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Chaste is an open-source C++ library for computational biology that has well-developed
cardiac electrophysiology tissue simulation support. In this paper, we introduce the
features available for performing cardiac electrophysiology action potential simulations
using a wide range of models from the Physiome repository. The mathematics of
the models are described in CellML, with units for all quantities. The primary idea
is that the model is defined in one place (the CellML file), and all model code is
auto-generated at compile or run time; it never has to be manually edited. We use
ontological annotation to identify model variables describing certain biological quantities
(membrane voltage, capacitance, etc.) to allow us to import any relevant CellML models
into the Chaste framework in consistent units and to interact with them via consistent
interfaces. This approach provides a great deal of flexibility for analysing different models
of the same system. Chaste provides a wide choice of numerical methods for solving
the ordinary differential equations that describe the models. Fixed-timestep explicit and
implicit solvers are provided, as discussed in previous work. Here we introduce the
Rush–Larsen and Generalized Rush–Larsen integration techniques, made available via
symbolic manipulation of the model equations, which are automatically rearranged into the
forms required by these approaches. We have also integrated the CVODE solvers, a ‘gold
standard’ for stiff systems, and we have developed support for symbolic computation of
the Jacobian matrix, yielding further increases in the performance and accuracy of CVODE.
We discuss some of the technical details of this work and compare the performance
of the available numerical methods. Finally, we discuss how this is generalized in
our functional curation framework, which uses a domain-specific language for defining
complex experiments as a basis for comparison of model behavior.
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1. INTRODUCTION
Thousands of studies have been performed with computational
cardiac action potential models to investigate the electrophysi-
ological mechanisms governing the activity of the heart. There
are now over 100 different models, each representing different
hypotheses about how the action potential is generated from
underlying ionic currents and how it adapts to different situ-
ations. It is advantageous to be able to compare and contrast
these models (i.e., hypotheses) in an automated and consistent
manner.

A solution to this challenge requires a representation of the
models in a form that facilitates such comparison. For each
model, we want one reference encoding of it that is used to gen-
erate both the equations and parameter details in the published
paper as well as the programming code used to simulate the
model, in order to ensure these describe the same mathemat-
ics. The CellML standard (Lloyd et al., 2008) provides us with
such a format. It is an XML-based language, and hence com-
puter processable, with tools available for editing, simulating, and
presenting models (Garny et al., 2008). There is also a public
repository of models encoded in CellML (Yu et al., 2011) that

includes the majority of published cardiac cellular electrophysi-
ology models. This repository is thus a source of reference model
versions that have been through a curation process.

This article covers the features available in Chaste v3.3 for
exploiting CellML to do cardiac electrophysiology research. Some
of the capabilities were available in earlier releases and have
been described elsewhere, particularly in Garny et al. (2008),
Cooper and McKeever (2008), Cooper (2009), Pathmanathan
et al. (2010), Cooper et al. (2011a), Marsh et al. (2012), and
Mirams et al. (2013). While describing Chaste’s current capabil-
ities, we therefore focus on new (and previously undescribed)
features.

Almost all cellular electrophysiology models follow the
same basic assumption, following the ground-breaking work of
Hodgkin and Huxley (1952). The cell membrane is modeled as
an ideal capacitor; i.e., the transmembrane voltage V obeys the
following ordinary differential equation (ODE):

dV

dt
= − 1

Cm

(∑
j

Ij + Istim

)
, (1)
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where t is time, Cm is the capacitance of the membrane, Ij

represents ionic current j, and Istim is an applied stimulus current.
There are typically many other variables in the system

(denoted “u”) that govern the currents Ij. These variables describe
ion-channel states and other quantities such as ion concentrations
in different cellular compartments. These satisfy the ODE system

du

dt
= f(u, V), (2)

where f(u, V) is a vector of functions describing the evolution of
each component of u. Equations (1, 2) can therefore represent
any typical ODE system defined by a CellML electrophysiology
model.

Mostly, this paper considers single cell electrophysiology simu-
lations, but all of the models and solvers are also available to use in
the “ODE solving” portion of cardiac tissue simulations. Indeed,
some solvers are developed specifically for this context, and so
results for this setting are included. We present only the simpli-
fied monodomain equations for modeling tissue level behavior;
see Keener and Sneyd (1998) for more details. These take the form
of a coupled system of partial differential equations (PDEs) given
by:

χ

(
Cm

∂V

∂t
+ Iion(u, V)

)
− ∇ · (σ∇V) = 0, (3)

∂u

∂t
= f(u, V), (4)

where: V , u, Cm, and f are as defined above; Iion = ∑
j Ij is the

total ionic current; χ is the membrane surface area per unit
volume; and σ is a conductivity tensor.

In the next section, we detail Chaste’s capabilities. Then in
Section 3, we present their effectiveness in various scenarios. In
Section 4, we discuss key features arising and outline some future
directions.

2. METHODS
CellML provides us with a structured XML encoding of the
mathematical equations defining a cellular model, along with
metadata. This is not a form that can be directly solved. Instead,
all tools that perform simulations of models encoded in CellML
(see Garny et al., 2008, for a list) convert the equations into com-
puter code in some programming language and apply a numerical
method for their solution. Because Chaste is written in C++,
we convert CellML to C++ code using a toolkit called PyCml
(Cooper, 2009), distributed as part of Chaste. PyCml therefore
generates C++ code designed to interact with Chaste, and this
process is described in the first subsection. Chaste provides a vari-
ety of solvers for the ODE systems that comprise cellular models,
detailed in Section 2.2. Finally, we describe some additional fea-
tures of Chaste that are useful for working with these models in
Section 2.3 .

2.1. CONVERSION OF CELLML
Detailed user documentation for the CellML conversion process
is provided as part of the Chaste wiki at https://chaste.cs.ox.ac.uk/

q/cellml-guide. Here, we shall focus on a high-level description of
the techniques used and features available. Using CellML provides
us with a source for curated encodings of cellular electrophysi-
ology models in a computer-processable format. However, as we
have indicated in earlier work (Cooper et al., 2011a), this does not
necessarily make such encodings easy to use. Our software makes
use of various techniques to provide straightforward simulation
and analysis capabilities.

2.1.1. Metadata annotation
Central to Chaste’s CellML handling is the use of ontological anno-
tation (Beard et al., 2009; Wimalaratne et al., 2009) to ensure
consistent identification of biological entities within different
models. An ontology describes a collection of concepts or enti-
ties, and the relationships between them, in a way that allows
computers to make logical inferences about the things described.
Ontological annotations are implemented using the Resource
Description Framework (RDF), which represents “knowledge”
as triples of terms: subject, predicate, and object (e.g., “red”
“is a” “color”). Each variable within a model, or the whole
model itself, may be used as the subject in such a triple, with
terms from one or more ontologies providing the predicate and
object. At present, we mainly use this feature to provide stan-
dard naming for concepts such as the transmembrane potential,
ionic currents, and their maximum conductances, with the object
terms taken from our own ontology developed for this purpose.
(See https://chaste.cs.ox.ac.uk/q/cardiac-metadata for the ontol-
ogy contents.) The predicate used in these cases represents the “is”
relationship; annotations thus state “this variable is the transmem-
brane potential,” for instance. The various uses of the annotations
are discussed as they occur below.

