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Abstract: Microtubules are major components of the cytoskeleton that play important roles in
cellular processes such as intracellular transport and cell division. In recent years, it has become
evident that microtubule networks play a role in genome maintenance during interphase. In this
review, we highlight recent advances in understanding the role of microtubule dynamics in DNA
damage response and repair. We first describe how DNA damage checkpoints regulate microtubule
organization and stability. We then highlight how microtubule networks are involved in the nuclear
remodeling following DNA damage, which leads to changes in chromosome organization. Lastly,
we discuss how microtubule dynamics participate in the mobility of damaged DNA and promote
consequent DNA repair. Together, the literature indicates the importance of microtubule dynamics in
genome organization and stability during interphase.
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1. Introduction

Microtubules that form a part of the cytoskeleton are involved in multiple cellular
processes, including cell division, intracellular transport, cell motility, and cell shape [1,2].
Microtubules are formed from protein subunits of tubulin, and each tubulin protein consists
of two subunits, α-tubulin and β-tubulin. Microtubules are highly dynamic structures that
rapidly oscillate between phases of polymerization and depolymerization by the addition
or removal of tubulin proteins [2]. Microtubules are nucleated from tubulin subunits at
specific subcellular locations, mainly the centrosomes or MTOCs (microtubule organizing
centers) [1,3]. Upon nucleation, there are many proteins that bind to microtubules, includ-
ing the motor proteins dynein and kinesin, and other proteins important for regulating
microtubule dynamics [4]. The microtubule cytoskeleton has a central role in cell division
by forming the mitotic spindles that segregate chromosomes [5,6]. Besides its function
during mitosis, recent publications have shown that microtubules also affect chromosome
structure during interphase and play a role in genome maintenance [7–9]. Furthermore,
it was shown that microtubule stabilization is required for efficient DNA repair [10,11],
revealing a link between microtubule dynamics and DNA damage response (DDR).

Microtubules are involved in DNA damage repair at three main levels (Figure 1). First,
microtubules are nucleated from the centrosome, which is usually located close to the
nucleus in interphase cells. The filamentous network of microtubules extends throughout
the cell and has an important role in multiple cellular processes. Cytoplasmic microtubules
undergo post-translational modification that may alter their stability and function. These
modifications appear to be especially important in the intracellular trafficking of DNA
repair proteins. Second, cytoplasmic microtubules physically interact with and exert me-
chanical forces onto the nuclear envelope, which can impact nuclear shape, leading to
changes in chromatin structure. In addition, nuclear localization of microtubule compo-
nents induces chromatin remodeling. These changes expose DNA damage sites, allowing
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access to various DNA repair proteins. Lastly, the flexibility of the DNA double-strand
break (DSB) end(s) is important for efficient DNA repair. Microtubules mobilize damaged
DNA and promote interaction with repair proteins at the site of damage, which is impor-
tant for DSB repair via both homologous recombination (HR) and non-homologous end
joining (NHEJ).
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Figure 1. The role of microtubule dynamics in DNA damage response. Microtubules are involved
in DNA damage repair at three main levels. (A) Centrosomes organize microtubules by controlling
nucleation and anchoring processes. Cytoplasmic microtubules can mediate the transport of DNA
repair factors into the nucleus. (B) Dynamic cytoplasmic microtubules physically interact with and
exert mechanical forces onto nuclear envelope, which can impact nuclear morphology, leading to
changes in chromatin structure. In addition, nuclear localization of microtubule components induces
chromatin reorganization. These changes expose DNA damage sites, allowing access to various
DNA repair proteins. (C) Microtubules/LINC complexes increase the mobility of damaged DNA and
promote the recruitment of DNA repair proteins at the site of damage, which is important for DSB
repair via both HR and NHEJ. Abbreviations: LINC, linker of the nucleoskeleton and cytoskeleton;
NPC, nuclear pore complex.

In this review, we present the current state of knowledge in understanding the role of
microtubule dynamics in DNA damage repair and discuss some perspectives gained by
these discoveries towards genome stability.

