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Abstract

17β-estradiol treatment has shown benefit against schizophrenia symptoms, however long-

term use may be associated with negative side-effects. Selective estrogen receptor modula-

tors, such as raloxifene and tamoxifen, have been proposed as suitable alternatives to 17β-

estradiol. An isomer of 17β-estradiol, 17α-estradiol, is considered less carcinogenic, and

non-feminising in males, however little is known about its potential as a treatment for schizo-

phrenia. Moreover, the mechanism underlying the therapeutic action of estrogens remains

unclear. We aimed to investigate the ability of these estrogenic compounds to attenuate

psychosis-like behaviour in rats. We used two acute pharmacologically-induced assays of

psychosis-like behaviour: psychotomimetic drug-induced hyperlocomotion and disruption of

prepulse inhibition (PPI). Female Long Evans rats were either intact, ovariectomised (OVX),

or OVX and chronically treated with 17β-estradiol, 17α-estradiol, raloxifene or tamoxifen.

Only 17β-estradiol treatment attenuated locomotor hyperactivity induced by the indirect

dopamine receptor agonist, methamphetamine. 17β-estradiol- and tamoxifen-treated rats

showed attenuated methamphetamine- and apomorphine (dopamine D1/D2 receptor ago-

nist)-induced disruption of PPI. Raloxifene-treated rats showed attenuated apomorphine-

induced PPI disruption only. Baseline PPI was significantly reduced following OVX, and this

deficit was reversed by all estrogenic compounds. Further, PPI in OVX rats was increased

following administration of apomorphine. This study confirms a protective effect of 17β-

estradiol in two established animal models of psychosis, while tamoxifen showed beneficial

effects against PPI disruption. In contrast, 17α-estradiol and raloxifene showed little effect

on dopamine receptor-mediated psychosis-like behaviours. This study highlights the utility

of some estrogenic compounds to attenuate psychosis-like behaviour in rats, supporting the

notion that estrogens have therapeutic potential for psychotic disorders.

Introduction

A large body of literature demonstrates the utility of the ‘female’ sex steroid, estrogen, more

specifically 17β-estradiol (17β), as novel treatment for schizophrenia [1–3]. Preclinical and
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clinical studies have demonstrated the beneficial effects of treatment with estrogens for schizo-

phrenia, particularly against the positive symptoms [1,2,4]. However, due to the risk of periph-

eral side effects [5,6], including some cancers and feminising effects in males, the investigation

of alternative estrogenic compounds is warranted.

The selective estrogen receptor modulator (SERM), raloxifene (RAL), is typically used in

the treatment of osteoporosis [7]. RAL has exhibited beneficial effects across the spectrum of

schizophrenia symptoms in the clinical population [8–10]. For example, in postmenopausal

women with schizophrenia, RAL administered in conjunction with antipsychotic treatment,

improved negative symptoms [9] as well as positive symptoms of the illness [11]. RAL has also

demonstrated favourable effects on verbal memory and attention in men and women with

schizophrenia [10,12]. Another SERM, tamoxifen (TAM), is used as an anti-estrogen therapy

for breast cancer [7], however it has also demonstrated efficacy in preclinical models of schizo-

phrenia-like symptoms [13], and in women with acute bipolar affective disorder [14]. 17α-

estradiol (17α), an isomer of 17β, is another estrogenic compound recently highlighted as a

neuroactive steroid [15–17] and may be a potential therapeutic candidate in schizophrenia.

Compared to 17β, 17α is considered to weakly bind to estrogen receptor (ER)-α and ER-β, and

preferentially binds to a membrane estrogen receptor (ER-X) [18,19]. 17α has no uterotrophic

effects, reducing the likelihood of estrogen-induced endometrial cancer [17,20]. Previous

research has primarily investigated the effect of 17α in vitro [21] and in animal models of

learning and memory [22], depression [23], and anxiety [15]; however, its effects on psychosis-

like behaviour is unknown. Further, the mechanism underlying the therapeutic action of

SERMs and 17α remains unclear.

