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Abstract

Motivation: Quantification of cellular changes to perturbations can provide a powerful approach to

infer crosstalk among molecular components in biological networks. Existing crosstalk inference

methods conduct network-structure learning based on a single phenotypic feature (e.g. abundance)

of a biomarker. These approaches are insufficient for analyzing perturbation data that can contain

information about multiple features (e.g. abundance, activity or localization) of each biomarker.

Results: We propose a computational framework for inferring phenotypic crosstalk (PHOCOS) that

is suitable for high-content microscopy or other modalities that capture multiple phenotypes per

biomarker. PHOCOS uses a robust graph-learning paradigm to predict direct effects from potential

indirect effects and identify errors owing to noise or missing links. The result is a multi-feature,

sparse network that parsimoniously captures direct and strong interactions across phenotypic attri-

butes of multiple biomarkers. We use simulated and biological data to demonstrate the ability of

PHOCOS to recover multi-attribute crosstalk networks from cellular perturbation assays.

Availability and implementation: PHOCOS is available in open source at https://github.com/

AltschulerWu-Lab/PHOCOS

Contact: steven.altschuler@ucsf.edu or lani.wu@ucsf.edu

1 Introduction

A fundamental challenge in molecular biology is to understand how

information flows through complex signal transduction networks

(Collins et al., 2007; Marbach et al., 2012). Targeted perturbation

experiments provide a powerful approach for identifying evidence

of ‘crosstalk’ or influence between signaling components or path-

ways (Shmulevich et al., 2002). Generally, these approaches allow

one to assess whether perturbing one part of a signaling pathway

alters the behavior of another part. Investigation of crosstalk could

be at the level of individual components (e.g. specific genes or pro-

teins) or collections of components (e.g. modules). Inferring cross-

talk from experimental perturbation data conceptually requires two

steps (Ku et al., 2012): (i) quantification of perturbation-induced

changes among selected biomarkers of the network; and (ii) applica-

tion of statistical approaches that convert these observed changes

into a crosstalk graph.

Most approaches for inferring crosstalk model interactions are

based on a single attribute or ‘feature’ of a biomarker (Malioutov

et al., 2005; Markowetz et al., 2007; Snijder et al., 2013). This is

sufficient for modeling interactions for many high-throughput

assays, for example, RNA abundance in transcriptomics is com-

monly studied (Bader et al., 2004). However, this approach is not

adequate in cases where it is possible or desired to investigate

multiple different features per biomarker. In the case of prote-

omics, both abundance and level of modification (e.g. phosphoryl-

ation) could be simultaneously measured per protein species. In

high-content imaging assays—the focus of our current study—hun-

dreds of different features can be extracted for each biomarker per

cell (Bakal et al., 2007; Boland and Murphy, 2001; Carpenter

et al., 2006; Perlman et al., 2004). Such features could include

standard biomarker measurements, such as intensity (reflecting

biomarker abundance or activity level) or localization (reflecting

properties such as cytosolic versus nuclear levels, or unpolarized

versus polarized states), as well as other measurements, such as

texture or statistical properties of the brightest pixels. Thus, the

challenge is that perturbation assays can cause simultaneous

changes to multiple phenotypic features even on the same bio-

marker (Yang et al., 2010). Information can be lost when modeling

crosstalk for a single feature (Fig. 1 right cartoon): when only

examining the intensity feature, a perturbation to biomarker ‘A’

may have no effect on biomarker ‘B’; however, the perturbation

may alter the localization of B from wild type. For example, in the

classic MAPK signaling cascade (Seger and Krebs, 1995), activated

MAPKKK protein may be observed to alter the activation level of

its downstream MAPKK partner, whereas activated MAPKK pro-

tein may be observed to alter both the activity levels and localiza-

tion of its downstream (transcription factor) MAPK partner.
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Methods that capture and model the richness of network inter-

actions are needed.

We propose a new framework to infer multi-feature phenotypic

crosstalk (PHOCOS), which simultaneously monitors multiple

phenotypic changes across biomarkers from targeted network per-

turbations. A critical application is to the analysis of high-content

microscopy imaging data. Tools from computer vision can extract

hundreds of phenotypic features per cell (Boland and Murphy,

2001). How do different observed properties of biomarkers relate to

each other? PHOCOS searches for higher-resolution crosstalk not

just between biomarkers, but between phenotypes of the

biomarkers.

Below, we provide a description of our approach. We then show

using synthetic data, where a ground truth is known, how the ap-

proach can be used to infer accurately multi-feature crosstalk net-

works from noisy data. Finally, we apply PHOCOS to predict

crosstalk networks from the morphological and signaling changes of

chemotaxing human neutrophils. PHOCOS provides a practical ap-

proach for inferring multi-feature crosstalk networks from assays

that capture high-dimensional phenotypic descriptors of how differ-

ent signaling components respond to perturbations.