2. Microtubule Organization and Stability in Response to DNA Damage

Microtubules are one of the three major cytoskeletal components in eukaryotic cells [2].
The centrosome, a major microtubule-organizing center (MTOC) in animal cells, comprises
a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and
anchors microtubules [1,3]. During mitosis, centrosomes form the spindle poles of the
bipolar mitotic spindle, and during interphase, they nucleate the formation of the micro-
tubule cytoskeleton [3,5,6]. The DDR proteins such as ataxia-telangectasia and Rad3 related
(ATR), checkpoint kinase 1 and 2 (CHK1/CHK2), breast cancer susceptibility gene 1 and
2 (BRCA1/BRCA2), and RAD51 have been shown to localize in the nucleus and the cen-
trosomes [12–18], implicating the existence of crosstalk between two organelles following
DNA damage. Furthermore, recent studies demonstrated that microtubule stabilization
is required for efficient DNA repair [10,11], revealing a link between the DDR and micro-
tubule dynamics. In this section, we summarize the molecular mechanisms that regulate
microtubule organization and stability in response to DNA damage during interphase.
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2.1. NEK2

Centrosome separation is critical for bipolar spindle formation and the accurate seg-
regation of chromosomes during cell division [1]. NIMA-related kinase 2 (NEK2) is a
centrosomal kinase required for accurate centrosome separation [19–21]. NEK2 activity
fluctuates during the cell cycle, which is low in the G1 phase, peaking in the S and G2
phases [22]. The DDR pathway controlling centrosome separation is mechanistically linked
to NEK2 [23]. IR-induced DNA damage results in the activation of ataxia-telangiectasia
mutated (ATM) and phosphatase 1 (PP1). The increased activity of PP1 dephosphorylates
and reduces NEK2 activity, leading to the inhibition of centrosome separation [24,25]. Thus,
NEK2 might act as a downstream target of the DDR pathway that regulates centrosome
separation and contributes to the G2 arrest under genotoxic stress [23].

2.2. Centrobin

Centrobin is a centriole-associated protein that is required for centriole duplication
and elongation [26,27]. Centrobin also has a potential role in microtubule stabilization by in-
teracting with α-tubulin [26,28–30]. Two different kinases have been shown to regulate the
microtubule-stabilizing activity of centrobin [31,32]. Phosphorylation by PLK1 (polo-like
kinase 1) stimulates centrobin to stabilize the microtubules during mitosis [31], while phos-
phorylation by NEK2 antagonizes the microtubule-stabilizing activity of centrobin during
interphase [32]. As discussed earlier, NEK2 activity is decreased upon DNA damage [25],
which therefore could increase microtubule-stabilizing activity of centrobin. Furthermore,
centrobin was previously identified as a potential ATM/ATR substrate [33], suggesting
a potential role of centrobin in DDR. A recent study has demonstrated that centrobin is
phosphorylated in an ATR-dependent manner following ultraviolet (UV) exposure, and
depletion of centrobin has a defect in UV-induced microtubule stabilization [34]. Within
this context, it is proposed that ATM/ATR might be involved in regulating microtubule
stability after DNA damage, at least in part, through centrobin and NEK2. However, further
study is needed to identify the precise mechanism underlying the role of centrobin in DDR.

2.3. Pericentrin (PCNT)

PCNT is an integral centrosomal component that functions as a scaffold for anchoring
numerous proteins in the centrosome [35,36]. Through this anchoring function, PCNT
is involved in functional crosstalk between microtubule organization and DDR [37,38].
PCNT contributes to the microtubule organization in both interphase and mitosis. For
instance, PCNT anchors the γ-tubulin ring complex (γ-TuRC) at spindle poles in mitotic
cells, which is required for proper spindle assembly [39,40]. Loss of this anchoring mech-
anism induces a checkpoint response that prevents mitotic entry. PCNT is involved in
DDR by mediating PCNT-dependent CHK1 localization at the interphase centrosome
that regulates mitotic entry [37,38]. In addition, recent studies found that mutations in
PCNT cause Seckel syndrome, defects in ATR-dependent DNA damage signaling, which
displays mitotic failure and cell death [37,41–43], revealing PCNT functions in the DDR.
Interestingly, it has been recently shown that chromatin remodeling proteins are involved in
centrosome integrity [44]. Silibourne et al. identified chromodomain helicase DNA-binding
protein 3 (CHD3), a component of the nucleosome remodeling deacetylase complex, as
PCNT-interacting proteins and demonstrated that CHD3-PCNT complex is required for
centrosomal localization of PCNT and for centrosome integrity [44].

