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ABSTRACT

Objective: To assess whether an individual’s degree of psychological resilience can be determined from physio-

logical metrics passively collected from a wearable device.

Materials and Methods: Data were analyzed in this secondary analysis of the Warrior Watch Study dataset, a

prospective cohort of healthcare workers enrolled across 7 hospitals in New York City. Subjects wore an Apple

Watch for the duration of their participation. Surveys were collected measuring resilience, optimism, and emo-

tional support at baseline.

Results: We evaluated data from 329 subjects (mean age 37.4 years, 37.1% male). Across all testing sets,

gradient-boosting machines (GBM) and extreme gradient-boosting models performed best for high- versus

low-resilience prediction, stratified on a median Connor-Davidson Resilience Scale-2 score of 6 (interquartile

range¼5–7), with an AUC of 0.60. When predicting resilience as a continuous variable, multivariate linear mod-

els had a correlation of 0.24 (P¼ .029) and RMSE of 1.37 in the testing data. A positive psychological construct,

comprised of resilience, optimism, and emotional support was also evaluated. The oblique random forest

method performed best in estimating high- versus low-composite scores stratified on a median of 32.5, with an

AUC of 0.65, a sensitivity of 0.60, and a specificity of 0.70.

Discussion: In a post hoc analysis, machine learning models applied to physiological metrics collected from wear-

able devices had some predictive ability in identifying resilience states and a positive psychological construct.

VC The Author(s) 2023. Published by Oxford University Press on behalf of the American Medical Informatics Association.
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Conclusions: These findings support the further assessment of psychological characteristics from passively col-

lected wearable data in dedicated studies.
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LAY SUMMARY

Mental health issues are common however resources for their evaluation and treatment are limited. Digital technologies,

such as wearable devices, provide a possible means to automate mental health assessments. Resilience, or an individual’s

ability to cope with adversity, is an important psychological feature which can improve stress and psychological well-being.

The goal of this study is to see whether we are able to predict a person’s degree of resilience, and other psychological fea-

tures, using the information collected from wearable devices. Using machine learning algorithms, we evaluated the changes

in the time between each heartbeat, or heart rate variability, which is collected from wearable devices. Heart rate variability

reflects the body’s nervous system activity and its physical response to stress. We found that it is feasible to determine a

person’s degree of resilience, as well as a combination of his or her resilience, optimism, and emotional support, based on

an individual’s heart rate variability. Further studies are needed to build on this work and further evaluate these findings.

