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Abstract: Cardiac angiography to visualize the cardiac coronary artery for lesions causes a lot of
radiation exposure dose to the interventional cardiologist. We evaluated the occupational radiation
exposure to the interventional cardiologist based on changes to the angle of the X-ray tube used in
cardiac angiography and calculated the conversion factor for effective dose in this study. To evaluate
the occupational radiation exposure resulting from scattered radiation to interventional cardiologists,
organ doses for eyeball, thyroid, and heart were calculated using Monte Carlo simulation with korean
typical man(KTMAN) phantom at the left anterior oblique (LAO)30/cranial (CRAN)30, CRAN40,
right anterior oblique (RAO)30/CRAN30, RAO30/caudal(CAUD)20, CAUD39, LAO40/CAUD35,
and LAO40 positions in the femoral and the radial artery puncture. In this study, analysis of
the different angles showed the highest radiation exposure on LAO30/CRAN30 and CRAN40
position, which were 150.65% and 135.3%, respectively, compared to AP angles. Therefore, to reduce
occupational dose for interventional cardiologists, it is recommended that radiation protection, such
as using radiation shield and personal protective equipment (PPE), be used at LAO30/CRAN30
and CRAN40 angulation, and the conversion factor for calculating the organ dose received by
the interventional cardiologists based on patient dose can be applied for improved occupational
dose management.

Keywords: occupational radiation exposure; cardiac angiography; Monte Carlo simulation; organ-dose

1. Introduction

Since their discovery by Roentgen in 1895, X-rays have proven to be an essential
diagnostic tool. A key component of radiology, X-rays are also employed in many other
medical fields. For example, cardiac angiography and interventional procedures apply
X-rays in the diagnosis and therapeutic procedures pertaining to cardiovascular diseases [1].
Coronary angiography is a technique used to visualize the coronary artery via radiation
fluoroscopy and exposure techniques after contrast agents have been injected via a catheter
through the femoral or radial arteries [2]. In coronary angiography, in which the patient lies
supine on the examination table, the X-ray tube moves rotationally in two perpendicular
planes, thereby enabling projection flexibility [3]. Such procedures inevitably subject
patients and medical staff to radiation exposure. Although exposing patients to medical
radiation does not impose restrictions, occupational radiation exposure for medical staff
is not permitted to exceed an effective dose limit of 20 mSv per year, averaged over a
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5 years period, and cannot exceed 50 mSv in a single year [4]. Therefore, occupational
exposure to interventional cardiology staff is a critical issue in ensuring safe working
conditions for medical professionals [5–9]. In order to observe the three large cardiac
vessels of the heart, cardiac angiography acquires images via a combination of fluoroscopy
and multi-angle X-ray exposure. In general, the shape of the cardiovascular system is
checked according to the LAO/CRAN, CRAN, RAO/CRAN, RAO/CAUD, and CAUD
views. Specifically, LAO/CAUD is the basis for judging cardiac lesions. Therefore, we
evaluated the occupational radiation exposure for interventional cardiologists according to
the angle of the X-ray tube used in cardiac angiography.

2. Materials and Methods

To evaluate the occupational radiation exposure resulting from scattered radiation for
interventional cardiologists, we performed Monte Carlo simulations and a phantom study.
Monte Carlo simulations were performed using the MCNPX V2.7 (Los Alamos National
Laboratory, Los Alamos, NM, USA), which is an all particle, all energy Monte Carlo
transport model. To determine representative values of the occupational radiation exposure,
the occupational organ-absorbed dose for the eyes, thyroid, and heart were evaluated based
on a single coronary angiography procedure at seven angulations. The organ-absorbed
dose for the eyes, from the left and right entire eye, were averaged including cornea, lens
glass, retinal, etc. Angiography was performed using an Allura Xper FD20 X-ray system
(Philips, Amsterdam City, The Netherlands), with the relevant parameters incorporated
into the Monte Carlo simulation. The X-ray simulation code SRS 78 (Institute of Physics and
Engineering in Medicine, York, UK) was used to obtain a continuous X-ray spectrum. In
this simulation, the absorbed organ dose was considered for an operator both wearing and
not wearing personal protective equipment (PPE) by using the *F6 tally (i.e., the average
energy-deposition over a cell [MeV/g]). The energy cutoff was 50 eV and the number of
histories was checked to ensure a statistical error below 5%. In addition, an experimental
measurement using a phantom was conducted to obtain the patient dose under equivalent
conditions to the simulation. The patient dose was extracted using dose report data issued
in angiography [10].