2.4. CEP Family Proteins

Centrosomal protein of 63 kDa (CEP63) was first identified as a target of ATM/ATR
following DNA damage [45]. ATM and ATR phosphorylate Xenopus CEP63 and promote
its delocalization from the centrosome, inhibiting spindle assembly and delaying mitotic
progression [45]. Furthermore, mutations of human CEP63 were found in a primary
microcephaly with defective ATR-dependent DNA damage signaling [46]. It has been also
shown that CEP63 forms a complex with CEP152, another centrosomal protein implicated
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in microcephaly [46,47], and CEP63 deficiency leads to centriole loss due to impaired
recruitment of CEP152 to the centrosome [48]. A centrosomal protein of 164 kDa (CEP164)
is also phosphorylated by ATM/ATR upon DNA damage [49], which is required for DNA
damage-induced CHK1 phosphorylation and G2/M checkpoints, indicating a critical role
of CEP164 in ATM/ATR DNA damage signaling pathways.

2.5. αTAT1

The α-tubulin acetyltransferase 1 (αTAT1) catalyzes the acetylation of α-tubulin at
lysine 40 (K40) in microtubules [50,51]. α-tubulin K40 acetylation has been shown to be
enriched in stable microtubules, such as mitotic spindles and cilia [52,53]. A recent study
demonstrated that α-tubulin K40 acetylation is induced following DNA damage and that
αTAT1 catalytic activity is required for DNA damage checkpoint response [54], suggesting
a potential role of α-tubulin K40 acetylation in DDR. Although the molecular mechanism by
which αTAT1 affects DDR remains unclear, as α-tubulin K40 acetylation has been known
to enhance the microtubule association of motor proteins and subsequent intracellular
transport [55,56], αTAT1 may play a role in DDR, at least in part, by promoting nuclear
transport of DNA repair proteins. HDAC6 (histone deacetylase 6) and SIRT2 (Sirtuin 2) are
known to negatively regulate α-tubulin K40 acetylation [57,58]. Thus, it will be possible
that reduced activity of HDAC6 and SIRT2 could contribute to the increase in α-tubulin K40
acetylation following DNA damage. However, it seems unlikely because it has been shown
that deacetylating activity of HDAC6 or SIRT2 is required for efficient DNA repair [59,60],
suggesting that αTAT1 is primarily responsible for inducing α-tubulin K40 acetylation in
response to DNA damage.

3. Microtubule-Dependent Nuclear Remodeling Following DNA Damage

Recent studies in yeast and mammalian cells suggest that cytoplasmic actin and micro-
tubules induce global changes in chromatin structure in response to DNA damage [61,62].
The microtubule dynamics are particularly important for chromatin segregation during
mitosis; however, there is increasing evidence to suggest that microtubules are implicated
in chromatin organization during interphase [7]. Recent studies have shown that, upon
DNA damage, cytoplasmic microtubules can change the nuclear structure that provides a
nuclear environment conducive to repair [8,63,64]. How can microtubule networks influ-
ence interphase chromatin upon DNA damage? Several links have been found between
the microtubule network and the interphase chromatin. The first mechanism involves
force transmission from cytoplasmic microtubules to chromatin through the nuclear enve-
lope. The second mechanism involves nuclear accumulation of microtubule components
that bind to chromatin and influence chromatin structure. The third mechanism involves
microtubule-dependent nuclear transport of chromatin remodeling complexes. In this
section, we highlight the role of microtubule dynamics in nuclear changes following
DNA damage.