2.1.2. Standardized interfaces
Within Chaste, time is always measured in milliseconds, voltage
in millivolts, and so on, regardless of the convention used by the
original cellular electrophysiology model. The code generation
process therefore creates C++ code that includes conversions to
expose the concepts it requires (time, transmembrane potential,
stimulus current, and total membrane ionic current) in consistent
units (Cooper et al., 2011a). If given a CellML file without any
metadata annotations, PyCml tries to infer which variables rep-
resent these core concepts by trying a small selection of common
names for V , Cm, and Istim, specified in its global configuration
file, and then analyses the model to identify Equation (1) and
hence determine other ionic currents.

However, there are additional benefits to spending the small
amount of time required to annotate models with standard
names, beyond the minimum required by the conversion process,
because these annotations enable other functionality. Chaste pro-
vides interfaces to retrieve (or set) model variables by name. If
variables have been annotated, the standard names can be used
to retrieve them, meaning the same name can be used for the
same biological concept no matter which model is being used.
This makes it exceptionally easy to run the same simulated exper-
iment on different models. For example, scaling the conductance
of a particular ion channel becomes a one-line code addition,
regardless of the model choice.
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Via the method SetAnyVariable, the value of a variable
can be changed regardless of whether it appears as a state
variable of the system or is a constant parameter. Similarly,
the method GetAnyVariable allows a quantity to be read,
whether it be a state variable, parameter, or a “derived quantity”
computed as a function of the state variables and parameters.
This provides an additional mechanism supporting the analysis
of a range of models, because the same biological concept
may be treated differently in different models. A common
example is an ionic concentration, such as the cytosolic calcium
concentration. In most modern models (DiFrancesco and
Noble, 1985 onwards), this is a state variable defined by its
own ODE. In earlier or simplified models, it may be a fixed
parameter (Bernus et al., 2002), or it may be a derived quan-
tity (Matsuoka et al., 2003; Livshitz and Rudy, 2007). By calling
GetAnyVariable(‘‘cytosolic_calcium_concentr-
ation’’), the value can be returned whatever formulation the
particular model uses for the calcium system.

PyCml also supports its own metadata annotations to spec-
ify which particular variables are of interest, with predicates
“modifiable-parameter” and “derived-quantity.”
There is also a convenience option to the code genera-
tion system called “−−expose-annotated-variables,”
which implicitly considers any variable annotated with a stan-
dard name to be of interest, marking them as parameters
or derived quantities as appropriate (note that state vari-
ables are always made available and do not need additional
annotation).

A few other PyCml-specific annotations are recognized,
notably the ability to set expected ranges for variables that
are checked during simulation (for instance, declaring that
a concentration should not become negative or that a gat-
ing variable that represents a probability should lie between
zero and one). Users may also indicate that a model is self-
excitatory, and so Chaste should not expect to find a stimulus
current.

2.1.3. Stimulus current
Chaste allows a range of stimulus current functions to be applied
to models, and typically when creating an instance of a model, a
function must be supplied. The decision to do this arises in part
from the tissue simulation use case, where stimulation is han-
dled at a higher level, but it is sensible to abstract the externally
applied stimulus from the model of the cellular electrophysiol-
ogy, as we discuss later. After the units conversions, one common
stimulus function often suffices to trigger an action potential in
any model (Cooper et al., 2011a). However, it can be of benefit
to apply the stimulus function defined within the CellML encod-
ing, if there is one. If this stimulus is a “square wave” and its
parameters [amplitude, duration, period, start time, and (option-
ally) end time] have been annotated with our standard names
for these concepts, then a method is provided to use a Chaste
RegularStimulus with the same parameters. These “default
CellML stimuli” are used for our timing tests below to simulate
for a fixed number of paces as defined by the stimulus period
given in the original model, rather than for a fixed number of
seconds.

2.1.4. Dynamic loading
Another feature of Chaste’s CellML support that is fundamental
to providing easy use of different models is the way in which the
code generation process is integrated into Chaste’s build system.
At one level, this means that a CellML file may be considered
as “source code” in the same way as a C++ source file, and if
present in a Chaste source folder, it is automatically converted
into C++ code and made available for use by other code. By
default, this automatic conversion provides both standard and
optimized versions of the model, suitable for solving with most
of the solvers mentioned in Section 2.2, although this can be cus-
tomized using per-model configuration files. More powerfully,
however, this build process may be employed while code using
Chaste is running, compiling CellML models and linking them
into a running executable on the fly. This allows the choice of
model and any code generation parameters to be changed at run
time, rather than fixed when the software is built. In the results
section, we use this capability to run performance tests on all
CellML models available in a folder, iterating over available mod-
els and solvers within loops and applying exactly the same analysis
to each model/solver combination.

Finally, Chaste provides support for checkpointing long-
running simulations, so that they may be resumed from a pre-
viously saved (“checkpointed”) state. This is particularly useful
for tissue scale simulations, but it can also be relevant for large
parameter sweeps or more complex single cell protocols. Models
generated dynamically from CellML are fully integrated into this
process: their state can be saved just like all other objects within a
Chaste simulation, and they can be reloaded. The only additional
requirement is that the generated code for the cellular model is
still available in the same location when the checkpoint is loaded,
because the same code needs to be linked in at run time in order
to recreate the same cell model object.

2.2. NUMERICAL METHODS
Many methods are available for solving systems of ODEs (see
e.g., Iserles, 1996). The ODEs comprising cardiac cellular mod-
els are typically stiff, with significant activity in certain variables
over short timescales (mainly during the upstroke) and many
variables changing over much longer timescales. Solvers available
within Chaste, both general and specialized for such systems, are
discussed first. We then consider additional techniques that we
have implemented for optimizing computational performance.
Because some aspects of this, focussing on a tissue context, were
discussed in Pathmanathan et al. (2010), here we focus on the
novel features introduced and provide a more thorough com-
parison of performance. We conclude this section with a brief
discussion of how things change in the tissue context.

2.2.1. Available solvers
The core Chaste libraries contain a range of basic ODE solvers
for initial-value problems that may be applied to cardiac mod-
els. These include the forward Euler method (“FE”), as well
as second- and fourth-order Runge–Kutta methods (“RK2” and
“RK4”). However, due to the stiff nature of the ODEs, such
explicit methods are not well suited for use in single cell simu-
lation, requiring prohibitively small timesteps to be numerically
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stable (and accurate), as shown in Section 3. Implicit schemes
are more appropriate for such systems. Furthermore, adaptive
timestepping is often necessary for computational efficiency in
practice.

Rather than implement implicit ODE solvers or adaptive
timestepping directly, Chaste utilizes the CVODE library (Cohen
and Hindmarsh, 1996). A wrapper around this library simpli-
fies its usage, presenting a similar interface as for the other ODE
solvers in Chaste. The notable differences are that the “timestep”
parameter is treated as a maximum CVODE timestep and that
there are additional methods available for setting error tolerances.
CVODE uses its own data type for representing the vector of state
variables in an ODE system, whereas Chaste normally uses the
C++ standard template library’s vector type. Because convert-
ing between these data structures would require copying data
at every evaluation of the right-hand side of the ODE system,
PyCml generates code specialized for solving with CVODE that
uses CVODE’s data types internally. Conversions between vector
types are then only required when interfacing with external code,
and this happens much less frequently.