Two of the most widely used assays of psychosis-like behaviour in rodents are disruption of

prepulse inhibition of the acoustic startle response (PPI) and psychotomimetic drug-induced

locomotor hyperactivity [24,25]. PPI is a cross-species measure of sensorimotor gating and

deficits in PPI are present in patients with schizophrenia including untreated patients, and

those treated with typical antipsychotics [26,27]. Experimental animals exhibit PPI deficits fol-

lowing treatment with dopamine receptor agonists [28]. Psychotomimetic drug-induced loco-

motor hyperactivity is a behavioural test used to model the brain mechanisms involved in

psychosis, particularly psychotic agitation/excitement [24,25].

Previously, we found that ovariectomised (OVX) rats treated chronically with 17β, RAL or

TAM showed attenuated PPI disruptions induced by administration of the dopamine D1/D2

receptor agonist, apomorphine [13]. In the current study, we extended this work by examining

the effect of various estrogenic compounds on PPI disruption and locomotor hyperactivity

induced by the monoamine releaser and indirect dopamine receptor agonist, methamphet-

amine. Thus, we assessed the effect of chronic treatment with the estradiols, 17β and 17α, and

the SERMs, RAL and TAM, on PPI disruption induced by apomorphine and methamphet-

amine, and on methamphetamine-induced locomotor hyperactivity.

Materials and methods

Animals

Sixty-four Long Evans (LE) rats (Florey Institute of Neuroscience and Mental Health, VIC,

Australia) were housed at La Trobe University (VIC, Australia) in groups of four in individu-

ally-ventilated cages (Tecniplast, Italy), with ad libitum access to standard pellet food and tap

water. The rats were maintained on a 12h light–dark cycle (lights on at 0700h), at an ambient

temperature of 22 ± 2˚C. All surgical techniques, treatments and experimental protocols were

approved by the La Trobe University Animal Ethics Committee and conducted in accordance
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with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes

(1990) set out by the National Health and Medical Research Council of Australia.

Surgery

Ovariectomy surgery was performed as described previously [29]. Briefly, 12 week old rats

were anaesthetised using an isoflurane/oxygen gas mixture and received a subcutaneous (s.c.)

injection of 5 mg/kg of the non-steroidal, anti-inflammatory analgesic, carprofen (Rimadyl1;

Heriot AgVet, VIC, Australia). A small dorsal midline incision was made through the skin, fol-

lowed by an incision through the abdominal wall, and the ovaries were bilaterally located and

removed. Intact rats were sham-operated (SHAM); they received all procedures except the

ovaries were not excised.

Rats were randomly allocated to 6 groups (n = 10–11 per group; Table 1): OVX with a s.c.

implant (Dow Corning, I.D. 1.98 mm, O.D. 3.18 mm; Futuremedics, VIC, Australia) filled

with 100% crystalline 17β (5 mm length, ~30 mg per implant; Cayman Chemical Company,

MI, USA), 17α (5 mm length, ~25 mg per implant; Sigma Chemical Company, MO, USA),

RAL (2 x 20 mm length, ~45 mg per implant; Toronto Research Chemicals, ON, Canada) or

TAM (2 x 20 mm length, ~65 mg per implant; Toronto Research Chemicals). Untreated OVX

rats and SHAM rats received an empty implant. These implant sizes were based on literature

[30,31] and our previous findings [13], and were aimed at producing pharmacologically active

doses [13,29]. Implants remained in the rat for approximately 6 weeks. At the end of the exper-

iment, rats were euthanized and uterus and pituitary weights were recorded to confirm effec-

tive hormone treatment [13,32]. One 17β-treated animal was excluded from data analysis due

to extremely low uterus weight indicating ineffective hormone treatment.

Behavioural experiments

Locomotor activity was measured using eight automated photocell chambers (ENV-520, MED

Associates, VT, USA), as previously described [32]. Briefly, the position of the rat within the

chamber was detected via 16 evenly spaced infrared sources and sensors on each of the four

sides of the monitor, which measured x, y, and z axes movements. During the experiment, rats

were placed in the locomotor chamber for 30 min to allow habituation; the rats were subse-

quently injected and locomotor activity was recorded for a further 90 min.