A. Simulation geometry

The geometric structure was modeled in accordance with the Allura Xper FD 20 X-ray
system. Specifically, the dimensions of the patient table were set to 319 × 50 cm2 and the
iso-center-to-floor distance was 113.5 cm. The fluoroscopy and X-ray exposure cine modes
of the angiography device were both set at 15 fps. X-rays were generated at 64 kV with 0.7-
and 0.4-mm Al-equivalent filtration, and the source-to-detector distance (SDD) was 119 cm.
The rotation and angulation of the X-ray tube were set according to the conditions listed
(shown) in Table 1 (Figure 1). The simulations were performed based on clinical research,
while the study protocol was approved by the institutional ethics review committees of the
respective study centers.

B. Anthropomorphic phantom for simulation study

Several anthropomorphic phantoms have been developed using Monte Carlo sim-
ulations. For example, KTMAN-2 is an anthropomorphic phantom based on computed
tomography (CT) projections and was constructed using CT images of adult male volun-
teers corresponding to the reference data for Korean males (height: 172 cm, weight: 68 kg).
KTMAN-2 consists of 300 × 150 × 344 voxels (each with a size of 2 × 2 × 5 mm3) and is
divided into 48 anatomical regions [11]. Figure 2a shows the outline of the KTMAN-2 phan-
tom. The phantom was used to evaluate the occupational organ doses for each procedure
and was set in the position of the operator.

C. Personal protective equipment

The geometric and material properties of lead glasses, thyroid protectors, and lead aprons
were included in the simulation: 0.75 mm-thick Pb, 0.5 mm-thick Pb, and 0.25 mm-thick
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Pb, respectively. The arrangement of the PPE for the phantom is shown in Figure 2b. The
occupational dose was evaluated with and without PPE.

D. Measurements using the phantom

The whole-body phantom PBU-50 (Kyoto Kagaku, Japan) was constructed from
human-equivalent materials and was placed in the standard position of a patient under-
going an angiography procedure. To verify the dose area product and air kerma for the
procedure, the radiographic conditions were set as follows: fluoroscopy, 64 kV with 0.7-mm
Al filtration, 4.58 mA, 8 shots lasting 30 s each; X-ray exposure, 64 kV with 0.4-mm Al filtra-
tion, 72.38 mA, 8 shots lasting 4 s each, 16 × 16 cm2 field of view. The nominal focal spot
sizes of the fluoroscopy and X-ray exposure cine modes were 0.7 and 0.4 mm, respectively.
The rotation and angulation of the X-ray tube were set using the same conditions as the
simulation.
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Figure 1. The simulated arrangement of interventional cardiologists and patients for cardiac angiog-
raphy to X-ray angulation. The position of cardiologist, patient, and X-ray tube angulation showed
in each procedure.

Table 1. The cardiac angiography exposure condition for Monte Carlo simulation and phantom study. X-ray tube rotation
and angulation, distance from X-ray source to image detector, and exposure time showed in each procedure.