BACKGROUND AND SIGNIFICANCE

Mental health issues are common and account for 13% of the bur-

den of global disease, with a quarter of the population at some point

suffering from psychological illness. The World Health Organiza-

tion considers psychological disorders to be the leading cause of dis-

ability in the world, constituting the largest single source of global

health economic burden.1,2 However, mental health resources are

limited with wide disparities in access across geography and socioe-

conomic status.3 Access is further limited by the need for in-person

assessment or the completion of validated mental health surveys. A

better understanding of who is at psychological risk is needed. The

growth of digital technology presents an opportunity to improve

access to mental health services through telemedicine, smartphone

applications that monitor well-being, and wearable technology.4

Wearable devices collect continuous physiological data remotely

and without active input from users.5 Interrogation of these data

through machine learning techniques offers a novel means to auto-

mate mental health assessments. This approach has been explored in

a limited number of psychological conditions, including anxiety,

emotional state transitions, and loneliness, in often small studies

that include both wearable and mobile phone data.6–10 Resilience,

or an individual’s ability to cope with and recover from adversity, is

an area of growing interest, especially as the coronavirus disease

2019 (COVID-19) pandemic has increased psychological distress.11

Resilience mitigates stress and improves psychological well-being. It

impacts physical health, particularly in chronic disease states, where

it reduces morbidity and healthcare utilization.12,13 Resilience moni-

toring and modification have been employed in the patient-centered

medical home model of care and by resilience-building health com-

panies. Thus, resilience is an attractive parameter to monitor pas-

sively and remotely. Complementary to resilience as a sole

parameter, is the increasing emphasis placed on positive psychologi-

cal constructs as a buffer against negative psychological effects.14,15

These constructs foster a resilient mindset, or resilient cognitions

that facilitate creating a proactive way of addressing challenges.16

Other psychological features, such as optimism and emotional sup-

port, which are complementary to resilience have direct links to

healthy behaviors and can be used to create a positive psychological

composite of the resilient mindset.15,17 Optimism, defined as posi-

tive expectations about the future, is modifiable and is associated

with improved emotional regulation, mood, confidence, adaptive

coping mechanisms, and higher resilience.18–21 Emotional support,

or an individual’s support through social ties with others, enhances

psychological well-being, reduces depression, improves stressor

response, and fosters resilience.22 Thus, the ability to passively eval-

uate positive psychological constructs using wearable devices is also

of interest in light of their important effects on well-being.

The autonomic nervous system (ANS), a primary component of

the physiological stress response, can be assessed by measuring heart

rate variability (HRV), the small time differences between each

heartbeat.23 Prior studies have demonstrated that psychological fea-

tures such as resilience, impact the physiological stress response,

with high vagally mediated HRV associated with higher resilience

scores.24–27 Similarly, optimism and emotional support have been

shown to impact ANS function and increase parasympathetic

tone.28 Our group extended these observations using wearable

device data to demonstrate that average circadian features of HRV,

across the study population, were significantly different based on

one’s degree of resilience and emotional support.29 Building on these

observations that physiological parameters differ according to psy-

chological state, we sought to examine whether machine learning

algorithms can determine an individual’s resilience by examining

physiological markers collected from Apple Watches. This extends

our prior population-level findings to the individual person, and

using machine learning algorithms lays the framework for personal-

ized psychological care and a novel approach to evaluate an individ-

ual’s psychological well-being that can be applied in the clinical

setting.

OBJECTIVES

We present here a secondary analysis of the Warrior Watch Study

dataset.29–31 The primary aim of this secondary analysis is to deter-

mine whether an individual’s degree of resilience can be ascertained

from physiological metrics passively collected from a wearable

device. Our secondary exploratory aim used the same approach. It

evaluated whether a positive psychological construct comprised of a

composite of optimism, emotional support, and resilience assess-

ments, can be determined. This was explored given the ability of
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such positive constructs to buffer against negative psychological

effects, as described above.

MATERIALS AND METHODS

Study design and procedures
The Warrior Watch Study was an observational cohort study that

enrolled healthcare workers (HCWs) across 7 hospitals in New

York City (The Mount Sinai Hospital, Morningside Hospital,

Mount Sinai West, Mount Sinai Beth Israel, Mount Sinai Queens,

New York Eye and Ear Infirmary, and Mount Sinai Brooklyn). Par-

ticipants had to be an employee at one of the hospitals, have an

iPhone Series 6 or higher, have an Apple Watch Series 4 or 5, and be

�18 years of age to enroll. Employees with underlying chronic dis-

eases or medications that impact ANS function were excluded from

enrollment in the study. The study was approved by the Mount Sinai

institutional review board.

The initial objective of the Warrior Watch Study was to deter-

mine if wearable-based physiological signatures can identify and

predict severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) infections and to evaluate longitudinal stress in HCWs. Par-

ticipants downloaded our Warrior Watch app to their smartphones

and used it to complete surveys at enrollment and longitudinally.