PPI of the acoustic startle response was measured with eight automated startle chambers

(SR-Lab; San Diego Instruments, San Diego, CA, USA) as previously described [29]. Briefly,

Table 1. Body weight (BW), uterus weight (UW), and pituitary gland weight (PW) of female rats.

Group n Surgery BW Weight gain UW UW/BW PW

SHAM 11 183 ± 3 15 ± 3 284 ± 34�� 1.43 ± 0.16�� 12 ± 0.6

OVX 11 182 ± 4 23 ± 5 112 ± 9 0.55 ± 0.05 10 ± 0.3

17β 10 173 ± 5 20 ± 4 521 ± 34�� 2.66 ± 0.16�� 42 ± 4.0�

17α 10 179 ± 5 23 ± 5 131 ± 0 0.66 ± 0.04 10 ± 0.6

RAL 10 180 ± 5 23 ± 6 121 ± 1 0.60 ± 0.04 9 ± 0.7

TAM 11 182 ± 3 0 ± 2�� 127 ± 5 0.71 ± 0.05 8 ± 0.6

Body weight (BW, g), uterus weight (UW, mg) and pituitary gland weight (PW, mg) are expressed as mean ± SEM. Weight gain is the difference between body weight

on the day of surgery and body weight at the end of experimentation. Rats were intact (SHAM), ovariectomised (OVX), or OVX rats treated with 17β-estradiol (17β),

17α-estradiol (17α), raloxifene (RAL) or tamoxifen (TAM).

�� p� 0.001

� p� 0.05, compared to OVX group.

https://doi.org/10.1371/journal.pone.0193853.t001
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rats were placed individually into a transparent Plexiglas cylinder in a sound-attenuating cabi-

net. The PPI session comprised 80 trials presented with variable intervals (8–27 s), including

32 startle pulse-alone trials (4 blocks of eight 115 dB trials) and 40 prepulse–pulse trials. Pre-

pulse–pulse trials consisted of a prepulse of an intensity 2, 4, 8, 12 or 16 dB above the 70 dB

background (eight per intensity), followed 100 ms later by the startle pulse. Startle data were

measured using all 4 blocks of pulse-alone trials. The %PPI was calculated as [(pulse-alone tri-

als startle amplitude minus prepulse–pulse trials startle amplitude) / (pulse-alone trials startle

amplitude)] × 100%. The middle 16 pulse-alone trials were used to calculate %PPI. Three rats

were deemed outliers and excluded from PPI analysis (1 OVX, 1 RAL, 1 17α). These 3 rats had

extremely low average baseline PPI; specifically average PPI <13%, which was greater than 2

times the standard deviation of that group.

At least ten days after surgery, rats were tested for PPI after administration of saline, 1 mg/

kg of methamphetamine, and 0.1 mg/kg of apomorphine. Following a one-week washout

period, the same rats were tested for locomotor hyperactivity following administration of

saline or 1 mg/kg methamphetamine. In a pseudo-randomised, crossover protocol, rats

received all drug treatments with at least a 3-day washout period between each testing session.

This allowed for within-animal statistical analysis and reduced the total number of animals

required.

Drugs

For locomotor activity, 1 mg/kg methamphetamine ((+)-Methamphetamine hydrochloride,

National Measurement Institute, NSW, Australia) was administered s.c. 30 min after placing

the rat in the chamber. Apomorphine (0.1 mg/kg, R-(−)-apomorphine hydrochloride hemihy-

drate, Sigma) or methamphetamine (1 mg/kg) were administered s.c. 10 min prior to testing

PPI. Drugs were dissolved in saline and administered in a volume of 1 ml/kg. A limitation of

this study is that only one dose of each drug was used; however, the selected dose was expected

to disrupt PPI and/or induce hyperactivity, based on our previous findings [33], and on pre-

liminary dose-response experiments (see data in Figshare).

Statistical analysis

All data were expressed as mean ± standard error of the mean (SEM) and analysed using SPSS

Statistics 23 (IBM, IL, USA). Body weight, uterus weight, and pituitary gland weight were ana-

lysed with one-way analysis of variance (ANOVA) for the 6 groups (SHAM, OVX, 17β, 17α,

RAL, TAM), with Bonferroni correction applied for multiple comparisons.

