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Abstract: The present study aimed to compare the action of advanced platelet-rich fibrin (A-PRF+)
alone with the action of A-PRF+ combined with autologous gingival fibroblasts. The components
released from A-PRF+ conditioned with autogenous fibroblasts that were quantified in the study
were fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), trans-forming growth
factor-beta1 and 2 (TGFβ1 and TGFβ2), and soluble collagen. A-PRF+ combined with fibroblasts
demonstrated significantly higher values of released VEGF at every time point and, after 7 days,
significantly higher values of released TGFβ2. A viability test after 72 h showed a significant increase
in proliferation fibroblasts after exposition to the factors released from A-PRF+ combined with
fibroblasts. Similarly, the degree of wound closure after 48 h was significantly higher for the factors
released from A-RRF+ alone and the factors released from A-RRF+ combined with fibroblasts. These
results imply that platelet-rich fibrin (PRF) enhanced with fibroblasts can be an alternative method of
connective tissue transplantation.

Keywords: A-PRF+; fibroblast culture; wound healing; VEGF; TGFβ2

1. Introduction

Platelet-rich fibrin (PRF) contains supraphysiological concentrations of growth factors
that stimulate bone and soft tissue regeneration in a natural way [1]. The protocol of
obtaining PRF of the second generation, introduced by Choukroun and colleagues [2],
allows one to achieve material that is completely autologous and prepared without any
anticoagulants or separators. PRF contains leukocytes, as well as biochemical components,
such as growth factors (GFs); platelets; immunity promoters; and cytokines, including IL-1
β, IL-4,IL-6, and TNF- α [3,4], which stimulate the healing process.

Leukocytes and fibrinogen reduce the harmfulness of the hypermetabolic phase in
the first phase of healing [5]. The strong network of a PRF clot consists of polymerized
fibrin and chains of structural glycoproteins [4]. Due to its biomechanical properties, the
membrane is easy to use clinically. It shows flexibility and elasticity, and it is easy to form.
Currently, PRF is successfully used in modern periodontal regenerative stomatology [6],
among other things, due to the ease of acquirement, the activity at every stage of soft-tissue
healing, and the economic aspect [2,7–9].
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Recent advances in medical sciences have led to the development of a new procedure
to obtain various products of PRF, such as APRF+ [10]. The method, speed, and time of
centrifugation of the venous blood taken from the patient greatly influence the composition
of the clot: the number of platelets, leukocytes, and GFs [10]. If less force and a shorter time
of centrifugation are used, more leukocytes, and thus monocytes, and macrophages are
obtained, which, in turn, increases the number of precursor cells at the site of application;
therefore, this corresponds to improved regenerative potential. A significantly increased
level of released growth factors corresponds to the increase in the number of platelets,
evenly distributed in the fibrin network [8,10–13]. Transforming growth factor-beta (TGFβ),
vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), platelet-derived
growth factor (PDGF), and insulin-like growth factor (IGF) affect intracellular and inter-
cellular communication and, thus, stimulate cell migration, adhesion, and proliferation
at the wound site [12,14,15]. In turn, the fibrin present in the network stimulates a slower
degradation of the network and delays the release of growth factors for 7–10 days, which is
in contrast to PRP, where the growth factors are secreted within the first hour [16,17]. In
addition, sufficiently large gaps in the scaffold of the APRF+ matrix allow neutrophils to
penetrate it, which affects the functionality of the transplanted and local host cells in the
regenerated tissue [8,13].

Therefore, APRF+ is used as a natural polymer in tissue engineering, and the available
knowledge concerning its application allows us to state the validity of the use of A-PRF+
as a carrier for isolated autogenous fibroblasts for the augmentation of keratinized gingiva.
Fibroblasts play a crucial role in three stages of tissue regeneration by releasing growth
factors, which regulate the processes of intra- and extra-cellular metabolism, indirectly
modulating the formation of a new extracellular matrix (EMC) [14,18,19]. The advantage of
autogenous cell cultures is that they provide biomaterial for augmentation in the amount
of determined tissue loss.

