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The zinc metal anode is the most promising metal anode material in aqueous

battery systems due to its low cost and high theoretical capacity. However, it still

undergoes irreversible reactions such as premature failure of the dendrites/

dead Zn during Zn stripping/plating, resulting in the inferior cycling stability of

the Zn-based full cell. Here, we demonstrate a facile 3D-Cu alloy coating to

improve Zn reversibility by providing spatial voids to accommodate the plated

Zn to form dendrite-free morphology. Combining the larger 3D surface and the

alloying–dealloying process, the Zn anode reactions exhibit enhanced reaction

kinetics tomeet large operating current densities. The 3D-Cu-coated Zn anode

can deliver improved cycling stability for 350 h under a large areal capacity of

3 mAh cm−2. It also enables MnO2–Zn at the full cell level to achieve a specific

capacity of 205 mAh g−1 and longer cycling for 350 cycles with 87.4% retention

of the initial capacity. This research provides a new pathway to achieve high

reversible Zn metal chemistry.
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1 Introduction

High safety and low cost are the basic requirements for energy storage applications (Tang

et al., 2019;Mo et al., 2020; Lv et al., 2022).However, commercial lithium-ion batteries (LIB) still

face safety risks by utilizing organic electrolytes and the high cost of Li elements. Aqueous

battery systems are a promising alternative for energy storage fields (Posada et al., 2017; Liang

et al., 2021; Yang et al., 2022a), where Zn-ion batteries are widely investigated candidates by

using Zn metal as the anode due to its high theoretical capacity (5855 Ah L−1 and 820 Ah kg−1)

and low redox potential (0.76 V vs. the standard hydrogen electrode) (Zeng et al., 2019; Liu

et al., 2020a; Chao et al., 2020; Yang et al., 2021; Yang et al., 2022b).

As for the Zn anode, improving its reversibility is very important to prolong the cycling

stability of the zinc battery (Ma et al., 2020; Hao et al., 2021; Liang and Zhi, 2021). At present,

there are three general strategies to promote Zn anode reversibility for zinc anode protection.
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The first is electrolyte engineering, generally by adding organic

solvents/additives (Guo et al., 2021a; Cao et al., 2021; Hao et al.,

2021), which is effective and feasible for scalable production.

However, the introduction of organic solvents/additives may

violate the intrinsic safety performance of aqueous electrolytes.

The second is applying a 3D current collector by increasing the

surface areas for Zn deposition to avoid the accumulation of Zn

growth to formZn dendrites (Yang et al., 2020; Guo et al., 2021b; Fan

et al., 2021; Ni et al., 2022). However, it might lose the volumetric

energy density of Zn-based batteries at the full-cell level. The third is

adopting surface-protective coatings, where the coatings can be

insulative inorganics and conductive metals/alloys. As for the

insulative coatings, such as calcium carbonate (Kang et al., 2018)

and titanium oxide (Li et al., 2021), even though they can hinder the

direct generation of hydrogen evolution reactions (HERs), they will

increase the interface resistance for poor power density with large

voltage polarizations, particularly at high current densities. On the

other hand, conductive metal/alloy coatings are verified to be

conducive to reversible Zn not only by providing a larger specific

surface area but also by increasing corrosion barriers. For example,

the indium (In)-based InZn (Xiao et al., 2022), bismuth (Bi)-based

BiZn (Wang et al., Forthcoming 2022), and gradient CuZn (Liang

et al., 2022) alloy coatings for the Zn metal anode (ZMA) have been

demonstrated to inhibit Zn dendrite formation and the HER at the

same time during long-term Zn stripping/plating cycling. Thus,

based on the excellent performance of conductive alloy coatings

(Liu et al., 2021), it is highly desirable to explore novel Zn-based alloy

anodes with highly compatible and stable electrode/electrolyte

interfaces for high-performance AR-ZMBs.