For locomotor activity, i.e. distance travelled, the 5 min interval during which rats were

injected was excluded from data analysis. For distance travelled post-injection, a 6 group × 2

drug (saline, methamphetamine) × 3 time (30 min blocks in the 90 min post-injection)

repeated-measures ANOVA was used. Main effects of time were always observed and will not

be reported unless there were relevant interactions with other factors. Significant group x drug

interactions were further explored using pairwise ANOVA comparing the untreated OVX

group and the other group of interest, rather than comparing saline and drug within a group

because all rat groups showed a methamphetamine-induced hyperactivity. To simplify data

presentation, only total distance travelled is presented.

For PPI, a 6 group × 2 drug (saline, methamphetamine; or saline, apomorphine) × 5 pre-

pulse intensities (PP; 2, 4, 8, 12, 16) repeated-measures ANOVA was used. For startle ampli-

tude, a 6 group × 2 drug × 4 block (four blocks of eight 115 dB pulse-alone trials) repeated-

measures ANOVA was used. Main effects of PP and block were always observed and will not

be reported unless there were relevant interactions with other factors. Significant group x drug
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interactions were further explored by comparing saline and drug treatments within that

group, rather than using pairwise ANOVAs comparing to the untreated OVX group because

OVX rats showed a reduction in baseline PPI. ANOVAs including all three drugs were ana-

lysed (not reported) and following a significant main effect of drug, further ANOVA was done

separated by drug (as described above). To simplify data presentation, the average of the five

PP is shown in the figures.

Results

Body, uterus, and pituitary gland weight

There were no significant differences in body weight at the time of surgery, however there was

a main effect of group by the end of the experiment (weight gain, F(5,57) = 5.3, p< 0.001;

Table 1). Compared to the untreated OVX rats, TAM-treated OVX rats had reduced weight

gain (p = 0.002). Additionally, there were significant differences in uterus weight between the 6

groups (UW, F(5,57) = 61.8, p< 0.001; UW/BW, F(5,57) = 66.9, p< 0.001). Uterus weight itself

or as a ratio of body weight was significantly greater in the 17β-treated OVX rats (p< 0.001)

and the SHAM rats (p< 0.001) compared to untreated OVX rats. Uterus weight in RAL, TAM,

and 17α-treated OVX rats did not significantly differ from untreated OVX or each other. Pitui-

tary gland weight was different between groups (F(5,23) = 3.9, p = 0.009). Pituitary weight in the

17β-treated OVX rats was significantly larger compared to the untreated OVX rats (p = 0.04)

but there were no differences in any other groups.

Locomotor hyperactivity

ANOVA comparing distance travelled during the 90 min post-injection in the 6 groups admin-

istered saline and 1 mg/kg methamphetamine revealed there was a significant main effect of

drug (F(1,57) = 169.6, p� 0.001), and a drug x time interaction (F(2,114) = 94.9, p� 0.001),

reflecting the expected increase in distance travelled after methamphetamine, compared to

saline, treatment in all groups (Fig 1). When comparing groups after saline injection only, there

were no significant main effects or interactions, reflecting no overall group differences in base-

line locomotor activity. There was also a significant drug x group interaction (F(5,57) = 2.5,

p = 0.04), suggesting a differential locomotor response between groups after methamphetamine

Fig 1. Locomotor activity of female rats displayed as total distance travelled (± SEM) in the 90 min post-

administration of methamphetamine (1 mg/kg). Rats were sham-operated (SHAM) rats, untreated ovariectomised

(OVX) rats, or OVX rats treated with 17β-estradiol (17β), 17α-estradiol (17α), raloxifene (RAL) or tamoxifen (TAM)

(n = 10–11 per group). �� p� 0.001 compared to saline (main effect of drug), # p = 0.03 compared to OVX group

(drug x group interaction).

https://doi.org/10.1371/journal.pone.0193853.g001
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injection. Further ANOVA comparing OVX and 17β showed significantly reduced metham-

phetamine-induced hyperactivity in 17β-treated OVX rats (drug x group interaction: F(1,19) =

5.5, p = 0.03; Fig 1). When comparing only methamphetamine treatment in OVX and 17β (2

group x 1 drug x 3 time ANOVA), there was a significant main effect of group (F(1, 19) = 7.1,

p = 0.015), while there was no group difference when comparing saline treatment only (p = 0.1).