Subjects were recommended to wear their Apple Watch for at least

8 h per day for the duration of the study. Validated surveys that

assessed psychological well-being were completed at baseline. The

Connor-Davidson Resilience Scale-2 (CD-RISC-2) is a 2-question

survey that measures resilience, with higher scores reflecting higher

resilience.32–34 The CD-RISC scales represent the most validated

resilience scales.35 The 2-item version includes item 1 and item 5 of

the CD-RISC-10, which each has a 5-point Likert scale, and repre-

sents the 2 concepts felt to best define resilience-adaptability and the

ability to “bounce back.” The Patient-Reported Outcomes Measure-

ment Information System (PROMIS) emotional support question-

naires are validated surveys which assess individuals’ emotional

support by inquiring about whether a person has someone who lis-

tens to them and with who they can discuss their feelings.36,37 The

2-item version is scored from 2 to 10 points, with higher scores cor-

relating with higher support. The Life Orientation Test assesses opti-

mism and is composed of 6 questions, graded on a 5-point Likert

scale, that ask subjects whether he or she expects things to go

wrong, whether more good is expected compared to bad, and

whether the best is expected in uncertain times.18,38,39 It is consid-

ered the gold standard for assessing optimism and has a high score

of 24, which reflects greater optimism.40 Based upon our observa-

tion that circadian features of HRV differ based on the degree of

resilience and emotional support, we performed a post hoc analysis

of the data collected from the Warrior Watch Study to evaluate the

study objectives listed above.29

Wearable device
The Apple Watch Series 4 or 5 was worn by subjects capturing

heartrate and HRV, which is a measure of the small-time difference

between each heartbeat. Values were transmitted via Bluetooth to a

subject’s iPhone. Apple Watch’s photoplethysmogram sensor con-

tains a green light-emitting diode with a photodiode creating time

series peaks.41 During 60-s recording periods, the Apple Health App

can calculate HRV, using these time series peaks as the standard

deviation of NN intervals (SDNN). This is a time domain index

reflecting sympathetic and parasympathetic nervous activity.23 Each

SDNN datapoint is calculated from inter-beat intervals. Apple’s pro-

prietary algorithms incorporate photoplethysmography and acceler-

ometer information to clean the data prior to processing for the

calculation of SDNN measurements. HRV measurements are

obtained sporadically throughout the day by the Apple Watch and

are collected through the ehive app. The Apple Watch has been used

for the study of health and disease, with several studies validating

the heart rate and HRV measurements derived from the device.42–44

Statistical analysis
Study population

The cohort’s demographic and clinical history was summarized as

frequencies and proportions. Participants were split into 2 groups

based on the median cutoff of resilience, defined as low versus high

resilience. Demographics were compared with the Chi-squared test

for categorical and independent variables and the t-test for continu-

ous variables.

HRV modeling

The first 14 days of HRV data recorded from the Apple Watch after

enrollment were included for analysis. For participants with a docu-

mented positive SARS-CoV-2 infection, data points at least 14 days

prior to infection were used. As described previously in detail,30 sev-

eral parameters that characterize HRV patterns were extracted using

a cosinor model. In brief, for each participant, a cosinor.lm function

from the cosinor R package was applied to model daily circadian

rhythm over a 24-h period.45 Several parameters were then calcu-

lated: MESOR (M, the midline statistics of rhythm), Amplitude

(Amp, a measure of half of the extent of variation within a day),

Acrophase (Acr, a measure of the time of day at which overall high

values recur), and a time of day at which the single highest Ampli-

tude was observed (T_Amp).

A cosinor modeling approach was used to evaluate the relation-

ship between HRV parameters and resilience on a population level

using fit.cosinor.mixed function from the cosinoRmixedeffects R

package.46 In this mixed-effects model, HRV was an outcome, and

dependent variables were body mass index (BMI), age, and an inter-

action term of biological sex (male vs female) with resilience (high

vs low, based on the median cutoff), with a random intercept for

each participant.

Machine learning

HRV variables (M, Amp, Acr, T_amp), resting heart rate (RHR)

(minimum, maximum, mean, standard deviation), and basic demo-

graphics (age, sex, BMI) were used to determine resilience. To create

a positive psychological construct, resilience was combined with the

emotional support (“ReEm”) and optimism (“OReEm”) metrics to

represent a new composite outcome. As part of our feasibility explo-

ration, this composite index followed an implicit approach, combin-

ing each scales raw scores. Resilience (CD-RISC-2) and OReEm

were considered as continuous or binary (split by the median) val-

ues. For all modeling, data were split 3:1 into training and testing

sets. Model selection and optimization were done using only data

from the training set and then evaluated on the “unseen” test set.