Chaste also includes numerical methods that are specialized
for solving cellular models in the context of a tissue simulation.
These exploit the fact that the transmembrane potential V is
updated as part of the PDE, following Equation (3) instead of (1),
and is treated as fixed when solving the ODEs of Equation (4). We
include a backward Euler (“BE”) scheme (Whiteley, 2006, 2007;
Bernabeu et al., 2009), the Rush–Larsen method (“RL” Rush and
Larsen, 1978), and some generalized Rush–Larsen (“GRL”) meth-
ods (Marsh et al., 2012). A key point common to these schemes
is that they require changes to the code generation process, trans-
forming the model equations symbolically to fit the requirements
of these solvers. These transformations are all performed entirely
automatically by PyCml, triggered by supplying appropriate flags
specifying the type of solver to be used.

The Rush–Larsen method is a numerical method for ODEs
that partitions the variables according to whether they are gat-
ing variables or not. The ODEs for the gating variables are linear
when V is held constant and hence can be solved exactly. The
Rush–Larsen method applies this exact formula to advance the
gating variables and the forward Euler method to the remaining
ones. It is generally quite an effective numerical method for solv-
ing cell model ODEs, and this corresponds to the stiffness in the
ODEs being captured by the gating variables (Marsh et al., 2012).

However, the stiffness in a cell model is not always captured
by the gating variables. In such cases, a more effective solver may
be based on the generalized Rush–Larsen method. This method
linearises all the ODEs about the current state and integrates
the ensuing linear equations exactly. Although significantly more
expensive per step than the Rush–Larsen method, the added
expense can be offset by the increase in stable step size. More
examples and details can be found in (Marsh et al., 2012).

2.2.2. Analytic jacobians
As discussed in Whiteley (2006), using the specialized backward
Euler solver requires calculating a Jacobian matrix for the Newton
iteration (for a subset of the variables corresponding to a non-
linear backward Euler update step). As of Chaste release 2.1,

PyCml gained the ability to use Maple (Monagan et al., 2005)
to compute an analytic form for this Jacobian, which is then
incorporated in the generated C++ code (Bernabeu et al., 2009).

An analytic Jacobian of the full ODE system can be used by
CVODE in place of multiple calls to the RHS that are needed to
generate a numerical approximation. This often gives an improve-
ment to both accuracy and efficiency. The Jacobian matrix of the
ODE system has entries defined as

Jij = ∂fi(v)

∂vj
, (5)

where v = {V, u}, and i and j range over the number of ODEs in
the system [to include V and form a full Jacobian for (1) and (2)].
In release 3.2 of Chaste, we added the capability to compute this
Jacobian, also using Maple. (Future work will look at using an
open-source alternative package, such as SymPy.) Because the
entries in the Jacobian matrices contain many common sub-
expressions, arising from taking the derivatives of the same com-
plex expression with respect to different variables, we now also
take advantage of Maple’s ability to do expression simplification
and extract such shared calculations into temporary variables,
which are therefore evaluated once only. To give an example, the
auto-generated analytic Jacobian code for the model of O’Hara
et al. (2011) uses over 4000 temporary variables.

However, one caveat is that for some models the analytic
Jacobian contains large exponents, which can give non-numerical
values when evaluated. As an example, the model introduced in
Hund and Rudy (2004) contains the equation

ri∞ = 1

1 + exp
(([Ca2+]ss − 0.0004 + 0.002 cafac

)
/0.000025

) . (6)

The exponent has the potential to become large (because it is
divided by 0.000025), and in fact when simply simulating for
a single pace, the exponential term exceeds double precision
and is represented as “Inf” in memory. The IEEE floating-
point arithmetic rules mean that ri∞ = 1/(1 + Inf) = 0, and so
this does not cause a problem when evaluating the right-hand
side. However, when derivatives are taken to form the analytic
Jacobian, this is no longer the case, and entries of the Jacobian
become equal to ‘Inf’.

In fact, most of the models that have unstable analytic
Jacobians (e.g., Livshitz and Rudy, 2007; Benson et al., 2008;
Davies et al., 2012) inherit equations such as (6) directly from the
Hund and Rudy (2004) model. For such models, we can either
avoid computing the analytic Jacobian when generating code or
force use of the numerical approximation instead with a method
call at run time (as happens by default if no analytic Jacobian is
available). The numerical algorithm used by CVODE to approxi-
mate the Jacobian uses multiple calls to the right-hand side, and
so avoids the issue of non-numerical values in the Jacobian itself.
In the rest of the article, we refer to the CVODE using a numerical
approximation to the Jacobian and using an analytic Jacobian as
the “CVODE NJ” and “CVODE AJ” solvers, respectively.
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2.2.3. Partial evaluation
Partial evaluation involves factoring out common parts of a calcu-
lation and performing them just once, instead of each time they
appear in the equations. For example, an expression like F/RT
may appear in many thermodynamic calculations and can be
computed just once per model. There is no numerical approx-
imation involved here; the partial evaluation simply assists the
compiler in optimizing the calculation. Thus, partial evaluation
is always utilized in the generated code.

Building on our original implementation (Cooper et al., 2006;
Cooper, 2009), in recent releases of Chaste this optimization
(and the use of lookup tables described below) can now be
applied to all generated code, including the Jacobian matrices,
and rearranged mathematics employed by solvers such as back-
ward Euler or Rush–Larsen. They are thus effective for all kinds
of model/solver combinations.

2.2.4. Lookup tables
A lookup table is simply a vector of pre-computed values for an
expensive function. For example, exp (V) may be evaluated for
V in the range −100 to +80 mV in fine steps, just once, to form
a “lookup table.” Then, instead of computing exp (V) each time
it occurs in the ODE system, we simply interpolate a value from
the pre-computed lookup table. A small numerical approxima-
tion error is therefore made when using lookup tables, so they are
an optional feature.

A new extension to this feature is that tables can be cal-
culated for variables other than V : the configuration for what
variables may index tables has been linked to the standard name
annotations, and table parameters therefore also have their units
specified. This means that a single table specification (limits and
refinement level) may be applied to any model possessing the
relevant annotation, making it easier to provide a widely useful
default configuration. The results presented in the next section
use the same settings for all models. Although a single table is
still only ever indexed by a single variable (because otherwise the
interpolation in 2D or higher would become much more com-
plex and the tables much larger, thus reducing the effectiveness
of the technique), this allows a greater proportion of the model
equations to be replaced by table lookups.

The presence of singularities [e.g., at V = 40 when a denom-
inator takes the form (1 − exp (V − 40))], whether in the model
equations themselves or in the Jacobians, also causes problems
when using lookup tables. Although in normal simulations, the
precise singular point of V = 40 mV is unlikely to be evaluated,
when pre-computing lookup tables, this becomes much more
likely. This was discussed briefly in Cooper et al. (2006), where
analysis of the model equations and Taylor expansions were used
to replace some singularities with a suitable value. Unfortunately,
in the Jacobians we often get singularities where the equation
does not tend to the same value from each direction, instead
tending to positive or negative infinity. We therefore employ an
ad-hoc approach to work around this, computing lookup table
values slightly offset from whole numbers, thus avoiding evalua-
tion exactly at typical singularities. However, when using analytic
Jacobians and lookup tables, we have noted that a fine lookup
table resolution is often needed to maintain a desired accuracy.