Pairwise comparisons between OVX and each of the other groups showed no significant drug x

group interactions, reflecting similar drug-induced hyperactivity between these groups (Fig 1).

Prepulse inhibition

When comparing the effect of saline and methamphetamine on PPI, ANOVA revealed a sig-

nificant main effect of drug (F(1,54) = 46.1, p� 0.001), reflecting the expected disruption of

PPI after methamphetamine administration, and a drug x group interaction (F(5,54) = 3.1,

p = 0.015). ANOVA comparing the effect of saline treatment on PPI in the 6 groups showed

there was a significant main effect of group (F(5,54) = 6.2, p� 0.001; Fig 2), suggesting a group

difference in baseline PPI. Further ANOVAs showed that untreated OVX rats had significantly

lower baseline PPI than all other groups (SHAM: F(1,19) = 19.1, p< 0.001, 17β: F(1,18) = 9.5,

p = 0.007, 17α: F(1,17) = 47.1, p< 0.001, RAL: F(1,17) = 13.5, p = 0.002, and TAM: F(1,19) =

10.2, p = 0.005). ANOVA comparing SHAM rats with all other groups revealed no significant

differences in baseline PPI. With respect to the significant drug x group interaction, reflecting

differential effects of methamphetamine on PPI between the groups, further ANOVAs were

conducted. In untreated OVX rats, compared to saline, there was no significant disruption of

PPI after methamphetamine (Fig 2). In contrast, SHAM rats showed a significant disruption

of PPI after methamphetamine (F(1,10) = 15.9, p = 0.003), as did 17α-treated (F(1,8) = 41.3,

p� 0.001) and RAL-treated OVX rats (F(1,8) = 22.4, p� 0.001). There was no significant

effect of methamphetamine on PPI in 17β- or TAM-treated OVX rats (Fig 2). To take into

account the OVX-induced reduction in baseline PPI, we also compared only methamphet-

amine treatment across the groups (6 group x 1 drug x 5 prepulse intensities ANOVA). There

was a main effect of group (F(5, 54) = 3.1, p = 0.016); subsequent pairwise comparisons

Fig 2. Mean ± SEM %PPI in female rats treated with saline and 1 mg/kg of methamphetamine (METH). Average

%PPI reflects the average of the 5 prepulse intensities. Rats were sham-operated (SHAM) rats, untreated

ovariectomised (OVX) rats, or OVX rats treated with 17β-estradiol (17β), 17α-estradiol (17α), raloxifene (RAL) or

tamoxifen (TAM) (n = 9–11 per group). � p� 0.01 compared to saline (main effect of drug); # p� 0.01 compared to

OVX group.

https://doi.org/10.1371/journal.pone.0193853.g002
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revealed that untreated OVX rats had reduced PPI after methamphetamine compared to

SHAM (F(1, 19) = 10.7, p = 0.004), 17β (F(1, 18) = 11.1, p = 0.004) and TAM (F(1, 19) = 5.7,

p = 0.028) rats. This further supports that 17β and TAM treatment can attenuate methamphet-

amine-induced disruptions of PPI.

Analysis of the effect of apomorphine on PPI revealed a trend for a main effect of drug (F
(1,54) = 3.4, p = 0.07), a significant drug x group interaction (F(5, 54) = 3.5, p = 0.008), and a

group x PP interaction (F(20,216) = 1.7, p = 0.03). Compared to saline, there was a significant

disruption of PPI following apomorphine in SHAM (F(1,10) = 6.7, p = 0.03) and 17α-treated

OVX (F(1,8) = 5.5, p = 0.05) rats, but a significant increase in PPI in untreated OVX rats (F
(1,9) = 20.7, p = 0.001). However, OVX rats treated with 17β, RAL and TAM showed no dis-

ruption of PPI following apomorphine administration (Fig 3). To take into account the OVX-

induced reduction in baseline PPI, we also compared only apomorphine treatment across the

groups (6 group x 1 drug x 5 prepulse intensities ANOVA). Unlike after methamphetamine

treatment, PPI after apomorphine treatment was not significantly different across the groups

(p = 0.8).