In this report, we apply a feasible strategy via a chemical

substitution reaction in situ to build a protective 3D-CuZn alloy

layer. It is found that the reversibility of ZMA is largely improved by

not only inhibiting Zn dendrites but also the HER issues. In

particular, such improvement is attributed to the formation of a

3D framework of the protective ZnCu alloy layer to accommodate

the deposited Zn, leading to dendrite-free morphology. In addition,

the dendrite-free Zn morphology would in turn suppress hydrogen

evolution, further contributing to the cycling stability of ZMA.

Compared to the bare ZMA, the 3D-Cu-coated Zn anode has

delivered 350-h cycling stability with a high areal capacity of

3 mAh cm−2 at a current density of 3 mA cm−2. When paired

with MnO2 cathodes, the full cells can deliver a capacity of

242mA h g−1 at 1 mA cm−2, and the capacity retention is 87.4%

after 350 cycles at a high current density of 5 mA cm−2. These results

indicate the effectiveness of the 3D-CuZn alloy coating for improving

highly stable Zn metal batteries.

2 Results

The 3D-Cu-coated Zn was in situ prepared by a facile

procedure by immersing bare Zn in 0.1 M CuSO4 solution,

FIGURE 1
Characterizations of 3D-Cu-coated electrodes and bare Zn. (A) SEM image and (B) magnified image from the marked-out region in (A). (C)
Cross-sectional SEM image of the 3D-Cu-coated electrodes. (D) XRD result of these two Zn electrodes. (E,F) XPS results on the depth etching
profiles of Zn and Cu, where the arrow points from the initial state to the final state throughout the etching process, respectively.
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while the Zn metal would get substituted by Cu2+ ions to produce

the ZnCu alloy phase (Chen et al., 2021; Xiao et al., 2022). It was

verified by the X-ray diffraction (XRD) results with the peak at

36.5° as the (222) peak of the Zn8Cu5 alloy phase (JCPDS: 025-

1228), verifying the formation of the ZnCu alloy (Figure 1A). On

the other hand, the geometric depth profiles of the X-ray

photoelectron spectroscopy (XPS) results revealed the shift of

the Zn 2p3/2 peak from a higher binding energy to lower values

(Figure 1B), while the intensity of Cu is increased but the binding

energy is barely shifted (Figure 1C). It might be a result from the

variations of the valence states of surficial Zn when alloying with

the Cu metal (Liang et al., 2022).

Furthermore, a scanning electron microscope (SEM) was

used to observe the morphology of bare Zn and ZnCu alloy-

coated Zn. On bare Zn, irregular defects/cracks existed

(Supplementary Figure S1), which can result in an uneven

electric field distribution during Zn deposition, promoting Zn

dendrite formation. There are spatial voids existing among the

nanoparticle shapes of the ZnCu alloy as the 3D frameworks of

CuZn on Zn, named 3D-Cu-coated Zn, which is conducive to

accommodating the deposited Zn to form dendrite-free

morphology (Liu et al., 2020b; Xie et al., 2020; Lu et al., 2021)

(Figures 1D,E). In addition, the enlarged surface area of 3D

frameworks can provide more contact areas for fast dynamics of

the Zn anode to meet large current densities. The contact angle of

bare Zn and 3D-Cu-coated Zn electrodes with 1 M ZnSO4

electrolyte was exhibited (Supplementary Figure S2). In

particular, the 3D-Cu-coated Zn featured superior wettability

with a contact angle of 33°, while the bare Zn electrode had a

contact angle of 84°, indicating better electrolyte affinity for fast

Zn-ion nucleation. The thickness of the 3D-CuZn coating is

about 3 μm according to the cross-sectional SEM (Figure 1F),

and it can provide sufficient space for the deposited Zn.