2.2.5. Tissue simulations
Almost all codes that solve the mono/bidomain PDEs use oper-
ator splitting numerical schemes (Pathmanathan et al., 2012).
Because the PDE formulation assumes that the variables dictating
ionic currents vary smoothly in space, the domain is divided into
many small volumes, in which it is assumed that those variables
are spatially uniform. The PDE is solved over small timesteps
to provide V in each volume. Each small volume then inde-
pendently solves Equation (4) [or equivalently, after operator
splitting, the set of ODEs (2)] governing the ionic currents, treat-
ing V as a fixed parameter dictated by the PDE solution. New
ionic currents, established by evaluating just the right-hand side
of equation (1), then provide an input into the mono/bidomain
PDE (Equation 3). The PDE in turn treats these ionic currents as
fixed in each volume over the PDE timestep as V is updated. To
progress through time, the scheme then iterates between updating
ODEs and the PDE across each PDE timestep.

This leads to different considerations that may change the most
suitable solver for the action potential models:

• the ODE timestep is limited by the PDE timestep (in addition
to stability and accuracy);

• Rush–Larsen-style schemes can take advantage of the discreti-
sation approximation of fixed voltage V to provide a fast
analytic solution to the subset of equations (2) that are (now)
linear;

• the ODE solver has to stop and re-start efficiently; and
• any memory overhead associated with solving the ODEs is

replicated many times across the whole domain because an
independent ODE solver is associated with each small volume.

The latter two points are issues for CVODE, which maintains an
internal state to determine the most appropriate step size to use.
If state variables of the system change between calls to CVODE,
its internal state must be reset. Failure to do so can result in inac-
curate solutions or the solver failing to converge. In the single cell
context, the voltage V is a state variable, and if it were still con-
sidered as such when solving the PDEs, a reset would be required
at every PDE timestep because V is set from the solution to the
PDE. However, multiple reset calls to CVODE result in consid-
erable overhead. Instead, we treat V as a fixed parameter of the
ODE system (not a state variable) when calling CVODE in the
tissue context.

Because the V parameter changes at each call, a slight approx-
imation is introduced into some of the information that CVODE
is storing about the system (e.g., f and J at the initial conditions
were evaluated at the previous value of V). Resetting would solve
the specified numerical problem slightly more accurately, but by
not resetting CVODE, we simply change the update of V from
occurring at time “t” to occurring at “t + ε,” where ε is small.
In practice, ε is made as small as is required to meet CVODE
integration tolerances. As timesteps are refined, we still expect
to converge to the same solution that we would achieve when
resetting CVODE at each PDE timestep. In the results section, we
will see that in practice acceptable accuracy is achieved without
resetting CVODE.
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2.3. ADDITIONAL FEATURES
An advantage of studying cellular electrophysiology within the
context of a larger software suite such as Chaste is that addi-
tional functionality is available and can be exploited. Notably
in this case, Chaste is designed to run in parallel on a range
of high-performance computing resources as well as on desktop
multi-core machines. Cardiac cellular models are not sufficiently
complex to make simulating a single cell in parallel particularly
worthwhile, but many applications require multiple independent
simulations, whether for comparing different models or per-
forming parameter sweeps. Chaste contains features specifically
designed for performing such independent simulations in paral-
lel, and these are exploited in the code accompanying this paper
as a demonstration. When combined with the abilities described
above to load models from CellML dynamically and address the
same biological entity consistently in any model through onto-
logical annotation, this gives a powerful toolkit for analysing and
comparing models. One can parallelise execution of an arbitrary
experiment over different parameter sets or models.

2.3.1. Steady state
It is useful to get models into a state where they produce the same
action potential on subsequent stimuli or “paces.” In mathemat-
ical terms, this is the limit cycle of the periodic orbits they are
taking through state variable space over time. Because the models
are deterministic, if the state variables at time “t” are the same as
the state variables at time “t + pacing period,” then this suffices
as a definition of the limit cycle and a specification of the state
variables together with the pacing period defines the steady orbit.
We call these limit cycles the “steady state” in this discussion, in
contrast to the usual steady state for an ODE system (when the
state variables have ceased to change over time).

Using such a limit cycle steady state for initial conditions for
simulations is advantageous for a number of reasons, discussed
further in a blog post (http://mirams.wordpress.com/2014/07/22/
initial_conditions). We have implemented a simple algorithm in
Chaste (the “SteadyStateRunner” class) to take an action
potential model with a certain regular stimulus and use CVODE
for rapid pacing.

Of course, it takes an infinite amount of time to reach a steady
state. So in practice, we define the steady state as being achieved
when the change in state variables between subsequent paces has
become sufficiently small (note that regular alternans can also be
detected by examining the difference in state variables over two
paces). At present, we use the L2-norm of the change in state vari-
ables being less than 10−6; future work will examine whether a
metric based on the number and relative sizes of the state variables
is more useful. Typically, this criterion is reached in a few hundred
paces, when changing pacing rate or varying maximum conduc-
tance parameters, for most models. Action potential durations are
established to within 0.01 ms, relative to pacing for 10, 000 paces,
for the range of models we have examined to date.

Certain models do not approach a steady state, or they tend
to an un-physiological steady state, usually because conservation
of ions is not satisfied (Livshitz and Rudy, 2009). A warning is
provided to the user if the algorithm hits a (user-defined) max-
imum number of paces in its search for steady state to provide

information that the model may be exhibiting such behavior.
Otherwise, the model is returned to the user with its state
variables in steady state for its stimulus.

3. RESULTS
Here, we investigate the success rate of CellML conversion in
Section 3.1, then discuss single cell simulation benchmarking in
Section 3.2. We examine how features of tissue simulations can
alter the choice of ODE solver in Section 3.3 and finish with a dis-
cussion of some numerical considerations in Section 3.4. All of
the code required to reproduce the study and figures in this arti-
cle has been made open source; it can be downloaded as a bolt-on
project for Chaste v3.3 from https://chaste.cs.ox.ac.uk/q/paper/
Frontiers2014, where an annotated tutorial-style walk-through of
all the code can also be found.

3.1. MODEL CONVERSION
The Chaste source repository includes a collection of CellML files
obtained from the official CellML repository and annotated to
work with Chaste. At present, it contains 75 model files that can
successfully be converted with our tools, and the majority of these
can be simulated using CVODE, although two are numerically
fragile and four do not produce action potentials with the stim-
ulus hard-coded in the model. Seven models we have tried do
not convert; however these are all due to errors in the CellML
encoding, such as invalid physical units, missing parameters, or
over-constrained equations.

A number of studies have been enabled due to the consis-
tent interface to electrophysiology models that we have presented
in this article. In Mirams et al. (2011, 2014), a range of models
were subjected to the same parameter changes and pacing pro-
tocols to model drug-induced block of multiple ion channels.
Pathmanathan et al. (2011) examined how a wide range of mod-
els exhibited different conduction velocity convergence properties
when using different numerical schemes for tissue simulations.
By examining a wide range of models, it was established that the
sodium channel formulation and upstroke velocity in a single cell
simulation could inform the likely error incurred by the differ-
ent schemes in a tissue context. Walmsley et al. (2013) used the
auto-generated interface to explore a range of altered conductivi-
ties in the action potential model of O’Hara et al. (2011) to predict
likely changes to electrophysiology under the mRNA expression
changes observed in heart failure. Finally, Cooper et al. (2011b)
used the consistent interface to models to compare and contrast
different model behaviors in the same experimental situation.