3.1. Microtubule-Driven Cytoplasmic Forces

The nuclear envelope is in close association with the microtubule networks. In inter-
phase, centrosomes are usually located close to the outer surface of the nuclear envelope
and interphase chromosome ends attach to the inner surface of the nuclear envelope [65,66].
Therefore, a physical link is expected to form between cytoplasmic microtubules and chro-
mosomes. The nuclear envelope is connected to the different types of cytoskeletal elements
by the linker of nucleoskeleton and cytoskeleton (LINC) complex formed by Sad1 and
UNC84 (SUN) and Klarsicht/ANC-1/Syne homology (KASH) domain proteins [67–69].
SUN domain proteins span the inner nuclear membrane and interact with nucleoplasm and
chromatin. KASH domain proteins are anchored in the outer nuclear membrane and inter-
act with the cytoskeleton [67–69]. The interactions of SUN-KASH domain proteins across
the nuclear envelope link the microtubule cytoskeleton to the nucleus [69]. The connection
between cytoplasmic microtubules and the LINC complexes may allow the microtubule
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cytoskeleton to influence the nucleus by transmitting mechanical forces across the nuclear
envelope. It has been shown that mechanical force applied to the nucleus induces direct
stretching of chromatin, resulting in the activation of transcription [70]. Therefore, it is
tempting to speculate that in response to DNA damage, microtubule tracks for intracellular
transport may generate mechanical forces in the nuclear envelope, which may influence
the nucleus and subsequently induce chromatin reorganization for DNA repair.

In eukaryotes, heterochromatin is generally located just beneath the nuclear enve-
lope where it interacts with the nuclear lamina [71,72]. Nuclear lamina-associated hete-
rochromatin has been shown to increase nuclear tension [73], which may provide nuclear
stiffness [74]. As a consequence, microtubule-driven cytoplasmic forces to the nuclear
envelope could be counteracted by the heterochromatin at the nuclear periphery. It is
therefore speculated that balanced force along the nuclear envelope might play an impor-
tant role in maintaining nuclear structure. Heterochromatin is markedly reorganized in
response to DNA damage to control and facilitate DNA repair [75–79]. In particular, decon-
densation of heterochromatin has been observed in response to DSBs [76,78,80]. Among
the mechanisms that may drive heterochromatin reorganization following DNA damage,
ATM-dependent phosphorylation of the heterochromatin building factor KRAB-domain
associated protein 1 (KAP1) results in dissociation of the chromatin remodeler CHD3,
promoting chromatin relaxation [81,82]. This can result in moving away from a region
containing heterochromatin, and possibly decreasing nuclear tension from the nuclear
envelope-associated heterochromatin. Indeed, most recently, dos Santos et al. showed
that DNA damage decreases nuclear tension through chromatin decondensation, which
is required for genome stability [63]. Therefore, it would be possible that in the presence
of DNA damage, nuclear morphology might be easily affected by the cytoplasmic forces,
which in turn induces chromatin reorganization.

3.2. Microtubule and Microtubule-Associated Proteins

Recently, it has been shown that the chromatin remodeling complex has been implicated
in microtubule organization [44,83–87]. Because chromatin-remodeling factors affect micro-
tubule polymerization and spindle dynamics [44,85,87], it would be possible that microtubules
and/or microtubule-associated proteins could be linked to chromatin reorganization.

3.2.1. γ-Tubulin

In eukaryotes, there are five known tubulin isoforms, α-tubulin, β-tubulin, γ-tubulin,
δ-tubulin, and ε-tubulin [88,89]. The α- and β-tubulin heterodimers assemble into dy-
namic microtubules and perform multiple important cellular functions. The γ-tubulin is
essential for microtubule function, but it is not a component of microtubules. Rather, it is
located at the centrosome and functions in the microtubule nucleation and microtubule
polarity from the centrosome [1,3]. The δ-tubulin and ε-tubulin are required for triplet
microtubule stability in centrioles and basal bodies [90]. Unlike α-tubulin and β-tubulin,
γ-tubulin contains a nuclear localization sequence and a helix–loop–helix DNA-binding
motif on the C-terminus [91]. There is growing evidence showing nuclear functions of
γ-tubulin including transcription, chromatin remodeling, and DNA damage response. The
genetic interaction between γ-Tub23C and SWItch/Sucrose Non-Fermentable (SWI/SNF)
chromatin-remodeling complex has been shown in Drosophila melanogaster [92], suggest-
ing a potential role of γ-tubulin in chromatin remodeling. In addition, nuclear γ-tubulin
interacts with the transcription factor family E2 promoter-binding factor (E2F) and also
with E2F DNA binding sites, leading to repression of E2F-induced transcription [93]. This
can be similar to that of retinoblastoma protein (Rb), which exerts its tumor suppressor
function primarily by inhibiting the E2F transcription factors [94]. Interestingly, besides
interacting with E2Fs, Rb inhibits E2F-induced transcription by recruiting chromatin remod-
eling factors (histone deacetylases and SWI/SNF complexes) and DNA methyltransferase
DNMT1 [95–97]. It is thus tempting to speculate that γ-tubulin may be involved in the
recruitment of DNA-remodeling factors in the nucleus. Furthermore, γ-tubulin interacts
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with DNA repair protein RAD51 and forms a nuclear complex with BRCA1 after DNA
damage [98], suggesting a link between DNA repair and the microtubule networks.