The present study aimed to determine whether the combination of A-PRF+ with auto-
genous fibroblasts would change the number of released components that are important
in the context of the healing processes, including fibroblast growth factor (FGF); vascular
endothelial growth factor (VEGF); transforming growth factor-beta1 and 2 (TGFβ1 and
TGFβ2); and collagen, the main protein of the extracellular matrix, produced by fibrob-
lasts. The impact of the released components on the proliferation of fibroblasts and their
migration was analyzed. The motivation to conduct the present study is the evolution and
enhanced methods of wound healing.

2. Materials and Methods
2.1. Cell Culture and A-PRF+-Based Matrices

Primary human gingival fibroblasts (HGFs) and A-PRF+ were obtained from six
systematically healthy volunteer donors, following approval by the Ethics Committee
of Wroclaw Medical University, Poland (No KB-434/2017). Samples of hard palatal and
gingival tissues were collected in the amount of 1–2 mm2 from each donor and trans-
ported to the laboratory in the nutrient medium Dulbecco’s modified Eagle’s medium
(DMEM, Sigma-Aldrich, Poznan, Poland) with the addition of 10% fetal calf serum (Gibco-
ThermoFisher, Warsaw, Poland), penicillin (100 Ul/mL), streptomycin (0.1 mg/mL), and
amphotericin B (0.1 mg/mL). Subsequently, fibroblasts were mechanically isolated and
cultured according to the patented method described by Dominiak et al. [20]. The culture
was carried out in a conventional DMEM culture medium in an incubator at 37 ◦C in a
5% CO2 atmosphere. The culture medium was changed twice a week. The cells reached
a full monolayer after 5–7 days. After achieving a full monolayer of cells, four tubes of
blood samples were collected in the amount of 10 mL from these same six volunteer donors.
Next, A-PRF+ was obtained according to the procedure developed by Choukroun [11].
The blood samples without anticoagulant were centrifuged at 1300 rpm (200× g) for 8 min
in a centrifuge machine PRF DuoTM (Process for PRF, Nice, France). The A-PRF+ clots
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were removed from the tubes and separated from the RBC base using sterilized scissors for
further investigation.

2.2. Assessment of Growth Factor Release from Fibroblasts Alone, A-PRF+ Alone, and A-PRF+
with Fibroblasts

Primary human fibroblasts at a concentration of 4 × 105 cells/mL were placed into a
twelve-well dish with 1.5 mL of culture media (DMEM) and allowed to grow for 24 h. Then,
the medium was removed, and the sterile-flattened A-PRF+ clots were placed (not less than
within 1 h from production) in a well with fibroblasts and in an empty well, and there was
one well that contained only fibroblasts. Fresh medium in the amount of 1.5 mL was added
to each variant. At 1, 2, 3, and 7 days, 1.5 mL of culture media was collected, frozen at
−20 ◦C, and replaced with 1.5 mL of fresh culture media. The content of soluble collagen,
TGFβ1, TGFβ2, FGF1, and VEGF in the collected medium was investigated. The release of
growth factors was quantified using the colorimetric test for collagen quantification and
ELISA for the investigation of the remaining factors.

2.3. The Quantification of Growth Factors with Enzyme-Linked Immunosorbent Assay (ELISA)

To determine the amount of growth factors released from A-PRF+ alone, A-PRF+ with fi-
broblasts, and only fibroblasts alone at days 1, 2, 3, and 7, samples were investigated using ELISA.
At the desired time points, TGFβ1 (BMS249-4, Invitrogen, range = 31 to 2000 pg/mL, sensitivity:
8.6 pg/mL), TGFβ2 (BMS254, Invitrogen, Waltham, MA, USA, range = 31 to 1000 pg/mL, sen-
sitivity: 6.6 pg/mL), FGF1 (EHFGF1, Invitrogen, range = 16.38 to 4000 pg/mL, sensitivity:
12 pg/mL), and VEGF (KHG0111, Invitrogen, range = 23.4 to 1500 pg/mL, sensitivity:
5 pg/mL) were quantified using an ELISA kit according to the manufacturer’s protocol.
All samples were measured twice using a Multiskan™ FC microplate photometer (Thermo
Scientific, Alab, Warsaw, Poland).