For the binary outcome, first, features were selected using either

BORUTA or Recursive Feature Elimination (RFE) method.47 BOR-

UTA iteratively removes features that are statistically less predictive

than random noise, referred to as a “shadow.” RFE first fits a model

using all predictors, which are then iteratively eliminated, and the

model is re-evaluated until the best combination is found. Since, for
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both algorithms, the original set of predictors can produce different

results; we have evaluated feature selection using HRV and demo-

graphics, with or without RHR variables. Then, for each set of pre-

dictors, 12 distinct algorithms were trained (glmnet, bayesglm, rf,

ORFridge, xgbTree, rpart, knn, lda2, gamSpline, gamboost, nnet,

gbm). The training was done using 10-fold cross-validation for

hyperparameter tuning, maximizing the area under the curve-

receiver operating characteristic curve (AUC-ROC). Models’ per-

formance was evaluated based on Accuracy, AUC, Sensitivity

(recall), Specificity, Negative and Positive Predictive Value (NPV,

PPV, respectively), Kappa, F1, and Brier metrics.

For the continuous resilience outcomes, 3 sets of predictors were

considered: HRV alone, HRV with demographics, and HRV with

demographics and RHR. For each set, 26 algorithms were trained

(lm, ridge, lasso, bayesglm, glmboost, gaussprLinear, svmLinear,

kernelpls, pls, spls, bridge, BstLm, cubist, enet, icr, lars, M5Rules,

rqnc, nnls, penalized, pcr, rqlasso, relaxo, rvmLinear, spikeslab,

brnn), using 10-fold cross-validation and minimizing the root mean

square error (RMSE). Model performance was evaluated by RMSE,

R-squared, and a correlation of the observed and predicted

outcome.

RESULTS

While our manuscript assessing psychological resilience and HRV

changes included 361 subjects, a total of 329 subjects were enrolled

between April 29 and September 29, 2020, in this observational

study analysis, in whom baseline psychological assessments and

14 days of HRV data were available. The mean age of participants

was 37.4 years, with 122 (37.1%) subjects being male (Table 1).

The median CD-RISC-2 score was 6 (interquartile range [IQR] ¼ 5–

7). The median emotional support score was 8 (IQR¼6–8), and the

median optimism score was 20 (IQR¼17–23). Based on the median

CD-RISC-2 score, participants were stratified into “low” (n¼241)

and “high” (n¼88) resilience groups (Table 1). Subjects on average

had 67 HRV measurements available over the study period (95%

confidence interval [CI] 59–75). This corresponds to an average of

7.6 HRV readings per day (95% CI 6.7–8.3).

A cosinor mixed-effects model evaluating the relationship of

HRV (SDNN) features with resilience demonstrated significantly

higher acrophase in the low-resilience group (P< .001). When strati-

fied by sex, a significantly lower acrophase of the circadian pattern

of SDNN was noted for both males (P¼ .038) and females

(P< .001) with high compared to low resilience (Figure 1). In males,

a significant difference in the amplitude (P¼ .006) was observed in

low compared to high resilience.

Determination of high and low resilience
The data were split such that 75% (n¼247) of the data were

included in the training set, and 25% (n¼82) was included in the

testing set. This produced a more realistic estimate of model per-

formance in the “unseen” set of participants. Several different

machine learning models were explored to identify whether a subject

has high compared to low resilience, defined based on the median

CD-RISC-2. Twelve models (Supplementary Table S1) were

assessed, with gradient-boosting machines (GBM) and extreme gra-

dient boosting (xgbTree) performing best (Figure 2A and B). While

a high AUC was observed in training (0.87) for xgbTree, in testing,

it dropped to 0.60. The GBM model had more comparable but only

moderate performance in training and testing, with AUCs of 0.67

and 0.60, respectively. Both models had higher Specificity/Positive

Predictive Value than Sensitivity/Negative Predictive Value (ie, bet-

ter at predicting high resilience). Both models had 2 features in com-

mon, including sex and HRV amplitude, while xgbTree also had age

and BMI.

Determination of resilience as a continuous variable
Resilience was evaluated as a continuous variable and explored

using 26 machine learning models to understand the correlation of

predicted compared to actual resilience in training and testing sets.

