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Abstract: Vernalization is the requirement for exposure to low temperatures to trigger flowering.
The best knowledge about the mechanisms of vernalization response has been accumulated for
Arabidopsis and cereals. In Arabidopsis thaliana, vernalization involves an epigenetic silencing of the
MADS-box gene FLOWERING LOCUS C (FLC), which is a flowering repressor. FLC silencing releases
the expression of the main flowering inductor FLOWERING LOCUS T (FT), resulting in a floral
transition. Remarkably, no FLC homologues have been identified in the vernalization-responsive
legumes, and the mechanisms of cold-mediated transition to flowering in these species remain elusive.
Nevertheless, legume FT genes have been shown to retain the function of the main vernalization
signal integrators. Unlike Arabidopsis, legumes have three subclades of FT genes, which demonstrate
distinct patterns of regulation with respect to environmental cues and tissue specificity. This implies
complex mechanisms of vernalization signal propagation in the flowering network, that remain
largely elusive. Here, for the first time, we summarize the available information on the genetic basis
of cold-induced flowering in legumes with a special focus on the role of FT genes.

Keywords: vernalization response; legumes; flowering time; cold-induced flowering; FLOWERING
LOCUS T (FT); SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1); FLOWERING
LOCUS C (FLC)

1. Introduction

In the winter plant varieties, flowering could be initiated only after prolonged cold
exposure or vernalization [1–3]. The role of vernalization in plant development is to
maintain a vegetative state during winter via the repression of major flowering inductors.
This ensures that flowering and sexual reproduction take place in the milder conditions of
spring [4]. After the end of the cold treatment, the floral activator genes are de-repressed.
This leads to their activation by the photoperiod pathway and floral transition [5].

The best knowledge on the cold-induced flowering has been accumulated for Arabidop-
sis and cereals. In Arabidopsis thaliana, the response to vernalization is mostly mediated
through the MADS-box gene FLOWERING LOCUS C (FLC) [6,7]. FLC is a repressor that
delays flowering by preventing the expression of floral activators [8]. Vernalization treat-
ment represses FLC and releases flowering promotion. It has been shown that the major
targets of FLC in Arabidopsis are FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVER-
EXPRESSION OF CONSTANS 1 (SOC1) [9,10].

The Arabidopsis FT gene functions as an integrator, converging information from the
photoperiodic, vernalization and autonomous regulatory pathways [11]. The interplay
between activating and repressive inputs from different pathways is controlled through a
complex cis-regulatory region [12]. The homologues of the FT gene are functioning in a
variety of plant species [13–23].

FT encodes a major florigen which promotes transition from vegetative growth to flow-
ering [9,24]. A protein product of the FT gene accumulates information on environmental
signals in the leaves, and then moves to the shoot apex to transfer this information to meris-
tem identity genes, including the key genes APETALA1 (AP1) and LEAFY (LFY) [25–30].
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These genes function to convert meristem to the reproductive state. FT activates LFY
expression through the MADS-domain transcription factor SOC1 [5,31,32]. Moreover, AP1
and LFY act as mutual transcriptional activators [33].

An inductive function of the FT gene product is opposed by the TERMINAL FLOWER
1 (TFL1) gene, which represses flowering and controls inflorescence architecture via the
down-regulation of AP1 and LFY [34–37].

In legumes, vernalization sensitivity, inherent to wild germplasm, has been mostly lost
from cultivated genotypes due to the long-standing breeding efforts aimed at creating the
early-flowering spring cultivars. Nevertheless, some cultivated genotypes still retain a low
level of vernalization response [38,39]. Understanding the genetic bases of cold-induced
flowering in legumes enables one to decipher the origin of adaptation to different environ-
ments, history of domestication, and evolution of flowering time networks. However, the
molecular mechanisms of vernalization response in legumes remain largely obscure.