2.4. Quantification of Soluble Collagen Using the Sircol™ Colorimetric Test

The release of soluble collagen in the culture medium incubated with A-PRF+ alone,
A-PRF+ with fibroblasts, and only fibroblasts alone at days 1, 2, 3, and 7 was analyzed with
the Sircol™ assay according to the manufacturer’s protocol (Biocolor Ltd., Carrickfergus,
UK). The collected media were incubated with Sircol™ dye, which binds to soluble collagen,
and then centrifuged to form pellets. Pellets were solubilized in sodium hydroxide, and
the amount of eluted dye was measured using a Multiskan™ FC microplate photometer
(Thermo Scientific, Alab, Warsaw, Poland) at 540 nm. Collagen standards supplied with the
kit were used as controls.

2.5. Preparation of the Conditioned Media

Primary human fibroblasts at a concentration of 4 × 105 cells/mL were placed into
a six-well dish with 2.5 mL of culture media (DMEM) and allowed to attach. Then, the
medium was replaced with a fresh one, and sterile-flattened A-PRF+ clots, obtained as
described in the previous paragraph, were placed into the well and incubated for 3 days on
a plate shaker at 37 ◦C. A-PRF+ clots without fibroblasts were also incubated for 3 days in
2.5 mL of culture media (DMEM) on a plate shaker at 37 ◦C. After this time, the fluid was
drawn, and conditioned media containing 20% of the pooled fluid suspended in DMEM
were prepared. Concurrently, fibroblasts with culture medium, as well as culture medium
alone, were incubated in the same conditions and prepared as conditioned control media.

2.6. Cell Migration Assay

The in vitro wound healing assay for probing collective cell migration in two dimen-
sions was performed using 2-well silicone inserts (Ibidi GmbH, Planegg, Germany) placed
into a 6-well plate, which allowed the experimental variables to be standardized. To detect
migration, 5 × 104 cells/well were suspended in a volume of 70µL 10% FCS/DMEM. The
cell culture inserts were removed after 24 h, leaving a defined cell-free gap of 500 µm. At
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this time point (0 h), the fresh medium was supplemented with medium enriched with cul-
ture fluid after a 3-day incubation with A-PRF+ alone, A-PRF+ and fibroblasts, fibroblasts
alone, and DMEM alone, and then placed into each well, and images were taken.

Cell cultures were observed and photographed under the CKX41 Olympus microscope
(Tokyo, Japan) after 24 and 48 h. Software ImageJ (LOCI, University of Wisconsin) was
used to quantify the areas of the closing gap.

2.7. Cell Viability Assay

HGFs were seeded into black 96-well plates. After 24 h, the fresh medium supple-
mented with medium enriched with culture fluid after a 3-day incubation with A-PRF+
alone, A-PRF+ and fibroblasts, fibroblasts alone, and DMEM alone was added into each
well for 24, 48, and 72 h. All experiments were performed in quadruplicate. After the
incubation, a PrestoBlue assay was performed to determine cell viability. The method
is based on resazurin, which functions as a cell viability indicator. Viable cells convert
the dark blue oxidized form of the dye (resazurin) into a red fluorescent reduced form
(resorufin; λEx = 570 nm; λEm = 590 nm).

PrestoBlue reagent (Thermo Fisher Scientific, Waltham, MA, USA) was added to each
well containing 100 µL of the medium. The plate was then incubated for 30 min at 37 ◦C, and
the change in fluorescence was measured using a Multiskan™ FC microplate photometer
(Thermo Scientific, Alab, Warsaw, Poland), with the excitation/emission wavelengths set at
560/590 nm. Relative cell viability was calculated as the percentage of untreated cells.

2.8. Statistical Analysis

The statistical analyses of collected data (n = 6) were performed using Statistica version
13.3 with a significance level of α = 0.05. The normality of the distribution of variables was
examined based on the Shapiro–Wilk test. The one-way analysis of variance (ANOVA)
was performed for the comparison of groups’ means. ANOVA tests’ assumptions, i.e.,
normally distributed data, homogeneity of variance across groups, and lack of correlation
between group means with variances, were controlled. In a few cases, the assumption of
homogeneity of variance was found not to hold, and, therefore, for these cases, a modified
ANOVA test was applied, i.e., Welch’s F-test, recommended when groups have different
variances. Finally, using Tukey’s test, the post hoc analysis was performed to determine the
significantly different groups. Results are presented as mean ± SD.