3.2. BENCHMARKING CELL SIMULATIONS
In order to benchmark the various solvers for each model, we
chose a reference problem of a regular stimulus action potential
simulation. Where the model is not self-exciting, we use the stim-
ulus parameters of magnitude, start time, period, and duration as
defined in the CellML file. For self-exciting models, the length of
the simulation was set to 1000 ms.

To generate a converged “reference solution” for each model,
we used CVODE with analytic Jacobians (where available), with
tolerances of 10−7 (relative) and 10−9 (absolute). The output
timestep for the reference traces was set to 0.1 ms. Some of
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the methods we are using are implicit, and so relatively large
timesteps could be taken whilst maintaining numerical stabil-
ity. However, stability does not guarantee accuracy, and so we
also need to ensure sufficiently small timesteps are taken in each
method to get a reasonably accurate solution. To ensure a fair
speed comparison, we first ran a test to establish timesteps (for
the fixed-step methods) or tolerances (for CVODE) that would
produce results within a common defined level of accuracy.

We chose a metric of Mixed Root Mean Square error (Marsh
et al., 2012), a combination of relative and absolute errors,
defined by:

eMRMS =
√√√√ 1

N

N∑
t = 1

(
V̂t − Vt

1 + |V̂t |

)2

. (7)

Here, t indexes the voltage (V) samples at N distinct time points,
V̂ represents the reference solution, and V the test solution. We
took eMRMS � 0.05 as our acceptable error, as shown in Figure 1
for the Shannon et al. (2004) model. Across all model/solver com-
binations, this metric results in mean absolute errors of 0.3 ms in
APD90, 0.8 ms in APD50, and 1.63 ms in APD30, 0.85 mV in peak
voltage, 0.02 mV in resting potential, and 10 mV/ms in maximum
upstroke velocity.

We first undertook the simulations with timesteps equal to
0.1 ms, ran the simulations, and calculated the resulting errors.
If a simulation failed due to instability or the error criterion of
eMRMS � 0.05 was not met, then we halved the timestep (for

fixed-step methods, or tightened the tolerances by ten-fold for
CVODE) and repeated. Reassuringly, all of the solvers converged
toward the reference solution for all of the models, although
for some models not all solvers met the convergence criterion
before the limit of 12 refinement steps was reached. We give an
example of some traces generated using the different solvers in
Figure 1. Notably, many of the explicit solvers were unstable at
larger timesteps and immediately satisfied the error metric on
the first timestep that produced a solution—clearly care must be
taken to check the stability of these solvers for a given problem.
On the other hand, solvers such as the Generalized Rush–Larsen
methods are very stable but can give highly inaccurate answers
when using large timesteps.

Hence, we recorded a suitable timestep/tolerance for each
solver and model combination to meet the eMRMS � 0.05 crite-
rion and used these timesteps in a subsequent timing test. The
timesteps that were used are presented in Tables 1, 2, ranked
in terms of the computing time required from low to high. We
infer that the models operating on the faster timescale require
finer tolerances and timesteps, and that these are generally linked
with longer simulation times (although the number of ODEs and
pacing rate also play a role).

The timing test consisted of approximately 5–10 s of run time
(we adjusted simulation time according to how long a single pace
took whilst calculating suitable timesteps). The reported time is
therefore given in “wall time” (that is, the time it took for the
computer to solve the ODEs) for a second of simulated cellu-
lar electrophysiology. The test was repeated three times in quick

FIGURE 1 | Single cell action potential traces for the Shannon et al.

(2004) model using a range of numerical algorithms with different

timesteps. Top: traces with eMRMS � 0.05 (overlapping), bottom: traces
with eMRMS > 0.05. Note that nearly all the solvers in the upper figure
diverged (failed to provide any solution) when running at larger timesteps

or with more relaxed tolerances. It is the fact that the Generalized
Rush–Larsen solvers are very stable that means that traces were
produced even at large timesteps, so their dominance of the bottom plot
should be seen as a demonstration of their stability rather than a
statement on their accuracy.
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Table 1 | Timesteps and tolerances required to meet the error bound eMRMS � 0.05 for all of the cell models in this study.

Rank Model CVODE CVODE F B. RK RK RL GRL GRL

AJ NJ Euler Euler 2nd 4th 1st 2nd

(Tol.) (Tol.) n n n n n n n

1 Noble (1962) 10−3 10−3 3 3 0 0 5 5 5
2 McAllister et al. (1975) 10−3 10−3 4 4 4 3 5 5 5
3 Luo and Rudy (1991) 10−3 10−3 4 0 4 3 0 0 0
4 Noble and Noble (1984) 10−3 10−3 0 1 0 0 2 3 3
5 Hilgemann and Noble (1987) 10−3 10−3 1 0 1 1 1 0 0
6 Earm and Noble (1990) 10−3 10−3 1 0 1 1 1 1 1
7 DiFrancesco and Noble (1985) 10−4 10−4 2 1 1 1 3 3 3
8 Stewart et al. (2009) 10−3 10−3 3 2 3 3 3 3 3
9 Beeler and Reuter (1977) 10−3 10−3 2 0 3 2 0 0 0
10 Paci et al. (2013) (atrial) 10−3 10−3 1 1 2 2 2 3 3
11 Noble et al. (1989) 10−3 10−3 2 2 0 0 2 3 3
12 Hodgkin and Huxley (1952) 10−4 10−4 1 3 1 1 1 2 2
13 Noble et al. (1991) 10−3 10−3 1 0 1 1 0 0 0
14 Dokos et al. (1996) 10−3 10−3 1 1 1 1 1 3 3
15 Sakmann et al. (2000) 10−3 10−3 1 0 1 1 0 0 0
16 Priebe and Beuckelmann (1998) 10−3 10−3 4 1 5 4 3 1 1
17 Paci et al. (2013) (ventricle) 10−3 10−3 3 0 4 3 3 1 —
18 Zhang et al. (2000) 10−3 10−3 0 1 0 0 1 2 2
19 Noble et al. (1998) 10−3 10−3 1 0 1 1 2 2 2
20 Noble and Noble (2001) 10−3 10−3 1 0 1 1 1 1 0
21 Maleckar et al. (2008) 10−3 10−3 1 0 1 1 1 1 1
22 Fox et al. (2002) 10−3 10−3 5 1 5 4 1 0 0
23 Courtemanche et al. (1998) 10−3 10−3 3 1 3 3 2 2 2
24 Pandit et al. (2001) (endo) 10−3 10−3 8 1 8 7 8 2 2
25 Maltsev and Lakatta (2009) — 10−3 3 — 3 2 3 4 4
26 Kurata et al. (2002) 10−3 10−3 2 1 2 2 3 4 4
27 Iribe et al. (2006) 10−3 10−3 1 0 1 1 0 1 0
28 Nygren et al. (1998) 10−5 10−5 2 1 1 2 2 2 2
29 Espinosa (1998) 10−4 10−4 2 2 1 1 0 1 1
30 ten Tusscher et al. (2004) (endo) 10−3 10−3 6 0 6 6 0 0 0
31 Benson et al. (2008) — 10−3 4 — 4 3 3 2 2
32 Fink et al. (2008) 10−3 10−3 6 0 6 6 2 2 1
33 ten Tusscher et al. (2004) (epi) 10−3 10−3 6 0 6 6 0 0 0
34 ten Tusscher et al. (2004) (M) 10−3 10−3 6 0 6 6 0 0 0