Remarkably, the FLC gene is missing in many legume species. This comprises all
galegoid legumes, including Medicago truncatula, Pisum sativum, Vicia faba, Lens culinaris and
Cicer arietinum, and genistoid legumes such as Lupinus angustifolius, Lupinus luteus and Lupi-
nus albus [40,41]. Despite the absence of the FLC gene, these species possess a vernalization-
based flowering promotion through the activation of FT genes (Table 1) [42,43]. The pub-
lished results suggest that FT genes are the main targets of vernalization in legumes (Table 2)
, although the mechanisms of FT activation are still unclear [44,45]. So far, the most in-
tensive research of cold-induced flowering has been conducted in Medicago trancatula and
narrow-leafed lupin Lupinus angustifolius [44–47]. Here, we summarize the available infor-
mation for genetic bases of vernalization in eight legume species with a special emphasis
on the role of FT genes.

Table 1. The orthologs of Arabidopsis FLOWERING LOCUS T (FT) gene in legumes.

Legume Species FT Genes

Medicago trancatula FTa1, FTa2, FTa3, FTb1, FTb2, FTc
Pisum sativum FTa1, FTa2, FTb1, FTb2, FTc
Lens culinaris FTa1, FTa2, FTa3, FTb1, FTb2, FTc
Cicer arietinum FTa1, FTa2, FTa3, FTb, FTc
Lupinus angustifolius FTa1, FTa2, FTc1, FTc2

Table 2. Major vernalization targets (FT and SOC1 genes) in different legume species.

Legume Species Targets of Vernalization References

Medicago trancatula FTa1, SOC1 [44,48]
[46,49]

Lupinus angustifolius FTc1 [45]
Lupinus luteus FTc1 [50]
Lupinus albus polygenic regulation, [51]

including FTa1 and FTc1 [52]
Pisum sativum FTa1 (?) [53]
Cicer arietinum FTa1, FTa2, FTc (?) [54]
Lens culinaris FTa1, FTa2 [55,56]
Vicia faba FT, SOC1 [57]

[58]

2. The Mechanism of Cold–Induced Flowering in Arabidopsis

Prior to vernalization, flowering promotion in Arabidopsis is repressed by the MADS-
box transcription factor FLC, which interacts with the first intron of the FT gene and the
promoter region of SOC1 gene [8]. FLC represses FT expression in the leaves, while SOC1
is down-regulated in the shoot apex [8,11].
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The direct targets of FLC include SHORT VEGETATIVE PHASE (SVP) [59], TEM-
PRANILLO 1 (TEM1) [60,61], SQUAMOSA PROMOTER-BINDING-LIKE PROTEIN 15
(SPL15) [62,63], and a few more flowering-related genes (summarized in [64]).

FLC expression is up-regulated by the FRIGIDA (FRI) gene through a FRI-containing
supercomplex, which establishes a local chromosomal environment for a high-level pro-
duction of FLC mRNAs [65,66].

The vernalization treatment leads to the epigenetic silencing of FLC, which involves
multiple factors. These factors include (1) the components of autonomous pathway; (2) the
long noncoding RNAs (lncRNAs) produced by FLC locus (COOLAIR complex); (3) Poly-
comb repressive complex 2 (PRC2), including the core components VERNALIZATION2
(VRN2), FERTILIZATION INDEPENDENT ENDOSPERM (FIE), MULTICOPY SUPPRES-
SOR OF IRA1 (MSI1) and SWINGER (SWN); (4) the plant homeodomain (PHD) proteins
VERNALIZATION INSENSITIVE 3 (VIN3), VERNALIZATION 5 (VRN5) and VIN3-LIKE2.
The repression of FLC involves switching chromatin to a repressed state. The PHD–PRC2
complex acts to deposit the repressive epigenetic mark H3K27me3 across the FLC locus,
which provides maintenance of FLC repression after the return to warm conditions. FLC
repression proceeds progressively via the cell-autonomous mechanism, and a stable down-
regulation of FLC is achieved after the prolonged cold exposure, which occurs during
winter [6,67–76].

The mechanisms of FLC silencing and epigenetic memory in Arabidopsis have been
widely studied and summarized in the recent reviews [3,77,78].

Following the release of repression by FLC, the FT and SOC1 genes become activated
by the photoperiodic pathway, leading to flowering promotion [79–82]. A generalized
mechanism of the cold-induced flowering transition in Arabidopsis is shown in Figure 1a.