Mode Rotation (Degree) Angulation (Degree) Source to Image Distance (cm) Time (s)

FS (1) 0 0 119 30
CA (2) LAO 30 CRAN 30 119 4

FS LAO 30 CRAN 30 119 30
CA 0 CRAN 40 119 4
FS 0 CRAN 40 119 30
CA RAO 30 CRAN 30 119 4
FS RAO 30 CRAN 30 119 30
CA RAO 30 CAUD 20 119 4
FS RAO 30 CAUD 20 119 30
CA 0 CAUD 39 119 4
FS 0 CAUD 39 119 30
CA LAO 40 CAUD 35 119 4
FS LAO 40 CAUD 35 119 30
CA LAO 40 0 119 4
FS LAO 40 0 119 30
CA 0 CRAN 30 119 4

(1) Fluoroscopy, (2) Cine angiography.
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Figure 2. Computational phantom for Monte Carlo simulation. (a) Screenshot of Korean typical man-
2 (KTMAN, sagittal and coronal plane); (b) the arrangement of the personal protective equipment
(PPE) in the phantom. Lead glasses, thyroid protectors, and lead apron are located at eye, thyroid,
and upper body.

3. Results

The anthropomorphic phantom was positioned at the operator and patient positions
according to the catheter insertion positions (radial and femoral artery) used for angiog-
raphy, and the absorbed organ doses of the eye, thyroid gland, and heart were simulated
for the operator according to the X-ray tube angle. The results are listed in Table 2. With
PPE, the organ-absorbed doses of the eye, thyroid, and heart in the femoral artery puncture
position (at 15 fps) were 90.32%, 86.96%, and 91.67%, respectively, of the corresponding
radial artery puncture position doses. Without PPE, the organ-absorbed doses of the eye,
thyroid gland, and heart in the femoral artery puncture position (at 15 fps) were 90.11%,
94.00%, and 91.18%, respectively, of the corresponding radial artery puncture position. The
occupational organ absorbed doses exposed during angiography were not significantly
different according to puncture location.

Table 2. Monte Carlo N-particle code-simulation results of each exposure condition for the organ doses of the eyeball,
thyroid, and heart of cardiac operator.

Mode Puncture Position
Protection Device

Eyeball (mGy) Thyroid (mGy) Heart (mGy)

(Frames/s) (cm) Uncertainty (%) Uncertainty (%) Uncertainty (%)

15

Radial artery
100

Used 3.10E-04
0.40

4.60E-04
0.40

1.20E-04
0.40

Non used 9.10E-03
0.7

5.00E-03
0.7

3.40E-03
0.7

Femoral artery
120

Used 2.80E-04
0.7

4.00E-04
0.7

1.10E-04
0.7

Non used 8.20E-03
0.6

4.70E-03
0.6

3.10E-03
0.6

The organ-absorbed doses according to the exposure angle for the eye, thyroid gland,
and myocardium of the heart are listed in Table 3. All results were calculated with and
without PPE. The organ-absorbed doses according to puncture location (femoral and radial
artery) were averaged. When the organ-absorbed doses acquired at different irradia-
tion angles were normalized to the reference measurement at zero degrees, the occupa-
tional exposure dose increased for the RAO/CAUD position. The doses absorbed by the
heart at the LAO30/CRAN30, CRAN40, RAO30/CRAN30, RAO30/CAUD20, CAUD 39,
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LAO40/CAUD35, and LAO40 positions for fluoroscopy at non-wearing PPE conditions
were 150.65%, 135.30%, 90.23%, 79.22%, 84.38%, 86.30%, and 108.85% of the absorbed dose
at the zero-degree reference position, respectively. For wearing PPE, the corresponding
doses were 150.64%, 135.54%, 90.24%, 79.19%, 85.27%, 85.82%, and 108.84% of the absorbed
dose at the zero degrees reference position. The normalized angle-resolved organ-absorbed
doses for the eye, thyroid gland, and myocardium of the heart are presented in Table 4.

Table 3. The simulated occupational organ dose for cardiac angiography with and without PPE.