3.2.2. KIF4

A major group of molecular motors involved in intracellular transport are kinesins
named KIF (kinesin superfamily protein). There are several dozen KIFs in mammalian
cells to constitute at least 14 kinesin families [99,100]. The majority comprises two domains:
an ATP hydrolysis domain that allows it to traverse microtubules, and a tail domain that
is able to bind to structures and/or cargos [99,100]. KIF4 is a microtubule-bound motor
protein that associates with chromosomes and microtubules during mitosis and contributes
to faithful chromosome segregation [101]. However, KIF4 is unique among kinesins in
that it localizes to the nucleus throughout interphase [102,103], suggesting its non-mitotic
function. It has been shown that KIF4 is important for chromatin organization, transcription,
and DNA repair. There are several mechanisms for the nuclear functions of KIF4. (1) KIF4
induces chromatin condensation by inhibiting Poly [ADP-ribose] polymerase 1 (PARP1)
activity, which maintains an open chromatin architecture through Poly ADP-ribosylation
(PARylation) [101,104,105]. (2) KIF4 promotes nucleosome assembly by recruiting histone
chaperones and chromatin remodeling complexes to newly synthesized DNA, leading to
chromatin compaction [103]. (3) KIF4 negatively regulates transcription by interacting with
transcriptional repressive complexes such as DNMT3B and HDAC1 [103,106]. (4) KIF4
is involved in HR repair by interacting with BRCA2, which promotes the recruitment
of RAD51 to DSBs sites [107,108]. Taken together, KIF4 performs nuclear functions that
can change chromatin structure during interphase, in addition to its known function as a
microtubule-bound motor protein during mitosis.

3.2.3. Actin

Actin, one of the cytoskeletal proteins, is also present in the nucleus and is associated
with soluble nuclear proteins [109–112]. It has been shown that actin and actin-related
proteins are integral components of several chromatin remodeling complexes, such as
SWI/SNF complexes and the INO80-containing complexes [110,111]. Although the roles of
actin and actin-related proteins in the complexes are yet unclear, it is speculated that they
play crucial roles in maintaining the integrity of the protein complexes in the chromatin
and thereby affecting chromatin structure and accessibility.

4. Microtubule-Dependent Chromatin Mobility Following DNA Damage

Recent studies in yeast suggest that DSB repair is thought to involve the broken
ends being moved to ‘repair centers’ in the nucleus and indicate that DDR-dependent
chromatin mobility promotes HR repair [113–116]. However, the mechanism by which the
DNA damage promotes increased chromatin mobility remains to be elucidated. One clue
might be found in the recent observation that DNA damage-dependent phosphorylation of
nucleoporins releases the interaction between tethered chromosomes and the pore [117].
Another possible mechanism could involve the chromatin remodeling complex. DSB
recruitment of chromatin remodeling factors such as INO80 may be important to promote
the increase in chromatin mobility [118]. Whatever the mechanism, DNA damage-induced
chromatin mobility is required to increase DNA repair efficiency. However, it should also
be noted that DSB mobility is not always positive, because increased mobility might lead
to unwanted translocations between chromosomes, increasing genome instability. In this
section, we discuss the emerging role of microtubule dynamics in chromatin mobility near
the DSB sites.