Figure 1. Flowering promotion by vernalization. (a) A generalized regulatory mechanism of cold-
induced flowering promotion in Arabidopsis, (b) a putative regulatory network in legumes. Arrows
and T-bars show positive and negative regulatory interactions respectively. Activation state of the core
components is shown with the red color. ‘Autonomous’ and ‘Photoperiod’ denote the corresponding
pathways in A. thaliana. FTa, FTb and FTc are three subclades of FT orthologs in legumes.
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Extensive research revealed that the flowering-related genes are largely conserved be-
tween Arabidopsis and legumes [42,44,45,49,53–55,83–97]. However, the legumes generally
lack any FLC orthologs, except for soybean, a vernalization-independent species, which
retained one FLC copy in its paleopolyploid genome [42,98,99].

3. FT Genes in Legumes

Despite the absence of FLC orthologs, the legume FT genes retain the role of major
vernalization signal integrators (Table 2).

Legumes have three subclades of FT genes (FTa, FTb and FTc) with five Arabidopsis FT
orthologs detected in pea Pisum sativum, and six orthologs in Medicago trancatula and Lens
culinaris (Table 1) [44,45,53,55,56,100]. Unlike pea and Medicago, chickpea Cicer arietinum
has a single FTb gene, resulting in a family of five genes (Table 1) [54].

Similarly to the above described legume species, faba bean Vicia faba presumably has
five or six FT genes, however, their number and identity are yet to be determined [58].

The narrow-leafed lupin Lupinus angustifolius is a member of the genistoid clade, which
is the most basal clade of papilionoid legumes [45,101]. In Lupinus angustifolius, the FTb
subclade is completely missing, while there are two FTa genes and two FTc genes (Table 1).
Phylogenetic analysis revealed that lupin FTa1 and FTa2 genes correspond to the Medicago
FTa3 subclade [45]. Lupin FTa and FTc genes presumably originated from single copies by
lineage-specific duplication [90].

Interestingly, the members of different FT subclades in pea and Medicago showed
distinct patterns of regulation with respect to environmental cues and tissue specificity. For
example, FTa and FTb genes are expressed in leaves, while FTc genes function in the shoot
apex and may contribute to the integration of FTa and FTb signals [43,44,53]. Moreover,
several studies point to the existence of cross-regulation between different members of
the FT family [44,53]. This demonstrates the complexity of regulatory networks involving
various FT family members in legumes, including those implicated in the vernalization
response (Figure 1).

4. A Role of the Legume FT Genes in Vernalization Response

4.1. Medicago

The study by Laurie et al. provided the first clue on the role of FT family genes in
the vernalization response in legumes [44]. It was shown that FTa1 mutants in Medicago
trancatula are late flowering and have the reduced ability of vernalization response [44,100].
Remarkably, despite vernalization insensitivity, the MtFTa1 mutants retained the photope-
riod response [44].

The experiments on MtFTa1 overexpression showed the early flowering phenotype in
unvernalized plants, resembling that of wild type plants after vernalization. Interestingly,
the expression of the M. trancatula FTc gene was significantly reduced in MtFTa1 mutants,
suggesting that the MtFTc gene might be downstream of MtFTa [44].

An insertion of Tnt1, a long terminal repeat (LTR) retrotransposon from tobacco, into
FTa1 3rd intron or in 3′ region resulted in the early flowering phenotype (“spring” mutants),
similar to that after FTa1 overexpression [46,48]. This insertion eliminated vernalization
response, but resulted in a strong photoperiod sensitivity. These data suggest that the
MtFTa1 gene may have evolved separate mechanisms of response to vernalization and
photoperiod.

Several transcription factors, such as SOC1 and FRUITFULL (FUL) showed elevated
expression in spring mutants, which is consistent with their downstream position relative
to FT signaling in Arabidopsis [46,48,100]. The Arabidopsis FUL gene encodes a MADS-box
protein and acts as a flowering-time and meristem-identity gene, closely related to AP1
and CAULIFLOWER (CAL) [102]. FUL is involved in an up-regulation of the LFY gene.
The MtSOC1 genes demonstrated up-regulation by both vernalization and photoperiod,
which was reduced in FTa1 mutants, providing evidence that these genes are downstream
FTa1 [49].
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An essential role of FTa1 in Medicago was confirmed by a recent RNAseq assay showing
a wide range of genes differentially regulated by mutation of MtFTa1 [96]. Upon floral
transition, the MtFTa1 targets included genes from photoperiod, gibberellin-related and
age-related pathways.