Note that a printing/sampling time of 0.1 ms was used in the timestep selection test, so timesteps are presented by the number of times 0.1 was halved to create

the ODE timestep; i.e., ODE timesteps for the fixed-step methods are of the form 0.1/2n ms, so n = 0 represents 0.1 ms timestep, n = 1 represents 0.05 ms, n = 2

is 0.025 ms, etc. The CVODE relative tolerance that was required is shown (an absolute tolerance 100 times smaller was also set). In this table, the first half of the

models are shown (fastest to simulate), the other half are in Table 2.

succession, and the time taken for the fastest of these three runs
was recorded. The timing tests were run with different com-
pilers, with and without lookup tables, on one machine (a 12
core Ubuntu 12.04.5 server with Intel® Xeon® X5650 2.67 GHz
processors and 48 GB of RAM).

3.2.1. Benchmarking compilers
We ran all of the timing tests under the following compil-
ers: GCC (“debug”); GCC (optimized, “GccOpt”); GCC (opti-
mized specifically for the current processor, “GccOptNative”);
“Intel”; Intel production quality (“IntelProduction”); and Intel
production quality with CVODE recompiled in the same way
(“IntelProductionCvode”).

The results using different compilers are shown in Figure 2 for
the CVODE numerical Jacobian solver. We observe little speed-up
when using GccOpt or GccOptNative compilers. The main reason
for this is that the pre-packaged CVODE library in Ubuntu that
we used appears to have been compiled with GccOpt; for the non-
CVODE solvers, the speed-up with GccOpt/GccOptNative was
typically about 40%. The Intel compiler is certainly worth using if
available, giving around 50% speed-up. For non-CVODE solvers,
the speed-up using Intel was around 200–250%. We found a fur-
ther performance boost could be gained for CVODE solvers by
recompiling the CVODE library using the Intel compiler under
production settings, taking us from around 1.5× to 2× as fast
as non-Intel compilers. The rest of the results that are presented
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Table 2 | Timesteps and tolerances required to meet the error bound eMRMS � 0.05 for all of the cell models in this study.

Rank Model CVODE CVODE F. B. RK RK RL GRL GRL

AJ NJ Euler Euler 2nd 4th 1st 2nd

(Tol.) (Tol.) n n n n n n n

35 Hund and Rudy (2004) — 10−3 4 — 4 3 4 4 4

36 Demir et al. (1994) 10−3 10−3 3 3 1 1 4 6 4

37 ten Tusscher and Panfilov (2006) (M) 10−3 10−3 6 0 6 6 0 0 0

38 ten Tusscher and Panfilov (2006) (endo) 10−3 10−3 6 0 6 6 1 0 0

39 ten Tusscher and Panfilov (2006) (epi) 10−3 10−3 6 0 6 6 0 0 0

40 Grandi et al. (2010) (epi) 10−3 10−3 4 0 4 4 4 4 3

41 Grandi et al. (2010) (endo) 10−3 10−3 4 0 4 4 4 4 3

42 Mahajan et al. (2008) 10−3 10−3 4 1 4 4 2 5 3

43 Pandit et al. (2001) (epi) 10−5 10−5 4 3 9 8 4 3 3

44 Shannon et al. (2004) 10−3 10−3 4 0 4 4 4 4 3

45 Livshitz and Rudy (2007) — 10−4 4 — 4 4 3 3 3

46 Davies et al. (2012) — 10−3 5 — 5 4 3 3 3

47 Viswanathan and Rudy (1999) 10−3 10−3 4 7 4 4 3 0 0

48 Aslanidi et al. (2009b) — 10−3 3 — 3 3 0 0 0

49 Matsuoka et al. (2003) 10−3 10−3 1 0 0 0 1 1 1

50 Carro et al. (2011) (endo) 10−3 10−3 4 0 4 4 4 5 3

51 Carro et al. (2011) (epi) 10−3 10−3 4 0 4 4 4 5 3

52 Faber and Rudy (2000) 10−7 10−6 8 9 7 6 8 9 8

53 Pásek et al. (2006) 10−3 10−3 7 4 7 7 7 — 10

54 Jafri et al. (1998) 10−3 10−3 8 6 8 8 8 6 3

55 Aslanidi et al. (2009a) — 10−3 4 — 4 4 1 0 0

56 Winslow et al. (1999) 10−5 10−5 10 7 10 10 10 11 8

57 Wang and Sobie (2008) 10−3 10−3 3 0 3 3 3 1 1

58 Corrias et al. (2011) 10−6 10−6 8 8 4 6 8 8 8

59 Li et al. (2010) 10−3 10−3 9 0 9 8 9 4 3

60 Iyer et al. (2004) 10−3 10−3 11 6 11 10 11 11 8

61 Iyer et al. (2007) 10−3 10−3 10 1 10 9 10 9 7

62 O’Hara et al. (2011) (endo) 10−3 10−3 2 2 2 1 2 2 2

63 O’Hara et al. (2011) (epi) 10−3 10−3 2 2 2 1 2 2 2

64 Decker et al. (2009) 10−3 10−3 4 0 4 4 0 2 1

65 Pásek et al. (2008) 10−3 10−3 9 7 9 9 9 8 9

66 Bondarenko et al. (2004) (septal) 10−3 10−3 10 4 10 10 10 5 4

67 Bondarenko et al. (2004) (apical) 10−3 10−3 9 4 9 9 9 4 3

68 Clancy and Rudy (2002) 10−3 10−3 1 1 1 1 1 1 1

Note that a printing/sampling time of 0.1 ms was used in the timestep selection test, so timesteps are presented by the number of times 0.1 was halved to create

the ODE timestep; i.e., ODE timesteps for the fixed-step methods are of the form 0.1/2n ms, so n = 0 represents 0.1 ms timestep, n = 1 represents 0.05 ms, n = 2

is 0.025 ms, etc. The CVODE relative tolerance that was required is shown (an absolute tolerance 100 times smaller was also set). In this table, the second half of

the models are shown (slowest to simulate), the other half are in Table 1.

therefore use the Intel production build, with CVODE compiled
using the same settings, unless otherwise stated.

3.2.2. Numerical methods
The distributions of solver times can be seen in Figure 3. CVODE
consistently outperforms any of the fixed timestep methods,
achieving the required accuracy typically 10–100× faster than
the other solvers. This is consistent with our earlier findings
(Spiteri and Dean, 2008, 2010). The only model where this is not
the case is Clancy and Rudy (2002) where, for reasons we have
not yet established, CVODE underperforms the fixed timestep
methods.