3. Results
3.1. Growth Factor Release from A-PRF+ Alone, A-PRF+ with Fibroblasts, and Fibroblasts Alone

The release of proteins, including TGFβ1, TGFβ2, FGF1, and VEGF, was quantified
with ELISA, and collagen was quantified by using a spectrophotometric assay. A-PRF+
combined with fibroblasts demonstrated significantly higher values of released VEGF than
both A-PRF+ alone and fibroblasts alone (Figure 1G,H), while the total release of TGFβ2
demonstrated significantly lower values for fibroblasts alone compared with A-PRF+ alone
and A-PRF+ incubated with fibroblasts (Figure 1C,D). On day 7, the level of TGFβ2 was
significantly higher than in the other groups (Figure 1C) and insignificantly higher after the
accumulation of collected doses (Figure 1D). Moreover, the release of collagen demonstrated
significantly lower values at all time points for A-PRF+ compared with A-PRF+ combined
with fibroblasts and fibroblasts alone (Figure 1I,J). In comparison, no difference in the total
release of TGFβ1 and FGF1 factors was observed among the three groups (Figure 1A,B,E,F).
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Figure 1. The quantification of protein released from A-PRF+ alone, A-PRF+ with fibroblasts, and
fibroblasts alone at the different time points for (A) TGFβ1, (C) TGFβ2, (E) FGF1, (G) VEGF, and (I)
soluble collagen. Total accumulated protein released over a 7-day period for (B) TGFβ1, (D) TGFβ2,
(F) FGF1, (H) VEGF, and (J) soluble collagen. * p < 0.05, significant difference among groups; T
p < 0.05, significantly higher than all other groups; ⊥ p < 0.05, significantly lower than all other
groups. Data represent means ± SD from six different HGF donors.
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3.2. Influence of Proteins Released from A-PRF+ Combined with Fibroblasts on Cell Viability

The results of HGF viability after stimulation by the proteins released from A-PRF+
combined with fibroblasts are shown in Figure 2. After 72 h, there was a significant
increase in cell viability after exposure to the proteins released from A-PRF+ combined with
fibroblasts compared to the media conditioned with the factors released from fibroblasts
alone or A-PRF+ alone. A slight decrease in cell viability was observed for the control
medium conditioned with the compounds released from the fibroblasts and an increase
was observed for the control medium conditioned with the proteins released from A-PRF+.
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Figure 2. Effect of medium enriched with proteins released from A-PRF+ on fibroblast proliferation.
T p < 0.05, significantly higher than all other groups. Data represent means ± SD from six different
HGF donors.

3.3. Enhanced Wound Healing Potential of Primary Human Gingival Fibroblasts Induced with
Proteins Released from A-PRF+

The effects of the factors released from fibroblasts alone, A-PRF+ alone, and fibroblasts
combined with A-PRF+ on the wound healing potential of primary HGFs were analyzed by
evaluating the migration of these cells using an in vitro wound healing assay. The 500 um
wide gap created between the cells allowed us to analyze how the released compounds
influenced the migration and invasion of cells, and the representative images of the migra-
tion of HGFs toward a wound gap are presented in Figure 3. The factors released from
A-PRF+, added to the culture medium, were able to significantly increase the capacity of
primary HGFs to migrate into the gap compared to controls (Figures 3 and 4).

Compared to the wound area after 24 h of 11 ± 6% and 21 ± 12% for controls, which
were incubated for three days either in medium alone or in medium with fibroblasts,
respectively, the compounds released from A-PRF+ caused a moderate wound closure of
27 ± 10% for the factors released from A-RRF+ alone and, significantly, 35 ± 20% for the
factors released from A-RRF+ combined with fibroblasts (p < 0.05; Figure 4). The degrees
of wound closure after 48 h were significantly higher, i.e., 66 ± 16% and 64 ± 13% for
the factors released from A-RRF+ alone and the factors released from A-RRF+ combined
with fibroblasts, respectively, compared to 27 +/− 13% of the control wound area (p < 0.05;
Figure 4).
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Figure 3. An exemplary representation of the wound healing assay under microscopic observation
for control conditioned media, conditioned media with fibroblasts, with fibroblasts stimulated by
A-PRF+, and with A-PRF+ alone. The scratch area is at time point 0 h, and observation time is up to
48 h.
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Figure 4. Wound closure expressed as the remaining area uncovered by the cells. The scratch area at
time point 0 h was set to 48 h. * p < 0.05, significant difference among groups. Data represent means
± SD from six different HGF donors.