In Arabidopsis, the FT protein acts in complex with the basic domain/leucine zipper
(bZIP) transcription factor FLOWERING LOCUS D (FD), and the model of FT-FD interaction
is conserved in different plant species [89,103–107]. The FT-FD heterodimer is responsible
for activation of AP1 [25,103], FUL and SEPALLATA3 (SEP3) [108]. Interestingly, the muta-
tion in the MtFDa gene did not abolish vernalization responsiveness, unlike the mutation
in MtFTa. Nevertheless, the double mutation of MtFDa and MtFTa1 completely blocked
floral transition pointing to the complementary roles of these two genes [96].

4.2. Narrow-Leafed Lupin

Studies on the narrow-leafed lupin (Lupinus angustifolius) revealed that of all FT genes,
only LanFTc1 shows strong vernalization response [45]. The expression of this gene was
repressed in the unvernalized conditions, but possessed strong induction following cold
treatment.

This is the first case of the FTc subclade gene involvement in vernalization response [45].
Of all FT subclades, FTc genes are the most divergent and differ from most other FT genes
by substitution of several conserved residues [109].

It has been shown that several natural mutations (Ku, Jul and Pal) provide vernalization
independence in L. angustifolius. All these mutations are located in the promoter region of
the LanFTc1 gene [45,47,90,110].

Ku and Jul are naturally occurring dominant mutations, independently discovered in
cultivars “Borre” and “Krasnolistny” in 1960s, which determine vernalization insensitivity
and early flowering of the cultivated lupin [110–112]. Ku and Jul are deletions within
the LanFTc1 promoter region, spanning 1423 and 5162 bp respectively. Another 1208 bp
deletion, partially overlapping with Ku and Jul, has been revealed in the wild germplasm
from Palestine, and termed Pal mutation. Pal is associated with a partial vernalization
responsiveness and slightly delayed flowering [110].

The analysis of LanFTc1 expression in the three deletion variants confirmed their
importance for flowering time regulation via the vernalization pathway. Remarkably, Ku
and Jul deletions appeared to be functionally equivalent, resulting in the similar expression
profile of LanFTc1 gene. Therefore, it has been suggested that major regulatory elements
responsible for LanFTc1 vernalization sensitivity, confer to a region of Ku deletion, namely,
the 1423 bp sequence [110]. The functional activity of 1208 bp Pal deletion presumably
refines this major regulatory region.

An effect of Ku, Jul and Pal mutations in the narrow-leafed lupin is very similar to
that of “spring” mutations in Medicago, suggesting a common mechanism of vernalization
response by de-repression of FT genes [46]. In both cases, current research provides
evidence about the genomic regions, containing important binding sites, which enable
transcriptional repression of the FT genes in wild type. However, in both Medicago and
lupin, it is unknown which elements within these regions are responsible for the FT
repression in the absence of vernalization and its de-repression after vernalization [45,110].

The promoter region of the L. angustifolius LanFTc1 gene contains putative binding sites for
the homologues of many transcription factors regulating FT expression in Arabidopsis [45,110].
This region has been divided into two zones. The deletion of the first zone CH provided a
high level of LanFTc1 expression, while the deletion of the second zone CM resulted in the
moderately high expression levels. However, the function of these sequences in wild type
remains unclear [110]. In Arabidopsis, the FT promoter contains four major blocks, including
the ID block with two insertions/deletions (indels) affecting promoter efficiency [12,113].
A position of the ID block within the Arabidopsis FT promoter is similar to a position of the
1423 bp Ku deletion in L. angustifolius LanFTc1 promoter. However, the Ku region showed
no sequence conservation with the ID block [90,110].
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Besides LanFTc1, recent studies have shown the involvement of a number of novel can-
didate genes in the vernalization response [47,114]. The expression profiles of these genes
were examined for vernalization responsiveness in three accessions, carrying domesticated
allele Ku, intermediate allele Pal, and wild allele ku [47].