When comparing baseline startle responses of all 6 groups after saline treatment, there were

no significant main effects or interactions, suggesting a similar startle response in all groups.

There were also no significant effects of methamphetamine on startle amplitudes in any of the

groups. There was a significant main effect of apomorphine (F(1,54) = 9.6, p = 0.003), however

no interaction with group, reflecting a decrease in startle amplitude after apomorphine admin-

istration in all groups (Table 2).

Discussion

The aim of this study was to investigate the protective effect of two estradiols, 17β and 17α,

and two SERMs, RAL and TAM, against psychotomimetic drug-induced locomotor hyperac-

tivity and disruption of PPI. The key findings were: 1) 17β attenuated locomotor hyperactivity

induced by methamphetamine; 2) 17β and TAM attenuated methamphetamine-induced PPI

disruption; 3) 17β, RAL and TAM attenuated apomorphine-induced PPI disruption; 4) OVX

Fig 3. Mean ± SEM %PPI in female rats treated with saline and 0.1 mg/kg of apomorphine (APO). Average %PPI

reflects the average of the 5 prepulse intensities. Rats were sham-operated (SHAM) rats, untreated ovariectomised

(OVX) rats, or OVX rats treated with 17β-estradiol (17β), 17α-estradiol (17α), raloxifene (RAL) or tamoxifen (TAM)

(n = 9–11 per group). �� p� 0.001, � p� 0.05 compared to saline (main effect of drug).

https://doi.org/10.1371/journal.pone.0193853.g003
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induced a disruption of baseline PPI that was prevented by the chronic treatment with all

estrogenic compounds.

Consistent with our previous studies [13,34], we found a reduction in uterus weight follow-

ing OVX (-60% compared to SHAM rats); in contrast, we did not find an increase in body

weight as typically demonstrated in OVX Sprague-Dawley (SD) rats [13,34]. As expected, 17β
significantly reversed the effect of OVX on uterus weight, and increased pituitary gland weight;

treatment with 17α, RAL, and TAM did not affect uterus or pituitary weight. These findings

are consistent with previous studies showing that 17β treatment, but not the SERMs [34,35],

increased uterus [13] and pituitary gland weight [35].

17β attenuates methamphetamine-induced locomotor hyperactivity

The current study found that chronic 17β treatment in female OVX LE rats attenuated loco-

motor hyperactivity induced by methamphetamine, however since ovariectomy did not affect

methamphetamine-induced hyperactivity, the reduction in hyperactivity after 17β is not

attributed to reversing an OVX-induced effect. 17α, RAL and TAM had no effect on metham-

phetamine-induced locomotor hyperactivity, highlighting that 17β was the most effective

estrogenic compound for attenuating psychotomimetic drug-induced locomotor hyperactiv-

ity. To our knowledge, no other study has investigated methamphetamine-induced locomotor

hyperactivity in OVX LE rats. Our previous studies in female OVX SD rats found no effect of

chronic 17β treatment on amphetamine-induced hyperactivity [33]. In intact male SD rats,

TAM treatment attenuated amphetamine-induced hyperactivity [36,37], while RAL treatment

significantly increased amphetamine-induced hyperactivity [38]. In intact female SD rats,

however, RAL has been shown to attenuate cocaine-induced locomotor hyperactivity [39].

When comparing results across studies using different rat strains it is important to take into

account that compared to the SD strain, LE rats express higher levels of catechol-O-methyl

transferase (COMT) expression—an enzyme involved in the degradation of catecholamine

neurotransmitters including dopamine—in the nucleus accumbens, medial prefrontal cortex,

and ventral hippocampus [40]. Moreover, compared to SD rats, LE rats show less sensitivity to

disruption of PPI by dopamine receptor agonists, greater dopaminergic-induced Fos expres-

sion in the caudate putamen and nucleus accumbens, and differential dopamine-relevant gene

expression in the nucleus accumbens [41,42]. Methamphetamine’s action includes releasing

catecholamines, such as increasing dopamine release via direct and indirect actions on the

dopamine transporter [43–45]; our results suggest that 17β, but not 17α, RAL or TAM, acts to

inhibit the action of methamphetamine. It is well established that 17β can modulate the activity

of neurotransmitter systems, including altering levels of dopamine receptors (pre- and post-

Table 2. Mean ± SEM startle amplitude in female rats.