Interestingly, all models had consistent performance (Supplementary

Table S2), with all of them having low-performance estimates. For

example, a multivariable linear model (LM) in training had a corre-

lation of 0.33 (P< .001) and RMSE of 1.34, which dropped to a

correlation of 0.24 (P¼ .029) and RMSE of 1.37 in the testing data

(Figure 2C). The features utilized by the best-performing LM

included sex, age, BMI, HRV mesor, and amplitude (Figure 2D).

Based on our observation of an inflection point at a CD-RISC-2

score of 5 in the continuous predictive analysis (Figure 2C), we fur-

ther evaluated the predictive ability to characterize high and low

resilience based on this value instead of the median. Twelve models

were explored (Supplementary Table S3). Again, GBM and xgbTree

were best at determining high versus low resilience. However, it was

not better than using the median CD-RISC-2 score (Figure 2E and

F).

Determination of a positive psychological construct
To evaluate a positive psychological construct and increase the

numerical spread of values for analysis, we further assessed whether

the predictive ability of a machine learning algorithm is improved

with the addition of other baseline scores assessing psychological

features. Optimism and emotional support assessments were added

to resilience scores (OReEm). This cumulative score had a median

and mean of 32.5 and 32.1 (SD¼5.57), respectively (Figure 3A).

Twelve machine learning models were assessed (Supplementary

Table S4). GBM and oblique random forest method (ORFridge)

were best at determining high versus low scores in training, based on

the median (Figure 3B and C). However, the results were poor and

did not translate in testing, with GBM producing an AUC of 0.56,

an accuracy of 0.54, a sensitivity of 0.45, and a specificity of 0.67.

The ORFridge model was moderately effective and produced an

AUC of 0.65, with an accuracy of 0.64 and sensitivity and specificity

of 0.60 and 0.70, respectively. Both models included 7 features: sex,

age, BMI, HRV mesor, acrophase, amplitude, and time of highest

amplitude.

DISCUSSION

This study aimed to determine if machine learning models applied to

wearable device outputs can be trained to differentiate an individu-

al’s degree of resilience. To the best of our knowledge, this is the

first study to evaluate this approach and was motivated by our pre-

vious observation of differences in resilience tertials and HRV met-

rics.29 This post hoc analysis of the Warrior Watch dataset

produced multiple models with AUC’s that ranged from low to fair

in their predictive ability. However, this demonstrates that it is feasi-

ble to assess these psychological features via passively collected

wearable metrics and that dedicated studies are warranted to further

explore this approach.
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There is growing interest in leveraging wearable technology for

the management of health and disease. Limited access to mental

health services makes psychological and well-being assessment an

attractive area for passive monitoring. There have been limited stud-

ies evaluating wearable or mobile data for the assessment of mental

health. Shaukat-Jali et al9 demonstrated that subclinical social anxi-

ety could be detected in 12 subjects using physiological data col-

lected from wearable devices during speech tasks meant to provoke

anxiety. Sultana et al6 leveraged a publicly available data set com-

prised of mobile and wearable data from 18 individuals to demon-

strate that transitions in emotional states can be detected. In a larger

study of 160 subjects, Doryab et al7 used Fitbit and mobile phone

data to assess loneliness in college students. Data collected include

sleep and activity data, as well as smartphone metrics such as screen

status, call logs, and location data. They found that machine learn-

ing models reliably detected loneliness. Along similar lines of explo-

ration, Sano et al8 evaluated the survey, diary, wearable, and mobile

phone usage data in 201 college students. Machine learning algo-

rithms applied to this multimodal data were able to identify objec-

tive features that could classify self-reported stress and mental

health groups. Sükei et al10 evaluated mobile phone data and wear-

able data, if available, from 943 people in a previously collected

dataset. They demonstrated the feasibility of using machine learning

models for predicting emotional states.