2 Methods

2.1 An overview of PHOCOS
The computational framework of PHOCOS (Fig. 1, left boxes) has

several main steps. In the first step (Section 2.2), we measured cellu-

lar responses to perturbations and extracted a number of single-cell

phenotypic features to describe various properties of biomarker

expression and localization patterns. Feature ‘deviation’ profiles

were calculated by comparing non-perturbed versus perturbed

phenotypes for all biomarkers and extracted features. In the second

step (Section 2.2), clustering on the deviation profiles was performed

to identify common phenotypic classes. The feature closest to each

class center was selected as a surrogate of its phenotypic class. In the

third step (Section 2.3), we inferred crosstalk from each observed

perturbed biomarker to all other observed biomarkers. These influ-

ence links were merged across all perturbations to obtain a (pos-

sibly) dense and noisy ‘raw’ influence network. In the last step

(Section 2.4), we performed sparse optimization as a heuristic to re-

duce indirect links and errors from the raw influence network. This

final step produced a sparse crosstalk network capturing direct,

strong influence links observed in the perturbed biological system.

2.2 Phenotypic deviation profiles and feature reduction
We applied PHOCOS to infer phenotypic crosstalk underlying the

dynamic polarization processes of human neutrophils using a previ-

ously acquired microscopy image dataset (Ku et al., 2012). Many

molecular components involved in neutrophil polarity have been

identified and organized into so-called ‘modules’ (Xu et al., 2003)

based on their function, localization and/or association with cyto-

skeletal structures, namely the ‘front’ (F) module (biomarker: actin),

the ‘back’ (B) module (biomarker: phosphorylated Myosin II,

pMyoII) and the ‘microtubule’ (MT) module (biomarker: tubulin).

We note that below we interchangeably refer to these modules by

their names (F, M, B) or by their biomarker readouts (actin, tubulin,

pMyoII).

Briefly, in this dataset, human blood neutrophils were co-stained

for biomarkers of actin, tubulin and pMyoII. Cells were stimulated

with uniform f-Met-Leu-Phe (fMLP; 10 nM) at 37 �C before formal-

dehyde fixation at different time points ranging from 0 to 600 s

(control assay). Three sets of drug perturbations were used to dis-

rupt the front (latrunculin A and jasplakinolide), back (Y27632 and

calpeptin) and MT (nocodazole and Taxol) modules within the

polarity-signaling network, as read out by actin, pMyoII and tubulin

staining (respectively). Time course data were captured at 0, 15, 30,

45, 60, 90, 120, 180, 300, 450 and 600 s after stimulation with

fMLP of both control and perturbation groups.

For each identified cell and biomarker, we extracted 76 features.

We manually categorized features as ‘intensity’, ‘polarity’, ‘brightest

pixel compactness’, ‘shape’, ‘Haralick’ or ‘Zernike’ based on the

phenotype captured by the feature that was computed (Ku et al.,

2010; Loo et al., 2007; Murphy, 2014).

For each drug and feature, ‘phenotypic deviation profiles’ were

computed as previously described (Ku et al., 2012). First, feature

values were interpolated across time points to obtain continuous re-

sponse curves. Consistent with previous work (Ku et al., 2012),

these time points were partitioned into either low-resolution (0-3, 3-

7.5, 7.5-10 min) or high-resolution (0-1, 1-3, 3-5, 5-7.5, 7.5-10 min)

periods as indicated in our studies below. These non-uniformly

spaced periods were chosen to match the multiphasic responses of

neutrophils to chemoattractant. Second, for each of the periods, we

computed ‘phenotypic deviation profiles’ z
m;d;fð Þ

t by

z
m;d;fð Þ

t ¼ A m;d;fð Þ
t �A m;e;fð Þ

t

std A m;c;fð Þ
t

� � ;

where m, f and d represent the module, feature and drug perturb-

ation, respectively, and A m;d;fð Þ
t (resp. A m;d;fð Þ

t ) is the area under the

drug-perturbed (resp. control) response curve in period t. The

Fig. 1. Overview of PHOCOS. Left column: Flow chart. PHOCOS is used to

infer multi-feature phenotypic crosstalk from high-content cellular images ob-

tained from perturbation assay. The inputs to PHOCOS are cellular images

with perturbation information; the output of PHOCOS is an inferred, sparse

network of strong interactions between biomarkers based on observed

phenotype. Right column: cartoon illustration of how perturbing the intensity

of one biomarker (green) can affect either the localization (red) or the intensity

(blue) of other biomarkers.
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standard deviation std A m;c;fð Þ
t

� �
in the denominator was calculated

from 20 control replicates. The median phenotypic deviation pro-

files calculated from all drug replicates (nocodazole n ¼ 6; Taxol n

¼ 3; latrunculin A n ¼ 3; jasplakinolide n ¼ 3, Y27632 n ¼ 3; cal-

peptin n ¼ 2).

It is not to be expected that all 76 features would contain inde-

pendent information. For instance, both the morphology and

Zernike features, from the dataset above, could contain redundant

information about the shape of a measured biomarker and could

thus yield similar deviation profiles. Accordingly, unsupervised fea-

ture clustering was performed to identify common patterns of devi-

ation profiles; this allowed us to reduce the collection of features by

selecting a single representative from each cluster.