Mode
Rotation
(Degree)

Angulation
(Degree)

Average Radiation Dose
Non-Wearing PPE (mSv)

Average Radiation Dose
Wearing PPE (mSv)

Thyroid Eye Heart Thyroid Eye Heart

FS 0 0 8.16E-04 4.95E-04 2.72E-04 4.11E-05 3.08E-05 9.52E-06
CA LAO 30 CRAN 30 4.63E-04 3.38E-04 1.84E-04 2.39E-05 1.93E-05 6.68E-06
FS LAO 30 CRAN 30 1.03E-03 7.41E-04 4.09E-04 5.21E-05 4.62E-05 1.44E-05
CA 0 CRAN 40 2.38E-04 1.55E-04 9.42E-05 1.33E-05 1.05E-05 3.60E-06
FS 0 CRAN 40 1.02E-03 6.84E-04 3.68E-04 4.78E-05 3.94E-05 1.22E-05
CA RAO 30 CRAN 30 3.16E-04 1.81E-04 1.11E-04 1.59E-05 1.09E-05 3.85E-06
FS RAO 30 CRAN 30 7.03E-04 3.97E-04 2.45E-04 3.55E-05 2.49E-05 8.56E-06
CA RAO 30 CAUD 20 2.56E-04 3.28E-05 9.68E-05 1.44E-05 1.33E-06 3.74E-06
FS RAO 30 CAUD 20 5.75E-04 7.33E-05 2.15E-04 2.90E-05 2.68E-06 7.63E-06
CA 0 CAUD 39 2.60E-04 2.21E-05 1.04E-04 1.21E-05 1.17E-06 3.37E-06
FS 0 CAUD 39 5.76E-04 4.83E-05 2.32E-04 1.98E-05 2.06E-06 5.63E-06
CA LAO 40 CAUD 35 2.56E-04 1.82E-04 1.05E-04 1.29E-05 1.09E-05 3.64E-06
FS LAO 40 CAUD 35 5.74E-04 3.99E-04 2.33E-04 3.43E-05 2.94E-05 9.52E-06
CA LAO 40 0 3.35E-04 2.47E-04 1.33E-04 2.02E-05 1.55E-05 5.05E-06
FS LAO 40 0 7.44E-04 5.42E-04 2.96E-04 3.75E-05 3.39E-05 1.04E-05
CA 0 CRAN 30 4.58E-04 3.10E-04 1.65E-04 2.14E-05 1.79E-05 5.96E-06

Simulated organ dose 8.62E-03 4.85E-03 3.26E-03 4.31E-04 2.97E-04 1.14E-04

Table 4. The simulated occupational organ dose ratio according to rotation and angulation degree of the X-ray tube
(zero-degree angle reference) with and without PPE condition.

Mode Rotation
(Degree)

Angulation
(Degree)

Average Radiation Dose
Non-Wearing PPE (mSv)

Average Radiation Dose
Wearing PPE (mSv)

Thyroid Eye Heart Thyroid Eye Heart

FS

0 0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
LAO 30 CRAN 30 126.24% 149.70% 150.64% 126.92% 149.84% 150.81%

0 CRAN 40 125.14% 138.18% 135.54% 116.32% 127.76% 128.22%
RAO 30 CRAN 30 86.14% 80.10% 90.24% 86.36% 80.68% 89.91%
RAO 30 CAUD 20 70.45% 14.80% 79.19% 70.52% 8.69% 80.19%

0 CAUD 39 70.57% 9.76% 85.27% 48.11% 6.69% 59.12%
LAO 40 CAUD 35 70.39% 80.61% 85.82% 83.43% 95.45% 100.00%
LAO 40 0 91.23% 109.39% 108.84% 91.35% 110.06% 109.25%

When replicating the X-ray exposure conditions used for the simulation, the dose
area product and air kerma of the angiography device increased in proportion to the X-ray
exposure conditions (i.e., tube voltage, current, and exposure time). The results of the dose
area product and air kerma are listed in Table 5.
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Table 5. The dose-report for cardiac angiography.