4. Discussion

The process of soft-tissue regeneration is a cascade of signaling reactions involving the
immune system; platelets; and components of connective tissue, including fibroblasts [18].
They affect blood coagulation, activating the inflammatory process, which affects migration,
the proliferation of cells to the injured site, and, consequently, the remodeling of the
newly created matrix [21]. In geriatric patients or individuals with immunodeficiency
conditions, such as diabetes mellitus, or patients with the inability of connective tissue to
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proliferate and provide recession coverage, intracellular and intercellular signaling is often
disturbed, and the number of cells, including fibroblasts, is reduced. The destruction of
capillaries reduces ion transport. The resulting inhibition of the migration of fibroblasts
from the circumferential rifer of the wound slows down the regeneration process [17,22,23].
Therefore, it is important to use biomaterials that can stimulate the host cells and, at the
same time, provide the optimal amount of cells to initiate the regeneration process at the
wound site. Numerous studies have shown that platelet concentrates (PCs), including PRF,
promote the adhesion, proliferation, and migration of HGFs [24,25]. Steller at al. showed
the crucial impact of platelet concentrates (PCs) in an effort to enhance the local treatment
of bisphosphonate-related osteonecrosis of the jaw [9]. The present study demonstrates the
potential of A-PRF+ with autogenous human fibroblasts as a connective tissue substitute in
the augmentation of keratinized gingiva. To the authors’ knowledge, this is the first study
concerning this issue. To date, the family of PRF matrices has been investigated alone,
without the addition of fibroblasts [11].

The study presented in this paper compared the number of released growth factors
in three groups: (1) human gingival fibroblasts alone, (2) A-PRF+ alone, and (3) A-PRF+
enriched with autologous fibroblasts. The obtained results showed a significant increase
in the released VEGF in the group of A-PRF+ with autogenous human fibroblasts over
a period of 7 days. One of the basic factors of proper tissue regeneration is providing
nutrition through angiogenesis. The formation of a vascular network is required for the
migration and proliferation of cells, which, by releasing modulators of the immune system,
lead to the repopulation of the extracellular matrix and the formation of new tissue [26]. The
result presented in this paper revealed a positive response in clinical terms, as according
to Cabaro et al., as well as others, VEGF inhibits the hyperreactivity of T lymphocytes
in the early stage of inflammation and stimulates the migration of macrophages and
fibroblasts [27]. Fujioka-Kobayashi et al. showed a much higher release of VEGF from the
A-PRF+ matrix up to day 3 compared to the tested LPRF and A-PRF [10]. However, from
day 3 to day 10, the amount of the released VEGF was constant. Our results show that
A-PRF+ enriched with autologous fibroblasts releases a statistically significantly higher
amount of VEGF than that of the other groups at all points of time. It is likely that it
could be the effect of stimulation by both the carrier, i.e., A-PRF+, and the fibroblasts
implemented on it. In healthy patients, the formation of a wound triggers a cascade of
signaling reactions involving various cells, including components of connective tissue, such
as fibroblasts [18–28]. The activation of the inflammatory process affects the migration and
proliferation of cells to the injured site and, consequently, leads to the remodeling of the
newly formed extracellular matrix [21].

TGFβ is a cytokine activated by platelets in the fibrin network of the A-PRF+ matrix. It
includes, among others, the TGFβ1 and TGFβ2 isoforms. It is responsible for angiogenesis,
and it stimulates the chemotaxis of fibroblasts and their differentiation into myofibroblasts,
which are involved in the remodeling of the extracellular matrix [29]. In the present study,
an insignificant increase in TGFβ1 was obtained in the group of A-PRF+ with fibroblasts
compared to the other two groups, and a significant increase in TGFβ2 in comparison to
the group with fibroblasts alone. However, on day 7, the level of TGFβ2 was significantly
higher than in the other groups. The described results indicate the stimulating nature of
A-PRF+ on the secretion of both VEGF and TGFβ2 by fibroblasts.