A set of electrochemical tests was conducted to study the

performance of the 3D-Cu-coated Zn by comparing it with the

performance of bare Zn without modification. First, there is a

significant difference between the cyclic voltammetry (CV)

curves of bare Zn and 3D-Cu-coated Zn in symmetric cell

configuration (Figure 2A), where there is a pair of redox

peaks for the 3D-Cu-coated Zn but absent for bare Zn. These

CV peaks can be attributed to the alloying–dealloying process

between the Zn metal and Cu metal, which is different from the

general plating/stripping process on bare Zn. Moreover, the

specific current density of 3D-Cu-coated Zn is about two-fold

larger than that of bare Zn, indicating better kinetics for Zn

plating/stripping on 3D-Cu-coated Zn. In addition,

FIGURE 2
Electrochemical performance of 3D-Cu-coated electrodes and bare Zn in symmetric cells. (A) CV results at a scanning rate of 5 mV s−1. (B) EIS
results of the symmetric cells at initial states and the inset is the equivalent circuit, where Rs represents electric resistance, and Rct is the charge
transfer resistance. (C) Tafel results of symmetric cells. (D) Plating/stripping results at 3 mA cm−2 with a capacity of 3 mAh cm−2. (E) Selected voltage
profiles to observe the short circuit of the cell based on bare Zn.
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electrochemical impedance spectroscopy (EIS) of the symmetric

cells also verified the facile and faster mass transfer with lower

charge transfer resistance of 153.5Ω for 3D-Cu-coated Zn, which

is much smaller than that of bare Zn as 447.8Ω (Figure 2B). The

initial resistances of these two cells are comparable, as shown in

Supplementary Table S1. Last, the Tafel profile was tested, and it

showed that the corrosive potential is F02D19 mV for 3D-Cu-

coated Zn, which is at a more positive potential than the bare Zn

electrode as −24 mV, exhibiting a higher barrier of CuZn for

corrosion and accommodating stable reaction processes against

corrosion with hydrogen evolution. The cathodic Tafel slope is

larger with 105.4 mV dec−1 for the 3D-Cu-coated Zn than

73.7 mV dec−1, featuring faster kinetics of the 3D-Cu-coated Zn.

To highlight the advantages of 3D-Cu-coated Zn, we used a

large surface capacity of 3 mAh cm−2 to test the stability of the

3D-Cu-coated Zn electrode, which can show a stability of 350 h.

On the other hand, for the bare Zn electrode, a short circuit

occurred in 153 h (Figure 2D). It shows that the coating is

beneficial to the cycle stability under large surface capacity.

The galvanostatic charging–discharging (GCD) curves of the

3D-Cu-coated Zn and bare Zn electrodes are shown in

Figure 2E, and the curve of the 3D-Cu-coated Zn electrode is

stable and consistent while it begins to fluctuate at the 77th cycle

for premature cell failure. In addition, the polarization voltage of

coating is 47 mV, while that of bare Zn is 85 mV, and the smaller

polarization voltage indicates the faster dynamics of the Zn

plating/stripping process (Figure 2E).

The morphology of the Zn anode at deposited states after

cycling for 20 cycles was characterized, and the surface and cross-

section images are shown in Figure 3. Dendritic Zn flake

morphology is formed for bare Zn, as shown on the top and

cross-sectional morphology, which can lead to the possibility of a

short circuit. On the other hand, the voids between Cu particles

of the 3D-Cu coating were filled by the deposited Zn, and there is

no Zn dendrite growth (Figures 3C,D). This shows that 3D Cu

coating inhibits dendrite growth.

The corresponding Zn plating processes on bare Zn and 3D-

Cu-coated Zn are proposed as shown in Figure 4. The Zn ions

would first nucleate at preferential spots on the bare Zn, such as

defects/cracks, and then accumulate to grow at these spots to

form dendrites. It would further promote the growth of Zn

dendrites due to a tipping effect by the concentrated electric

field (Figures 4A,B). On the other hand, the Cu nanoparticles can

serve as deposition sites to accommodate the deposited Zn in the

FIGURE 3
SEM images and the cross-sectional images of bare Zn and 3D-Cu-coated electrodes after deposition at 3 mAh cm−2. (A,B) Bare Zn electrode.
(C,D) 3D-Cu-coated electrodes.
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alloying process. In addition, the voids can accommodate Zn to

promote Zn dendrite-free morphology without Zn protrusion

(Figures 4C,D).