4.1. Chromatin Mobility during HR and NHEJ

Double-strand breaks can be repaired via either HR, the exchange of genetic material
between homologous DNA sequences, or NHEJ, the direct ligation of the broken DNA
ends [62,119]. HR is an error-free pathway that predominantly occurs in the late S and
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G2 phases, whereas NHEJ is an error-prone repair pathway that can occur throughout
all cell cycle phases [62,120]. The bacterial genomes experience constant pressure from
multiple DNA damaging stresses. The bacterial response to DNA damage is known as
the SOS response [121,122]. There are two main proteins involved—one, LexA, to keep
the response switched off while the cell is healthy, and the other, RecA, to turn it on
when DNA damage occurs [123]. In bacteria, DSB repair mostly relies on HR, which
involves the action of bacterial recombinase protein RecA [121,122,124]. Interestingly, a
number of bacteria have evolved additional DNA protection mechanisms provided by
small bacterial DNA-binding proteins, namely, nucleoid-associated proteins (NAPs; e.g.,
HU, DNA-binding protein from starved cells (Dps)), small acid-soluble spore proteins
(SAAPs), and single-stranded binding proteins (SSBs) [125–134]. These small DNA-binding
proteins are able to protect bacterial genomic DNA by the formation of nonspecific protein–
DNA complexes, which could be linked with efficient DNA damage repair. Together, both
DNA damage repair and DNA protective binding ensure genome stability in bacteria.
Yeasts preferentially use HR [62]. Increased chromatin mobility in response to DNA breaks
has been reported in yeast [113–116]. The mobility of damaged chromatin depends on
the Mec1ATR kinase, resection of the DSB ends, and the RAD51 recombinase [135,136].
Increased ability of RAD51-DSB ends to find a homologous sequence promotes an efficient
HR repair [113,116,137]. As discussed in the previous section, DNA-damage-induced
chromatin reorganization can promote the extrusion of DSB sites from the heterochromatic
domain and increase access to repair factors. As a consequence, DSB ends become more
mobile, which can facilitate homology search and repair. A recent study in C. elegance has
shown that LINC complexes facilitate DSB repair through both the inhibition of NHEJ and
the promotion of HR [138]. Based on the data, Lawrence et al. have proposed a model
whereby the LINC complex can both directly inhibit the KU70/KU80/DNA dependent
protein kinase (DNA-PK) complex through SUN proteins and license HR repair through
microtubules [138].

NHEJ that relies on the direct rejoining of broken ends is more predominant in mam-
malian cells [62]. Compared to yeast, DSBs are thought to be immobile within the mam-
malian cell nucleus [139–141]. However, deprotected telomere ends have increased mobility
compared with protected telomeres [142]. This increased mobility depends on both ATM
and p53-binding protein 1 (53BP1), and these ends are repaired through NHEJ. Recently,
Lottersberger et al. revealed that uncapped telomeres and irradiation-induced DSBs in
mouse cells exhibit increased DSB mobility that is dependent on dynamic microtubules,
53BP1, the LINC complex, and the motor protein kinesins [143]. In this study, Lottersberger
et al. have proposed a model whereby dynamic cytoplasmic microtubules with the LINC
complexes can “poke” the nucleus and increase the mobility of 53BP1-associated damaged
DNA for NHEJ repair [143]. A recent investigation employing a single-particle tracking
method in yeast further demonstrated the requirement of microtubules in DSB mobility
upon DNA damage [144].

4.2. KIF2C

As described in the previous section, there are different kinesin proteins localized
inside the nucleus, although their roles are largely unknown. Cytoplasmic microtubules can
affect the DDR either by the nuclear transport of repair factors [11] or by association with the
LINC complexes [143], whereas nuclear kinesins are likely to be involved in a more direct
manner. Kinesin family member 2C (KIF2C), also known as mitotic centromere-associated
kinesin, is a microtubule-dependent motor protein with a variety of important cellular
regulatory functions, such as the regulation of mitosis and genome stability [145–147].
Interestingly, it has been recently demonstrated that KIF2C is required for efficient DSB
repair via both HR and NHEJ [148]. Depending on its microtubule depolymerizing activity,
KIF2C is recruited to DSB sites, promoting DSB mobility and forming DNA damage foci in
an ATM-dependent manner, suggesting that KIF2C serves as an important DDR factor that
mediates the local mobility and dynamics of DSB ends.
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4.3. KIF18B

Kinesin family member 18B (KIF18B) is another member of kinesin that localizes to
the nucleus and binds to chromatin throughout the interphase [149]. Most recently, KIF18B,
which is also recruited to the sites of DSBs, was reported to be required for 53BP1-mediated
DSB repair [150]. This study demonstrated that the ability of KIF18B to bind 53BP1, as well
as its motor function is required for efficient 53BP1-mediated end-joining of DSBs.