Otherwise, the steady increase in the released FGF at all time points was the same in
all treatment groups. FGF affects vascularization and accelerates wound healing [30,31],
but not in its early stages [32]. Therefore, the results obtained in this study do not show
differences between the three groups. Fibroblasts synthesize the main structural protein of
type III collagen, which is replaced in the remodeling phase with type I collagen [18]. This
affects the restoration of the functionality of the extracellular matrix, creating increased
cross-linking of collagen fibers and, thus, increasing the stability and extensibility of
collagen fibers [33]. Significantly higher values of collagen released at all time points were
also observed for A-PRF+ with implanted fibroblasts compared to the A-PRF+ matrix alone.
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Unfortunately, the comparison with the control group of fibroblasts shows an increase but
without statistical significance. This discovery confirms the reports by Masuki H. et al. in
terms of the ability of the A-PRF+ matrix to induce angiogenesis and to act as a scaffold
into which inter alia fibroblasts can be implemented and contribute to the acceleration of
healing and subsequent regeneration of the damaged tissue [34].

Fujioka-Kobayashi et al. observed an increase in cell proliferation after exposure
to A-PRF+ [10]. The present study also determined how the released components from
A-PRF+ with inoculated fibroblasts affect autogenous fibroblasts. The observations up to
72 h showed a significant increase in cell viability compared to the other two test groups.
The degrees of wound closure after 48 h were significant higher for the medium with the
factors released from A-RRF+ alone and the factors released from A-RRF+ combined with
fibroblasts in comparison to the medium with the factors released from the fibroblasts
alone and from the control medium. The bioactive scaffold of the A-PRF+ matrix promotes
the implementation of cells; the presented research study also shows that fibroblasts are
responsible for the increased release of growth factors. Ghanaati S. et al. showed that the
acquisition parameters of the A-PRF matrix are conducive to increasing its porosity [8,12].
The porosity of the carrier is important in the ability to deliver signaling cells, especially
hematopoietic stem cells, for the tissue healing process [35]. This structure allows for a
deeper implantation of neutrophils and, thus, their longer release. As a result, they also
influence the host’s immune response at later stages of tissue healing. The finding of
this study confirms the assumption that the implementation of the A-PRF+ matrix with
autogenous fibroblasts could increase its clinical application.

The available data show that both the time from collection to centrifugation and the
age and sex of the patient have an impact on the quality and quantity of the PRF matrix [8].
Therefore, this study aimed to show that the connection of the biomaterial with autologous
cells is possible via the involvement of APRF+ with fibroblasts in wound healing, which
could support recovery, especially in people whose matrix alone would be insufficient for
adequate healing, e.g., in diabetic patients and in the elderly. An ideal carrier should not
affect the host’s immunogenicity, and it should exhibit biocompatible properties. In turn,
biodegradability should be associated with the vascularization of the recipient site and the
implementation of cells, which will affect the reconstruction of the tissue defect. The used
carriers with embedded signaling molecules stimulated the migration and proliferation
of stem cells, thus supporting the regeneration of the target tissue. However, apart from
stimulating the regeneration process, the authors would like to administrate a finished
product in place of a tissue deficit. Such a solution would also accelerate regeneration in
immunodeficient patients by creating bipolarity.

5. Conclusions

To summarize, the conducted experimental study showed a significantly increased
release of VEGF and an increased viability of conditioned fibroblasts after 72 h, resulting
from the combination of APRF+ and autologous human gingival fibroblasts. The obtained
results indicate that the tested product, i.e., APRF+ with cultured fibroblasts, may consider-
ably enhance the healing of surgical wounds, which is especially important in patients for
whom the healing process is more problematic.

Limitations: Our study was carried out on a group of six patients, which was not
homogeneous in terms of sex, age, and the degree of immunodeficiency. However, a group
of six objects is minimal for parametric statistical evaluation. The tests performed for the
starting data showed a lack of outliers at the adopted level of statistical significance. The re-
search will be continued, considering the purposeful selection of patients for homogeneous
groups. However, in the present study, despite the heterogeneity of the research group,
statistically significant trends and relationships were identified, indicating improvement in
fibroblast proliferation.
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