LanAGL8 (AGAMOUS-LIKE 8) is an L. angustifolius ortholog of the A. thaliana FUL
gene [115–117]. In L. angustifolius, the expression pattern and vernalization responsiveness
of LanAGL8 were very similar to those of LanFTc1. The authors suggested that LanAGL8
could act downstream of LanFTc1. As described above, an expression of FUL in Medicago
also pointed to its downstream position relative to MtFTa1 gene [46,48].

LanFD, the L. angustifolius ortholog of the Arabidopsis FD gene, showed vernalization
responsiveness, which varied between early and late flowering genotypes. Since the protein
product of FD gene in Arabidopsis acts in a complex with the FT protein [103], a variation in
FD expression could modulate an effect of the FT signal [47].

A recent study provided transcriptomic evidence on the role of LanCRLK1 and
LanUGT85A2 genes, acting in C-repeat binding factor (CBF) cold responsiveness and
UDP-glycosyltransferase pathways, in the LanFTc1-mediated vernalization response [114].
Nevertheless, the analysis of LanCRLK1 and LanUGT85A2 expression profiles did not
provide convincing evidence for the role of these genes in the vernalization response of
L. angustifolius [47].

4.3. Yellow Lupin

Despite the similar domestication history of narrow-leafed lupin and yellow lupin,
(Lupinus luteus), the genetics of domestication traits have been studied much more inten-
sively in the narrow-leafed lupin [50,118,119]. The studies on QTL mapping of domestica-
tion syndrome and flowering time traits in L. luteus were first published in 2020 [50,120].

In these studies, the vernalization response QTL of L. luteus was mapped to the same
syntenic position, as the Ku locus of L. angustifolius. This locus harbors the orthologous FTc
gene, which presumably has similar functions as L. angustifolius LanFTc1 [50,120].

4.4. White Lupin

Remarkably, unlike narrow-leafed and yellow lupin, in the white lupin Lupinus albus
the vernalization response was revealed as a continuous trait suggesting polygenic regula-
tion [52,121]. Despite the involvement of different number of genes (single genes vs several
QTLs), the genomes of white and narrow-leafed lupin showed high collinearity [121].

Genotyping with PCR-based markers highlighted major candidates for the vernaliza-
tion response and early flowering QTLs [51,52,121]. The QTL analyses revealed significant
correlations between time to flowering and polymorphism in markers anchored in the
sequences of regulatory genes. These genes are slightly divergent between two studies
involving mapping population and germplasm collection [51,52]. and include L. albus
orthologs of FTa1, FTc1, SEP3, EARLY FLOWER 1 (ELF1), FLOWERING LOCUS D (FLD),
FRIGIDA (FRI) CONSTANS (CO), FY, MOTHER OF FT AND TFL1 (MFT), PHYTO-CHROME
INTERACTING FACTOR4 (PIF4), SKI-INTERACTING PROTEIN 1 (SKIP1), and VERNAL-
IZATION INDEPENDENCE 3 (VIP3) [51,52]. Remarkably, both studies highlighted a
possible role of the FRI gene, a major component of the vernalization pathway, which
is responsible for activation of FLC expression (see above) [66]. In Arabidopsis, an allelic
variation of FRI accounts for the majority of natural variation in flowering time [122,123].

Overall, these studies highlight a complex nature of flowering control in white lupin,
with candidate genes dispersed among numerous loci. This contrasts with rather simple
mechanisms of cold-induced flowering in L. angustifolius and L. luteus.

4.5. Garden Pea

In the garden pea Pisum sativum, the FTa1 gene, corresponding to the GIGAS locus
described in earlier studies [124], plays a major role in flowering induction [53]. The gigas
mutants demonstrated late flowering in all photoperiodic conditions tested, nevertheless,
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with an unambiguous effect of vernalization on flowering time [124]. However, such an
effect was observed in the specific tissues, suggesting that FTa1/GIGAS may respond to
vernalization in a tissue-specific manner [53,124,125]. Acquisition of more molecular data
is required to analyze mechanisms of vernalization-induced flowering in pea.