Mode Rotation (Degree) Angulation (Degree) Dose Area Product (Gy·cm2) Air Kerma (mGy)

FS 0 0 0.48 2.01
CA LAO 30 CRAN 30 0.12 0.50
FS LAO 30 CRAN 30 0.47 1.91
CA 0 CRAN 40 0.13 0.52
FS 0 CRAN 40 0.76 3.15
CA RAO 30 CRAN 30 0.24 1.01
FS RAO 30 CRAN 30 0.55 2.27
CA RAO 30 CAUD 20 0.10 0.42
FS RAO 30 CAUD 20 0.49 1.97
CA 0 CAUD 39 0.15 0.59
FS 0 CAUD 39 0.54 2.25
CA LAO 40 CAUD 35 0.24 1.01
FS LAO 40 CAUD 35 0.43 1.82
CA LAO 40 0 0.09 0.39
FS LAO 40 0 0.39 1.59
CA 0 CRAN30 0.10 0.42

4. Discussion

Factors affecting the occupational dose in cardiology include frame rate, image am-
plification, beam collimation, procedure time, and diagnostic and working projection [12].
Analyzing the simulated occupational organ-absorbed dose reveals that, in comparison
with the radial artery puncture procedure, the average doses received during the femoral
artery puncture procedure were reduced by 8.85% and 9.75% with and without PPE, re-
spectively. Depending on the intubation location, the distances between the operator and
the patient in the femoral and radial artery puncture procedures were 120 cm and 100 cm,
respectively, with the reduction in radiation exposure by distance calculated as 30.5%. The
difference in the occupational dose according to the puncture position calculated by the
simulation study was less than that calculated by simply considering the difference in
distance, indicating that the location of the intubation does not have a significant impact
on the occupational dose. Moreover, these results indicate that treatment time, which
can vary according to the proficiency of the operator, is a major factor in determining the
occupational dose assuming equivalent equipment and clinical environment [13].

The simulated absorbed organ dose was highest for the thyroid gland, followed by the
eye, then the heart, indicating that the head of the operator is more vulnerable to scattered
radiation than other body parts. Previous studies have reported increased instances of
brain and neck cancer in operators performing intervention surgery relative to surgeons
performing other procedures. These studies show that instances of brain cancer in operators
performing interventional procedures are concentrated in the left side of the brain, with
this imbalance suggesting a causal relationship to occupational radiation exposure, as the
left side of the head receives greater exposure to scattered radiation than the right side
during interventional procedures [14–16].

In terms of irradiation angle, both puncture procedures showed an identical trend,
with the organ-absorbed dose highest for the LAO30/CRAN30 position and decreasing
successively for the CRAN40, LAO40, RAO30/CRAN30, LAO40/CAUD35, CAUD39, and
RAO30/CAUD20 positions. The major gantry angles that increased the occupational dose
were the LAO and CRAN positions; in studies using dose-area products, such as that by
Kuon et al., the increase of scattered radiation according to the irradiation angle was the
same trend, tending to be highest at the LAO angle, with no significant difference reported
between the cranial and caudal angles [17]. These results indicate that the occupational
dose could be affected by reducing treatment times at critical angles, such as the LAO,
which could achieve a significant dose reduction effect relative to other angles. The dose
reduction for the thyroid gland, eye, and heart at the LAO30/CRAN30 angle can be
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higher by factors of 1.87, 15.7, and 1.80, respectively, relative to the CAUD39 angle when
comparing femoral and radial artery puncture procedures.

We simulated the specific angiography device, Philips Allura Xper FD20, and the
copper filtration was not implanted in the device. The low-energy scattered X-ray is a
major factor for increasing patient dose [18]. When filtration for low-energy X-ray is added,
the occupational dose can be reduced by reducing scattered radiation [19].

In this study, the occupational dose was calculated with the angles and the exposure
condition used the coronary angiography (CAG) procedures. The CAG procedures using
radiation have found widespread application in the diagnosis of cardiovascular disease
with increased incidence of chronic disease. The coronary lesions found by CAG procedures
are treated with percutaneous coronary intervention (PCI) procedures by inserting balloon
and stent and the radiation exposure time is depending on the location or severity of the
lesion [20]. The PCI procedures are an extension of the CAG procedures, and the angular
occupational dose is applicable to the PCI procedures.