4.4. DNA-PK-AKT

Ma et al. have recently reported the effect of DNA damage on microtubule dynamics.
The authors discovered that DSBs promote microtubule dynamics in G1 cells through
DSB-induced microtubule dynamics stress response, which occurs in a DNA-PK-AKT-
dependent manner [151]. As a consequence, increased microtubule dynamics promote DSB
mobility and facilitates NHEJ repair in G1 cells.

5. Conclusions

This review highlights recent studies investigating the role of microtubule dynamics
in DNA damage repair with a focus on the connections between DDR and microtubule
networks (Figure 2).
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53BP1, as well as its motor function is required for efficient 53BP1-mediated end-joining 

of DSBs. 

4.4. DNA-PK-AKT 

Ma et al. have recently reported the effect of DNA damage on microtubule dynamics. 

The authors discovered that DSBs promote microtubule dynamics in G1 cells through 

DSB-induced microtubule dynamics stress response, which occurs in a DNA-PK-AKT-

dependent manner [151]. As a consequence, increased microtubule dynamics promote 

DSB mobility and facilitates NHEJ repair in G1 cells. 

5. Conclusions 

This review highlights recent studies investigating the role of microtubule dynamics 

in DNA damage repair with a focus on the connections between DDR and microtubule 

networks (Figure 2). 

 

Figure 2. Overview of the role of microtubule dynamics in DNA damage response. Figure 2. Overview of the role of microtubule dynamics in DNA damage response.

We first focused on proteins directly related to microtubule organization and stability
in response to DNA damage, in which centrosomes play a central role in the regulation of
microtubule organization as part of the DDR. We then discussed how cytoplasmic micro-
tubules are involved in the nuclear reorganization following DNA damage. Microtubules
can impact nuclear architecture either by generating the microtubule-driven mechanical
forces or facilitating the nuclear import of proteins involved in chromatin reorganization.
Lastly, we highlighted the molecular mechanisms underlying microtubule-dependent chro-
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matin mobility during DNA repair. Increased mobility of damaged chromatin appears to
play an important role for both HR and NHEJ.

Microtubule-targeted agents (MTAs), such as paclitaxel and vinblastine, can induce
mitotic catastrophe in cancer cells by disrupting the mitotic spindle [152,153]. Interestingly,
MTAs display greater efficacy than mitosis-specific inhibitors, suggesting that MTAs can
inhibit both mitotic and non-mitotic functions of microtubules [152–154]. MTAs are very
effective in cancer treatment when used in combination with DNA-damaging agents [11].
This may be attributed to the ability of MTAs to interfere with microtubule-dependent
DNA damage repair. In addition to their antimitotic effects, MTAs can elicit an immune
response following the disruption of microtubules [155]. As many cancer cells often over-
express immune checkpoint proteins, thus escaping cancer immune surveillance, immune
checkpoint inhibitor (ICI)-based therapy is designed to strengthen cancer immune surveil-
lance [156,157]. As discussed earlier, MTA treatment can stimulate immune responses [155];
thus, combining with ICIs could enhance the antitumor activity of MTAs by stimulating
immune surveillance. Indeed, several clinical trials are ongoing to test the combining effect
of taxanes and ICIs [158–160].

Given their central role in the therapy of cancer, MTAs will continue to be used widely
in combination with other anticancer drugs. Thus, there is a critical need to identify novel
tubulin-targeting drugs with improved properties that can be used as anticancer agents. In
addition, it will be important to select cancer groups that can receive the maximum benefits
of a combination with MTAs for cancer therapy, which may provide tumor selectivity.
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