In Figure 4, we compare the speed of the two versions of
CVODE, AJ with analytic Jacobian provided and NJ where
CVODE defaults to a numerical approximation. The use of ana-
lytic Jacobians provides between 10–20% speed-up for the vast
majority of models. However, it is not usable for a few models,
as mentioned above, and in two cases causes a slowdown; the
numerical Jacobian is more consistent.

The two models where an analytic Jacobian causes a slowdown
are Faber and Rudy (2000) and O’Hara et al. (2011) (but only
its epicardial variant). These findings were replicated on all the
different compilers, increasing our confidence that they are not
spurious, and there is some feature of these models that means
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FIGURE 2 | Left: a comparison of the time taken to simulate one second of
activity with CVODE and numerical Jacobians, for each model, under different
compilers. The Intel/IntelProduction mostly coincide, as do the
GccOpt/GccOptNative lines. The last point (Clancy and Rudy, 2002) is

omitted for clarity but shows the same trend at wall times around 4.65 s.
Right: the speed-up provided relative to gcc (debug). Models ranked
according to the wall time required under the IntelProductionCvode build, as
listed in Tables 1, 2.

FIGURE 3 | Distributions of model simulation times for one second of

electrophysiology for each different numerical method. The CVODE
solvers (“CV–AJ” with analytic Jacobian, and “CV–NJ” with numerical
approximation to the Jacobian) consistently outperform any other method
by an order of magnitude or more.

the analytic Jacobian does not speed up the solving. This could be
related to the numerical issues that mean some analytic Jacobians
lead to instabilities; we discuss this in Section 3.4.

3.2.3. Lookup tables
In Figure 5, we show the speed-up that is gained by using the dif-
ferent solvers with the lookup tables described in Section 2.2.4.
More speed is gained with the numerical Jacobian (median 14%)
than the analytic Jacobian (median 7%) despite lookup tables also
being used for the analytical Jacobian calculation. It is likely that
the extra calls to the right-hand side of the ODE system when
using the numerical approximation, and possibly the numerical
issues discussed in Section 3.4, outweigh this factor. There are
∼ 60% speed-ups for the explicit methods and ∼ 45% for Rush–
Larsen. The backward Euler solver shows no difference because
lookup tables are enabled by default when using this method.
There is a slowdown to ∼ 80% of usual speed for the Generalized

Rush–Larsen solvers, caused by the way in which the generated
C++ code is arranged. For clarity and to avoid scope collision,
individual (partial) derivatives are computed within their own
methods, i.e., the table lookup calculations are replicated once for
each state variable in the model, rather than being shared as in
other solvers. We intend to resolve this anomaly as part of the
work to use symbolic expressions for these derivatives.

The use of lookup tables introduces further errors to the sim-
ulation (Cooper et al., 2010). For 13 model/solver combinations,
using a lookup table just on V caused simulation failure because
the voltage went outside the physiologically plausible range used
for the table. In two further cases, using lookup tables caused
the error to exceed our 5% threshold. The speed-up seen when
using a table on cytosolic calcium too was very similar; in this
case 14 combinations failed to simulate, but none exceeded the
error threshold. Intriguingly, in many cases using lookup tables
with CVODE decreased the error metric, sometimes considerably;
in other cases it increased but remained below the threshold.
Presumably the error is within CVODE’s tolerances and the lin-
ear approximation introduced can have a corrective effect. For
explicit solvers with the default settings, the error change was
below 0.01% in almost all cases; where this was not the case the
error was generally orders of magnitude below the threshold.

3.3. BENCHMARKING TISSUE SIMULATIONS
To evaluate different ODE solver performance in a tissue simu-
lation context, we chose a sample of seven models spanning the
range of single-cell solving times that were reported in Section 3.2.

We used Chaste’s default tissue simulation capabilities, which
use the numerical methods described in Pathmanathan et al.
(2010). The Chaste solvers were recently the subject of a thor-
ough code verification study where the results of mono- and bi-
domain simulations were shown to agree with analytic solutions
(Pathmanathan and Gray, 2014).

For each action potential model, we set up a 1D monodomain
problem, simulating activity for t ∈ [0, 500] ms on a 1D strand
x ∈ [0, 1] cm, with conductivity of 1.75 mS/cm, and a stim-
ulus of −30, 000 μA/cm applied in x ∈ [0, 0.1] cm when t ∈
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FIGURE 4 | Left: performance of CVODE with and without use of an
analytic Jacobian. For seven models an analytic Jacobian was not
stable, and these points are omitted (those shown in Tables 1, 2 as
“—” in the CVODE AJ column). Right: relative speed when using

analytic Jacobian rather than a numerical approximation; 10–20%
speed-up is most common. Models ranked according to the wall time
required for CVODE NJ under the IntelProductionCvode build, as listed
in Tables 1, 2.

FIGURE 5 | Speed of simulation when using lookup tables, relative to

without lookup tables. Shown for all solvers with the
“IntelProductionCvode” build. The black dashed line represents the same
speed as without lookup tables; above is a speed-up; below is a slowdown.
There are some gaps in the CVODE graphs to denote when analytic

Jacobians are not available/stable (7 models), and also where the simulations
with lookup tables failed to converge (2 additional models with analytic
Jacobians, and 3 models with numerical Jacobians). Models ranked
according to the wall time required for CVODE NJ under the
IntelProductionCvode build, as listed in Tables 1, 2.

[1, 5] ms. This is sufficient for an action potential to traverse the
whole domain. First, a convergence study was performed with
varying mesh resolution and PDE timesteps (see the MATLAB
code examine_reference_convergence.m in the Chaste
project for all the results). This led us to choose mesh and time
resolutions that gave reasonably well-converged answers and are
of similar magnitudes to those commonly used in cardiac electro-
physiology simulations. We selected two representative situations:
a finite element mesh inter-node spacing of 0.01 cm (100 μm, 101
nodes) with PDE timestep of 0.01 ms; and the same mesh with a
PDE timestep of 0.1 ms.

The reference traces for each case were produced using
CVODE and analytic Jacobians, with relative and absolute toler-
ances of 10−7 and 10−9 respectively, without lookup tables, and
with re-initialisation of CVODE on each PDE timestep. Again,
we calculated the ODE timesteps/tolerances that were required to
produce eMRMS � 0.05 for the voltage trace at the final node (the
last to be activated), with sampling timesteps of 0.1 ms.

Figure 6 shows the results of the solver benchmarking study.
They are intricate, and we discuss the cases for a relatively fine
PDE timestep (0.01 ms) and a moderately fine step (0.1 ms)
separately below.
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FIGURE 6 | Total wall time (including PDE solution, output, etc.) for

a simulated 500 ms of monodomain activity in a 1 cm strand of

tissue with inter-node spacing of 0.01 cm, using the fastest

compiler settings. Top: for a PDE timestep of 0.01 ms; bottom: for

a PDE timestep of 0.1 ms. Missing data points indicate such small
ODE timesteps were needed to reach a sufficiently converged solution
that the simulation would have taken over 15 min (off the top of the
scale).

For PDE timestep of 0.01 ms: Simpler models are best solved
using the Rush–Larsen, Generalized Rush–Larsen, and Backward
Euler solvers. More complex models are still solved well with
Rush–Larsen and even Forward Euler. Explicit methods (Forward
Euler and second- and fourth-order Runge–Kutta) are never
faster than Rush–Larsen. The Backward Euler method begins
to become uncompetitive with models of the complexity of ten
Tusscher et al. (2004) and higher. For the most complicated
model (Iyer et al., 2007), CVODE performs much better than any
other solver, and as expected the analytic variant provides a small
additional performance boost.