The latest angiography systems provide the dose area product and air kerma, allowing
the operator to estimate the patient dose indirectly, with the patient information saved
using DICOM. The relationship between air kerma and the dose absorbed by the patient has
already been proven by calculating the conversion factor through phantom studies [21,22].
We derived a conversion factor for the angular dependency of the occupational dose using
the air kerma value provided by the dose report (see Table 6). Consequently, we can check
the occupational dose by calculating the patient dose and conversion factor and develop
an occupational radiation management system with patient doses stored in DICOM.

Table 6. The conversion factor for patient air kerma to occupational organ dose in cardiac angiography.

Mode Rotation
(Degree)

Angulation
(Degree)

Average Radiation Dose
Non-Wearing PPE (mSv)

Average Radiation Dose
Wearing PPE (mSv)

Thyroid Eye Heart Thyroid Eye Heart

FS 0 0 4.06E-04 2.46E-04 1.35E-04 2.04E-05 1.53E-05 4.74E-06
CA LAO 30 CRAN 30 9.26E-04 6.76E-04 3.68E-04 4.78E-05 3.86E-05 1.34E-05
FS LAO 30 CRAN 30 5.39E-04 3.88E-04 2.14E-04 2.73E-05 2.42E-05 7.54E-06
CA 0 CRAN 40 4.58E-04 2.98E-04 1.81E-04 2.56E-05 2.02E-05 6.92E-06
FS 0 CRAN 40 3.24E-04 2.17E-04 1.17E-04 1.52E-05 1.25E-05 3.87E-06
CA RAO 30 CRAN 30 3.13E-04 1.79E-04 1.10E-04 1.57E-05 1.08E-05 3.81E-06
FS RAO 30 CRAN 30 3.10E-04 1.75E-04 1.08E-04 1.56E-05 1.10E-05 3.77E-06
CA RAO 30 CAUD 20 6.10E-04 7.81E-05 2.30E-04 3.43E-05 3.17E-06 8.90E-06
FS RAO 30 CAUD 20 2.92E-04 3.72E-05 1.09E-04 1.47E-05 1.36E-06 3.87E-06
CA 0 CAUD 39 4.41E-04 3.75E-05 1.76E-04 2.05E-05 1.98E-06 5.71E-06
FS 0 CAUD 39 2.56E-04 2.15E-05 1.03E-04 8.80E-06 9.16E-07 2.50E-06
CA LAO 40 CAUD 35 2.53E-04 1.80E-04 1.04E-04 1.28E-05 1.08E-05 3.60E-06
FS LAO 40 CAUD 35 3.15E-04 2.19E-04 1.28E-04 1.88E-05 1.62E-05 5.23E-06
CA LAO 40 0 8.59E-04 6.33E-04 3.41E-04 5.18E-05 3.97E-05 1.29E-05
FS LAO 40 0 4.68E-04 3.41E-04 1.86E-04 2.36E-05 2.13E-05 6.54E-06
CA 0 CRAN 30 1.09E-03 7.38E-04 3.93E-04 5.10E-05 4.26E-05 1.42E-05

5. Conclusions

Occupational radiation exposure is equally important as the patient dose in cardiac
intervention. In cardiac interventional procedures, the occupational dose stems from scat-
tered radiation, and it can be restricted via a combination of wearing PPE, minimizing the
operating time, and careful irradiation angle selection [23,24]. In this study, the sensitivity
of the occupational dose to the intubation location and irradiation angle were investigated,
with limiting the procedure time at critical irradiation angles, such as LAO, shown to be
the most effective method for reducing the exposure to scattered radiation. Significantly,
we derived a conversion factor for calculating the dose received by the operator according
to the dose delivered to the patient, which can be applied for improved occupational dose
management.
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