The full Zn–MnO2 cells were fabricated to test the

performance of these two Zn anodes. The 3D-Cu-coated Zn

anode exhibited a better rate of performance than bare Zn. In

particular, the specific capacity is 247 mAh g−1 at a lower current

density of 1 mA cm−2 for 3D-Cu-coated Zn, and the capacity is

151 mAh g−1 at a high current density of 10 mA cm−2. On the

other hand, the capacity of bare Zn is comparable to that of the

3D-Cu-coated Zn anode at 241 mAh g−1 at a low current density

of 1 mA cm−2, but it is much smaller at 113 mAh g−1 at a high

current density of 10 mA cm−2. It indicates that the 3D-Cu

coating endows fast kinetics for the Zn anode at full-cell levels

due to the larger specific surface area and the fast alloying/

dealloying process. The corresponding GCD curves of these two

full cells are shown in Figure 5B, where the cell based on the 3D-

Cu-coated Zn was featured with smaller polarization voltage and

larger specific capacity. The origin of the smaller polarization of

GCD profiles of the full cell can be ascribed to the smaller

potential polarization of the Zn anode, where the 3D Cu

anode can provide faster kinetics with smaller polarization, as

evidenced by Figure 2B. Finally, during the long cycle of the

whole battery, the capacity of bare Zn dropped to 67.1% after

144 cycles, and there was a premature failure with a fluctuation in

Coulombic efficiency. This 3D-Cu-coated Zn anode can

demonstrate an initial capacity at 205 mAh g−1 and longer

cycling of 350 cycles with 87.4% retention of the initial

capacity (Figure 5C).

3 Discussion

In order to improve the reversibility of ZMA, 3D-Cu coating was

applied onto the Zn surface to act as an effective protective layer.

Unlike other conductive coatings, the Zn plating–stripping process

corresponds to the alloying–dealloying process, and there are

sufficient structural voids to provide enhanced contact areas

between the anode and the electrolyte, jointly improving the

reaction kinetics of ZMA. In addition, these voids can provide

space for the deposited Zn, which can largely inhibit the growth

of Zn dendrites to obtain dendrite-free morphology. The formation

of the Cu–Zn alloy also increases its corrosion potential. The

dendrite-free morphology and anti-corrosive property jointly

inhibit HERs together and improve ZMA’s reversibility.

Our findings provide new insights into the metal coating

strategy for ZMA, especially with the capability to proceed the

alloying–dealloying process with ZMA. Therefore, metals, such

as tin, In, and Bi, can be further applied as potential candidates

for metal coatings to improve Zn reversibility. This report can

FIGURE 4
Zn growth schematics of bare Zn and 3D-Cu-coated electrodes. (A,B) Bare Zn electrode. (C,D) 3D-Cu-coated electrodes.
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also provide guidance for the coating structure design of the

ZMA surface, and the efficient 3D structure of the designed 3D

metal coating is of positive significance for coating strategies.

4 Conclusion

A simple method has been developed to stabilize ZMA by

coating a layer of the CuZn alloy on the surface of the Zn anode.

The as-obtained 3D-Cu coating structure can provide many voids

which can endow dendrite-free morphology to promote more stable

reversibility and cyclic stability of ZMA.Moreover, such a coating can

accommodate the alloying–dealloying process to endow faster

kinetics. The reversibility and fast kinetics of the zinc anode can

correspond to the stability of the whole battery. The metal coating

strategy provides a model for other metal–alloy coatings to further

achieve more stable Zn anode reversibility.
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