Group Saline Methamphetamine Apomorphine�

SHAM 241.8 ± 14.1 236.7 ± 15.1 199.3 ± 14.8

OVX 287.1 ± 26.5 272.6 ± 29.6 273.2 ± 27.2

17β 231.7 ± 30.0 255.0 ± 51.3 200.7 ± 29.3

17α 287.4 ± 23.7 267.8 ± 12.5 242.4 ± 23.1

RAL 225.4 ± 21.0 253.5 ± 30.2 250.1 ± 32.7

TAM 273.4 ± 22.1 202.4 ± 26.8 232.4 ± 15.3

Rats were treated with saline, 1 mg/kg methamphetamine, and 0.1 mg/kg apomorphine. Rats were sham-operated (SHAM), untreated ovariectomised (OVX), or OVX

rats treated with 17β-estradiol (17β), 17α-estradiol (17α), raloxifene (RAL) or tamoxifen (TAM) (n = 9–11 per group).

� p� 0.01 compared to saline (main effect of drug).

https://doi.org/10.1371/journal.pone.0193853.t002
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synaptic), transporters, and turnover in cortical and striatal regions [1]. We speculate that the

inhibitory action of 17β on methamphetamine-induced hyperactivity is by opposing metham-

phetamine’s effects on the dopamine transporter [46–48], however the exact mechanism is

unclear.

17β and TAM attenuate drug-induced disruption of PPI, RAL attenuates

apomorphine-induced disruption

Similar to locomotor hyperactivity, 17β treatment attenuated the effect of methamphetamine

on PPI, i.e. methamphetamine induced a disruption of PPI in SHAM rats but not 17β-treated

rats. Moreover, 17β treatment increased methamphetamine-induced PPI compared to OVX

rats. In terms of the effect of apomorphine on PPI, SHAM rats showed the expected disruption

of PPI but apomorphine treatment did not disrupt PPI in 17β-treated rats. The results on the

effects of the other estrogenic compounds were that, TAM treatment exerted similar effects to

17β in PPI, RAL treatment had more modest effects—only attenuating the apomorphine-

induced disruption of PPI, and 17α had no effect on the drug-induced disruptions of PPI. Our

findings are consistent with our previous research in SD rats, where apomorphine-induced

PPI disruption was attenuated by 17β, TAM and RAL [13]. There are no other studies examin-

ing the effects of estrogenic compounds on methamphetamine-induced disruptions of PPI.

One study conducted in male mice, found that amphetamine-induced PPI disruption could be

reversed by acute treatment with an ER-β agonist [49].

Given that dopamine is the common primary neurotransmitter target of apomorphine and

methamphetamine, it is likely that dopaminergic mechanisms are mediating the effects of 17β
and TAM. Using the same chronic treatment regimen as in the current study, we previously

showed that 17β reversed the OVX-induced increase in dopamine D2 receptors and reduction

in dopamine transporter density in the nucleus accumbens [50]. Others found that TAM and

RAL had no effect on dopamine D2 receptor binding density in the nucleus accumbens [51],

however, TAM and RAL increased dopamine transporter binding in certain subregions of the

striatum [48]. Further, they suggest that ER-β mediates these changes in striatal dopamine

transporter [48]. In contrast to 17β and TAM, in the current study, RAL did not significantly

attenuate methamphetamine-induced PPI disruption. While the exact mechanism of action of

SERMs is unclear, it is known that their action can vary depending on the target tissue, ER

conformation on ligand binding, and the ratio of ER-α to ER-β [52]. Moreover, TAM has

3-fold greater selectivity for ER-β, while RAL has 20-fold greater selectivity for ER-α [53], and

it is possible that ER-β plays a greater role in mediating the ability of estrogenic compounds to

attenuate dopamine-induced disruptions of PPI [48,49]. One limitation of this research is the

inability to measure the bioavailability in the brain of these estrogenic compounds. Regardless

of the exact mechanism, our results confirm that 17β is an effective compound in attenuating

dopaminergic drug-induced disruption of PPI, and that the SERM, TAM, was also effective.