4.6. Chickpea

In chickpea Cicer arietinum, a major QTL providing 55% of the phenotypic variation
for vernalization response trait has been identified on the linkage group 3 (LG3) of the
chickpea genetic map [126]. LG3 on chromosome 3 was earlier reported to harbor flowering
time genes by many authors [127–131]. Thus, LG3 harbors several QTLs for flowering time
and vernalization response in chickpea [126].

A recent study detected a strong genetic association between early flowering and a
cluster of FT genes on chromosome 3, comprising FTa1, FTa2 and FTc [54]. This cluster
has been located to the same genomic region as the QTL for vernalization response [126].
Nevertheless, it is unknown, which of these FT genes might be responsible for the effects
on vernalization response.

4.7. Lentil

A recent QTL analysis revealed that the DTF6a locus on lentil (Lens culinaris) chromo-
some 6 strongly contributes to early flowering of the Indian landrace ILL 2601 [55].

The detailed inspection of the DTF6a region revealed that it corresponds to the syntenic
regions on Medicago chromosome 7, pea chromosome 5 and chickpea chromosome 3. This
region harbors a conserved cluster of FT genes, including two FTa genes (FTa1 and FTa2)
and an FTc gene, located adjacent or nearby [44,53,54,132].

Further analysis showed that DTF6a deletion is associated with elevated expression
of FTa1 and FTa2 genes. The sequences of FTa1-FTa2 cluster were compared between the
early flowering lentil accession ILL 2601 and the late flowering accession ILL 5588. There
were no differences in the coding regions of either gene, but the comparison of non-coding
regions identified 136 nucleotide polymorphisms (SNPs) and 25 indels distinguishing two
accessions. The most substantial difference was the 7441 bp deletion, comprising most of
the FTa1–FTa2 intergenic region in the early ILL 2601 accession [55].

The analysis of vernalization response showed that the late ILL 5588 accession was
vernalization-sensitive under long and short photoperiods. On the contrary, ILL 2601 did
not show any vernalization-induced acceleration of flowering.

The results suggested that FTa1 (LcFTa1) is the most prominent candidate for the early
flowering and vernalization insensitivity of the early ILL 2601 accession [55]. As described
above, FTa1 is responsible for early flowering in Medicago and pea [44,53]. A large 7441 bp
indel detected in the FTa1–FTa2 intergenic of the early ILL 2601 accession might include
regulatory elements required for LcFTa1 repression [55]. In this case a mechanism, which
confers early flowering and vernalization independence in lentil, should resemble the
above described Ku mutations in the promoter region of the FTc1 gene in L. angustifolius [45]
and transposon insertions in the third intron or 3‘ untranslated region of the FTa1 gene in
M. trancatula [46].

These results were confirmed in another recent study, considering differences in
flowering time between L. culinaris and its wild ancestor L. orientalis [56]. This study
detected QTL, colocalizing with DTF6a locus, and revealed differential regulation of LcFTa1
gene within this QTL [56].

4.8. Faba Bean

In faba bean Vicia faba, the candidate gene mapping and the quantitative trait loci
(QTL) analysis revealed the cluster of FT loci close to the most conserved flowering time
QTL on chromosome 5 in a region syntenic with a section of Medicago chromosome 7
containing FTa and FTc genes [58]. However, the authors failed to map individual FT genes
within this region due to high sequence conservation [58].
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In another recent study, the single-molecule, real-time (SMRT) sequencing revealed
50 flowering-related genes that could be associated with vernalization. The vernalization-
responsive transcripts showed significant up-regulation in the cold-treated samples [57].

The expression dynamics of one candidate gene, an ortholog of SOC1, was examined
by RT-PCR. Phylogenetic analysis demonstrated that VfSOC1 is most similar to MtSOC1c
in Medicago (86.5% identity). Under a low temperature treatment, the levels of VfSOC1 in a
leaf showed elevation on day 7 and steadily increased thereafter. The ectopic expression of
VfSOC1 in Arabidopsis could promote earlier flowering. These results point to the important
role of VfSOC1 in vernalization response of faba bean [57].