While these prior works relied on multimodal data sources, our

approach was unique in our interrogation of only passively collected

watch data. The ability to determine psychological states from a sin-

gle data source that does not rely on a second device (ie, Cellphone)

can expand the applicability of these findings to those who do not

regularly use smartphones or those who do not wish to answer ques-

tions about their psychological well-being. Through our exploration

of machine learning models, we found GBM and xgbTree best at

determining resilience with an AUC of 0.60. Both models had higher

specificity and positive predictive value, which was 73% and 82%

for GBM, highlighting the ability to identify high resilience. The

Warrior Watch Study was designed to derive machine learning mod-

els to predict SARS-CoV-2 infections and understand longitudinal

psychological stress in HCWs. Its assessment of resilience relied on

the CD-RISC-2 survey, which is a commonly used 2 question survey

for assessing this feature. Our secondary analysis evaluated whether

positive psychological constructs, in this case comprised of opti-

mism, emotional support, and resilience could be passively deter-

mined from wearable device data. This resulted in a slight

improvement in our predictive ability, with the ORFridge model

being moderately effective at determining composite resilience, opti-

mism, and emotional support with an AUC of 0.65. The composite

measures slight improvement in AUC may mean that these addi-

tional psychological features should be explored in greater detail

using similar approaches.

Resilience is a complex psychological metric to assess, with dif-

fering definitions that encompass dimensional conceptualizations

that evaluate varying degrees of resilience, as well as longitudinal

viewpoints.48 The CD-RISC surveys, from which our 2-question ver-

sion was derived, have the best psychometric ratings.49 However,

assessments of other aspects of this construct need to be explored as

well. Building upon our observation that it is feasible to use physio-

logical metrics to determine an individual’s degree of resilience,

employment of these other and more detailed scales is needed and

may result in superior outcomes. Through the exploration of differ-

ent characterizations of resilience, improved physiological mapping

with wearables may be possible. Furthermore, our demonstration

that positive psychological constructs and the resilient mindset can

be evaluated via passively collected wearable data, may mean that

our approach can be applied more broadly to psychological assess-

ment and the evaluation of multidimensional psychological traits.

This is important in light of the ability of such positive constructs to

improve mental and physical health and their direct link to health

behavior.

Our findings extend prior observations of how the physiological

stress response or ANS reflects resilience state. While prior work

Table 1. Demographic and medical history

Overall Low resilience (�median) High resilience (>median) P-value

Sample size 329 241 88

Age, mean (SD) 37.4 (9.6) 37.3 (9.9) 37.6 (8.5) .814

Male sex (%) 122 (37.1) 71 (29.5) 51 (58.0) <.001

BMI, mean (SD) 25.6 (4.9) 25.8 (5.2) 25.0 (3.8) .182

BMI category (%) .330

Underweight 3 (0.9) 3 (1.2) 0 (0.0)

Normal 177 (53.8) 126 (52.3) 51 (58.0)

Overweight 91 (27.7) 65 (27.0) 26 (29.5)

Obese 58 (17.6) 47 (19.5) 11 (12.5)

Race (%)

Asian 70 (21.3) 49 (20.3) 21 (23.9) .589

South Asian 27 (8.2) 22 (9.1) 5 (5.7) .435

Black 38 (11.6) 29 (12.0) 9 (10.2) .796

Middle Eastern 10 (3.0) 8 (3.3) 2 (2.3) .899

Native American/Pacific Islander 4 (1.2) 2 (0.8) 2 (2.3) .625

White 119 (36.2) 82 (34.0) 37 (42.0) .226

Hispanic or Latino (%) 63 (19.1) 51 (21.2) 12 (13.6) .168

Smoking—never/rarely (%) 278 (84.5) 203 (84.2) 75 (85.2) .961

CD-RISC-2, mean (SD) 5.7 (1.4) 5.0 (1.1) 7.4 (0.5) <.001

Emotional support, mean (SD) 6.9 (1.5) 6.7 (1.6) 7.5 (1.2) <.001

Optimism, mean (SD) 19.5 (4.2) 18.8 (4.1) 21.4 (3.8) <.001

SD, standard deviation.
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demonstrated that high vagally mediated HRV had been associated