OVX-induced disruption of baseline PPI is reversed by all estrogenic

compounds

To our knowledge, this is the first study investigating PPI in OVX LE rats. It was surprising to

find that OVX caused a disruption of PPI in LE rats, as we have not observed this effect in our

previous studies in OVX SD rats [13,34], nor did OVX have an effect on locomotor activity.

We suggest that LE rats may be more sensitive to hormonal modification in PPI than SD rats;

for example, some studies found that estrous cycle phase altered PPI in LE rats but not SD rats

[54,55]. Given the numerous alterations seen in the brain following OVX [56], it is reasonable

to expect changes in behaviour, such as the disruption in baseline PPI that we observed in the
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current study. For example, OVX results in a substantial loss of dopaminergic cells and reduc-

tion of dopamine concentration in the striatum [57,58], and reduced striatal dopamine trans-

porter binding density [46,48]. Importantly, all estrogenic compounds were able to reverse the

OVX-induced disruption of baseline PPI, suggesting that removal of the ovaries results in a

loss of circulating estrogens that are critical for the regulation of PPI under basal conditions, at

least in LE rats. Furthermore, the estrogenic regulation of baseline PPI differs from dopami-

nergic-mediated PPI, where only some compounds could reverse the dopamine-induced PPI

disruptions. The current study found that treatment with 17α rescued baseline PPI in OVX

rats, but had no effect on modulating drug-induced PPI disruption or locomotor hyperactivity,

suggesting that 17α has a distinct mechanism of action compared to 17β [59]. In contrast to

17β, which has greater affinity for the classical nuclear receptors, ER-α and ER-β, 17α is the

preferred ligand of a novel membrane ER, ER-X [59]. It is tempting to speculate that baseline

PPI can be rescued by stimulation of ER-X while dopamine-mediated disruption of PPI may

require activation of ER-α and ER-β, however, further studies are needed.

In SHAM rats, our data are consistent with previous studies in both the SD and LE strain

demonstrating apomorphine-induced disruption of PPI [29,60]. However, in the OVX group

only, we observed an apomorphine-induced increase in PPI. One study showed that compared

to SD rats, LE rats have decreased sensitivity to dopaminergic disruption of PPI using apomor-

phine [42]. Together with an OVX-induced decrease in baseline PPI, administration of apo-

morphine may then increase PPI. We previously showed that the level of baseline PPI can

influence the direction of drug effects, such that in rats with low baseline PPI, the serotonin-1A

receptor agonist, 8-OH-DPAT, increased PPI, despite this drug typically causing a disruption of

PPI [61]. A recent PET study in humans has indeed shown that regulation of dopamine synthe-

sis capacity by apomorphine depends on baseline synthesis capacity, finding an increase in

dopamine synthesis in participants with low baseline, and a decrease in those with high baseline

[62]. Additional studies are required to improve our understanding of the strain-dependent

OVX and apomorphine effects on PPI.

Conclusion

The current study demonstrated that 17β treatment significantly protected against PPI disrup-

tion induced by the indirect dopamine receptor agonist, methamphetamine, and the dopa-

mine D1/D2 receptor agonist, apomorphine, in addition to attenuating methamphetamine-

induced locomotor hyperactivity. TAM also attenuated drug-induced disruption of PPI, while

RAL only attenuated apomorphine-induced disruption, but neither SERM attenuated drug-

induced hyperlocomotion. We found that the brain-synthesized isomer of 17β, 17α, was effec-

tive in reversing the OVX-induced disruption of baseline PPI, yet was not protective against

dopaminergic-mediated behaviours. This research highlights the utility of some estrogenic

compounds to attenuate psychosis-like behaviour in rats. Our findings confirm that 17β is the

most effective compound and add to the current literature suggesting that estrogens have ther-

apeutic potential for psychotic disorders.
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