5. Candidates for the Vernalization-Repressed Repressors in Legumes

The repressors of flowering, down-regulated by cold exposure, have yet to be uncov-
ered in legumes. As a starting point, current research aims to analyze legume orthologs of
the Arabidopsis genes involved in the regulation of FLC locus.

FRI is a major gene controlling vernalization response in Arabidopsis. FRI suppresses
flowering mostly through the upregulation of FLC [7]. The analysis of A. thaliana popula-
tions revealed that the allelic variation of FRI accounts for approximately 70% of flowering
time variation [123]. In the white lupin L. albus, FRI has been recently highlighted as a
candidate gene underlying the early flowering QTL [51,52].

As described above, PHD proteins VIN3 and VRN5 are the components of PHD–PRC2 com-
plex, required for the stable repression of FLC following vernalization in Arabidopsis [70,74,133].
Despite their similar function, VIN3 and VRN5 genes differ in the expression dynamics and
the vernalization responsiveness [133]. There are three copies of each gene in the genome
of narrow-leaved lupine L. angustifolius. The expression of LanVIN3 and LanVRN5 genes
was different from that of Arabidopsis with significantly higher levels of LanVIN3 compared
to LanVRN5 [47]. However, the differences in the expression profiles and vernalization
sensitivety of the LanVIN3 and LanVRN5 genes did not match the observed differences
in time to flowering. Therefore, the authors suggested that these genes are unlikely to be
involved in the vernalization response [47].

The VRN2 protein is a core component of Polycomb repressive complex 2 (PRC2) in
Arabidopsis. Phylogenetic analysis revealed the VRN2-like genes in some legume species
including Medicago, pea and lupin [67]. Interestingly, in Medicago, MtVRN2 gene functions
as a repressor of the floral activator FTa1 [134]. Mtvrn2 mutants demonstrated early,
vernalization-independent flowering, as well as an elevated expression of FTa1 and its
target genes, including SOC1a, FULb and AP1. Thus, in the absence of the FLC clade of
flowering time repressors in Medicago, MtVRN2 apparently plays a role in silencing major
flowering activators [134].

Nevertheless, the “memory of the cold”, or prolonged activation of flowering after
vernalization, is preserved in M. trancatula. MtFTa1 gene was not expressed in the germi-
nated seedlings after 14 days in the cold. However, its expression started immediately after
plants were transferred to warm conditions, and the expression levels increased after 7 and
14 days in the warmth [44]. The mechanisms of such memory of the cold exposure are yet
unknown.

6. Conclusions

Vernalization is a widespread mechanism of flowering time regulation in annual
plants from temperate regions. However, the vernalization pathways appear to have
evolved independently in various plant lineages, leading to differences of gene functions
and regulatory pathways across groups [1,109]

Since the functions of VIN3, VRN5 and VRN2 genes in legumes differ from those in
Arabidopsis, and the FLC gene is absent, it is obvious that the cold-induced de-repression of
flowering activators proceeds via different mechanisms. There could be several scenarios
of vernalization-based FT induction in legumes.
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For example, in cereals, vernalization involves the down-regulation of the FT repressor,
which is not orthologous to FLC in Arabidopsis [135,136]. On the other hand, in the sugar
beet Beta vulgaris, vernalization represses an FT gene (BvFT1), which down-regulates
another FT gene (BvFT2) [137].

Since the MtVRN2 gene in Medicago performs a function opposite to that in Arabidopsis,
namely, it represses FTa1 instead of activation [134], the latter scenario is quite plausible.
There may also be cross-regulatory interactions between different FT genes, as it has been
suggested that the Medicago MtFTc gene acts downstream of MtFTa1 [44]. This suggests
a complex network transmitting the vernalization signal from several FT genes to the
meristem identity genes AP1 and LFY (Figure 1b). It should be noted that in addition
to being activated by the FT orthologs, the legume genes AP1 and LFY are regulated by
several copies of the TFL1 gene [53,91,109,138,139]. Future research should explore this
regulatory complexity in terms of the vernalization signal propagation.
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