with higher resilience scores, this has been frequently based on single

time point assessments of autonomic function. Wearable technology

has enabled the frequent characterization of HRV and evaluation of

the ANS’s circadian pattern.50 Our group has demonstrated that

changes in ANS circadian function can be modeled to identify and

predict physiological events.29–31 To the best of our knowledge, our

characterization of how circadian changes in autonomic function

relate to resilient state is the first exploration of this relationship,

with this current analysis further extending our prior findings to the

individual level.29 By evaluating changes in circadian HRV measure-

ments we are able to better understand how the ANS circadian pat-

tern is being altered, providing a more detailed characterization of

an individual’s physiological stress response and its relationship to

resilience. Additionally, this approach can mitigate the impact that

acute stressors have on one-time HRV readings. Further evaluation

of this approach in the resilience literature is needed.

The goal of this research is to utilize wearable devices in patient

and psychological care, allowing the remote and passive assessment

of resilient or positive psychological states. Additionally, it could be

utilized to monitor an individuals’ response to psychological inter-

ventions. However, studies are first needed to further evaluate this

concept. Understanding of how physiological metrics relate to other

characterizations of resilience or other positive psychological con-

structs should be explored. Additionally, the reproducibility of

determining resilience state over time and in response to resilience-

building interventions would be important to delineate. Understand-

ing how dynamic changes in ANS circadian features relate to

changes in resilience needs to be further explored. Through such

evaluations it may be possible to employ this approach in clinical

practice.

Limitations
There are several limitations to our analysis. The primary limitation

is that the Warrior Watch dataset was not designed with the intent

of applying a machine learning algorithm to assess psychological

well-being from wearable parameters. The validated but brief

Figure 1. Population-level relationship between HRV parameters and resilience. Plots (A) and (B) show univariate association with resilience, while (C) and (D)

show resilience by sex interaction. (A) and (C) represent an average daily circadian HRV rhythm, while (B) and (D) show a pairwise comparison between groups

for each HRV parameter.
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surveys utilized were chosen to help improve compliance rather than

evaluate the endpoint of this post hoc analysis. However, a more

detailed evaluation of resilience and other psychological features

might better delineate subjects’ psychological states and improve the

predictive ability of the algorithms. This limitation is important, as

the resilience and emotional support surveys contained only 2 ques-

tions each, while the optimism assessment contained only 6 ques-

tions. However, this secondary analysis was performed to provide

proof of concept and demonstrate feasibility.

Additionally, limitations within the Warrior Watch Study data-

set include the Apple Watch providing HRV only in one domain

(SDNN), which precludes us from evaluating other HRV features in

our machine learning. Furthermore, the HRV metrics are obtained

sporadically throughout the day. Although our statistical modeling

takes this into account, more frequent readings may strengthen the

analysis. It is important to recognize that HRV can be impacted

by different life events, which can confound the associations.

To mitigate this, we evaluated the ANS function of each individual

over a long observation window (14 days). This window was also

informed by the relative stability of resilience and CD-RISC scores

over at least a 4-week period.51 Thus, by choosing a 14-day HRV

observation window we ensure it falls within the 4-week period

after CD-RISC assessment. Additionally, our characterization and

use of 24-h circadian features of ANS activity further mitigate the

impact that discrete transient stressors have on our assessment.

CONCLUSIONS

We derived machine learning models applied to the physiological

metrics collected from wearable devices, which demonstrated some

determinative ability in identifying resilience state. Considering the

limitations of this post hoc analysis, our results provide insight into

the feasibility of assessing psychological characteristics from pas-

sively collected wearable data. Further evaluation of the assessment

Figure 2. Machine learning to predict resilience from HRV and demographic data. (A) Performance statistics in training and testing of top 2 models predicting

resilience using the median cut of and corresponding ROC plots (B). (C) Predicting resilience as a continuous outcome using linear regression and its feature

importance (D). (E) Corresponding ROC plots and performance statistics in training and testing of top 2 models predicting resilience using 5 as a cutoff (F).

JAMIA Open, 2023, Vol. 6, No. 2 7



of resilience and other psychological features is warranted in dedi-

cated studies.
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