For PDE timestep of 0.1 ms: Now the explicit solvers (Forward
Euler, Runge–Kutta solvers) are not competitive for any model;
there is always a better choice of solver. Simpler models are still
solved well by Rush–Larsen and Generalized Rush–Larsen solvers.
As before, the Backward Euler method does not perform well
with models of ten Tusscher et al. (2004) and higher complexity,
but in this case the difference is even more marked. Surprisingly,
CVODE performs very well across the whole spectrum of models,
with the larger PDE timestep giving the adaptive time-stepping
the chance to “relax” when there is little activity and to there-
fore become very efficient. For a complicated model such as Iyer
et al. (2007), CVODE is more than an order of magnitude faster
than any other solver for the prescribed level of accuracy. For even
larger PDE timesteps, we would expect CVODE to perform still
better, whilst roughly the same amount of time would be taken
solving the ODEs for the other numerical methods.

We confirmed that with our use of CVODE, described in
Section 2.2.5, there is indeed no need in general to reset CVODE
for each PDE timestep. The simulations with and without
resetting display the same accuracy and convergence behavior.
However, occasionally when resolving the upstroke for some cell
models CVODE will fail to converge, especially when a very large
PDE step is used. In this case, Chaste catches the error and
performs a reset, and the simulation may then proceed.

Note that for all the models tested, the time taken to solve the
ODEs dominates that taken to solve the PDE, consuming over
60% of the total run time for the simplest models, and over 99%
for the most complex. In contrast solving the linear system aris-
ing from the PDE typically took less than 10% of the total time,
and never more than 26%. The PDE solution becomes more chal-
lenging for 3D or bidomain problems. However, it is still the case
that choosing a suitable ODE solving scheme is a problem worthy
of attention. Although not presented here, we have used CVODE
in large-scale tissue simulations with both the monodomain and
bidomain equations and still observed a significant speed-up. The
memory overhead, while present, has not been prohibitive when
using a number of processors appropriate to obtain good parallel
performance.

3.4. NUMERICAL CONSIDERATIONS
One requirement for adaptive solvers is that the maximum
timestep that they can take is less than the duration of any
square wave stimulus that is applied; otherwise stimuli can be
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missed completely if the RHS is not evaluated when the stimulus
is “on.”

Cardiac cell models can be difficult to integrate, partly because
some are composed of stiff systems of ODEs (Spiteri and Dean,
2010). Adaptive solvers such as CVODE can perform so well
because they can refine the timestep as the different timescales
of the system come into play.

Another problem is the presence of singularities: the values
the right-hand side of the ODE system takes can be undefined
(Inf or NaN), usually for certain specific values of V . Sometimes
these are “removable singularities,” where the function tends
to the same value from above and below. These singularities
can be manually edited out by changing the CellML file, for
instance using L’Hôpital’s rule. Others have proposed solutions
to this problem by using alternative expressions to capture gating
kinetics (Hanslien et al., 2010).

Unfortunately, adaptive solvers such as CVODE can be prone
to finding these singularities because they refine timesteps near
steep gradients. In this case, it is worth changing the absolute and
relative tolerances of the CVODE solver, the default being (10−5,
10−7). Unfortunately, it is not clear whether refining or relax-
ing the tolerances is the best strategy, and we have observed both
approaches working for different models. The reasoning is that
by relaxing the tolerances the solver may be able to “skip over”
any singularity because the solution is not as refined around the
singularity. But on the other hand, we have observed more stabil-
ity problems with lookup tables enabled and also saw that a more
accurate solution, provided by tightening tolerances (or avoiding
lookup tables), can prevent these problems.

4. DISCUSSION
Chaste has a wide range of features for performing single-cell and
tissue cardiac electrophysiology simulations. CellML files defining
different models can be automatically converted, on the fly, into
C++ programs, with a consistent interface in terms of variable
names and units. A wide range of ODE solvers can then be used
to perform simulations with these models.

This article has shown the performance of the different ODE
solvers, and required timesteps for an accurate solution, for a
wide range of models. The required timestep (or solver toler-
ance for adaptive solvers) is very much model dependent, and
should be tested in each case. For single-cell simulations the best
performance is usually achieved using the CVODE solver, using
analytic Jacobians that are automatically calculated, and code
compiled with the Intel compiler using production settings. In
most cases using Chaste’s auto-generated “lookup tables” (which
replace expensive functions) will provide a further speed-up with
minimal impact on accuracy.

In the case of tissue simulations, the most suitable solver
is less clear because the maximum ODE timestep is typically
constrained by the PDE timestep, and voltage is treated as a
constant across the PDE timestep. The most suitable solver can
change depending upon the PDE timestep that is being used
and the tolerable level of error for a particular simulation. In
these cases, different solvers could easily be tested with the model
of interest by utilizing the open source code written for this
paper.

The metadata tags that we have proposed for cardiac elec-
trophysiology models allow automatic conversion of tagged
CellML models to C++, including any necessary units conver-
sions, to create a standardized model interface. We presently
use a small repository of CellML files with added tags (https://
chaste.cs.ox.ac.uk/q/cellml), in order to develop working tools
quickly without waiting for a community consensus process.
We plan to convert these simple “tags” into a more struc-
tured ontology, which will be more widely useful, allowing
interactions such as “get the sum of all the transmembrane
potassium currents” without having to know a priori the pre-
cise quantities that are present in each model. To ensure
long-term benefit, we plan to gather community support for
such an ontology, and to add corresponding metadata to the
main Physiome Repository (https://models.physiomeproject.org/
electrophysiology).

Within all of the simulations and code discussed in this paper,
the “experimental protocol” applied to a cell model is hard-
coded in C++. Although this gives great flexibility, it also means
that the essential features of the experiment, from a biophysi-
cal perspective, are somewhat obscured by the need to express
them in C++ using the Chaste classes. We have therefore been
developing the “standardized interfaces” ideas expounded in
this paper into the concept of “functional curation” (Cooper
et al., 2011b), and implementing it as an add-on component
for Chaste. This uses a special purpose syntax for describing
complex ‘virtual experimental protocols’ (Cooper et al., 2014),
inspired by SED-ML (Köhn and Le Novère, 2008), much as
CellML provides a dedicated language for describing the cellular
models.

The functional curation tools use the annotation and units
conversion functionalities described in this paper to allow any
protocol to be applied to any compatible model, i.e., one possess-
ing the biology probed by the protocol. We may therefore easily
compare how different models react under the same experimental
scenario, as well as characterize the behavior of individual mod-
els in multiple scenarios. In Cooper et al. (2014), we argue that
these approaches are a prerequisite for future advances in exper-
iment automation, parameter fitting, and open reproducible
science.
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An open source Chaste project Frontiers2014 is available
from http://www.cs.ox.ac.uk/chaste/download.html, to work
with Chaste v3.3. The interested reader can download it, run the
simulations, and analyse the results as presented in this paper.
Documentation for this code is available at https://chaste.cs.ox.
ac.uk/q/paper/Frontiers2014, which explains how to install it,
what it does, and how it works.
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