To achieve this goal, for each of the 76 features we created a

long vector Vf (dim ¼ 90) by stacking the deviation profiles

obtained for each of the three modules, six drugs and five high-

resolution periods (median values of replicates were used). We used

k-means clustering (k was chosen using model-fit criteria) to identify

common patterns among the deviation profiles; we refer to each

cluster as a ‘phenotypic class’. The feature closest to the centroid

was selected as the representative for the phenotypic class. We note

that we chose to use the same set of features across all biomarkers;

however, one could alternatively perform clustering on a per-

module level to focus on module-specific biological phenotypes.

2.3 Learn multi-feature influence graph
We next learned an influence graph for each period based on the

z-score profiles of representative features found in Section 2.2. The

vertices of the graph are phenotypic nodes, which are a combination

of biomarker and feature. The presence of an edge in the graph indi-

cates that a perturbation to one node is observed to affect another,

and the weight of the edge indicates the strength of this influence.

We represented the final phenotypic influence graph with m� k

nodes, where m is the number of modules and k is the number of

phenotypic classes. For each drug, feature and period, we inferred the

strength of influence from the phenotypic node af1 (feature f1 of mod-

ule a) to bf2 with the drug perturbation da (targeting module a) by:

Wda
t af1; bf2

� �
¼ c a;daf1ð Þ

tXk

i¼1
c a;da ;f1ð Þ

t

c b;da ;f2ð Þ
t ; (1)

where c a;daf1ð Þ
t ¼ jZ a;daf1ð Þ

t j�d jz a;da ;f1ð Þ
t j > 1

� �
and d gð Þ is an indicator

function whose value is 1 when the condition in the brackets is satis-

fied and zero otherwise. (The normalizing factor in the denominator

reflects the fact that the observed change to phenotypic node bf2 could

only have come from features of a affected by perturbation da.)

The influence links discovered in each perturbation condition

were then combined together in the form of a directed graph to rep-

resent influences among all the phenotypic nodes. Specifically, if a

link was identified in multiple drug conditions, the maximal link

strength across all conditions was adopted in the combined graph,

which forms the matrix of observations:

D af1 ;bf2

� �
¼ maxfd2gWda

t af1 ; bf2

� �
:

The rationale for taking the maximal link is that each module in

this study was perturbed with two drugs of different mechanisms of

action; we chose to accept any crosstalk revealed by either of the

drugs. One multi-feature influence graph was inferred at each time

point.

We note that we take into account the known targets of drugs in

that we only search for a link from af1 to bf2 if we know da is directly

targeted to module a. There are a number of other computational

approaches for graph inference, including the nested effects model

(Markowetz et al., 2007) and, more generally, Bayesian inference

approaches (Friedman et al., 2000). These approaches typically as-

sume that there are a large number of biomarkers (e.g. gene expres-

sion levels) as well as a large number of perturbations, but the

targets of the perturbations are generally not used explicitly in the in-

ference of links. Our current approach is especially suitable for appli-

cations of high content imaging in which there are a relatively small

number of observed biomarkers and perturbations can be selected to

specifically target each biomarker. Incorporating knowledge of the

target in the model provides higher confidence in directions of pre-

dicted crosstalk and greatly simplifies the computation.

2.4 PHOCOS graph reduction
We are interested in identifying how one observed node affects an-

other observed node. For our purposes, we define a link as ‘direct’ if

influence propagates directly from one observed node to a second

observed node without passing through a third observed node.

We note that in biological networks, indirect effects could arise

for multiple reasons, including perturbations that target multiple

nodes, propagation of influence through unobserved nodes and

propagation of effects through observed nodes. For the first case, we

assume that perturbations were selected to specifically target a single

network node (as is the case with our data). The second case is a

general caveat of most network inference approaches (Barzel and

Barab�asi, 2013), particularly when only limited numbers of nodes

can be monitored (in fact, observed influence is likely to involve

many unobserved intermediate molecular interactions). The focus of

PHOCOS is on the third case, in which we develop an optimization

approach to minimize the presentation of links found in Section 2.3

that arise via propagation through observed nodes (Fig. 2).

Indirect effects have been well described in a number studies

(Feizi et al., 2013; Weigt et al., 2009). Formally, indirect links may

be described by the expansion

Dcmb ¼ GþGindr ¼ GþG2 þG3 þ � � � (2)

where G 2 Rn�n is the ground truth direct-effect graph for all n

nodes, and Dcmb is the combined graph containing both direct and

indirect effects. We then make use of the closed form solution for

Fig. 2. An observed dense graph may be a combination of multiple effects,

including N-step indirect effects and errors from missing (dashed arrows) or

noisy links. These effects can mask the true, ‘core’ motif that underlies the

network.
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the infinite series observed in previous work (Feizi et al., 2013;

Spirtes et al., 2000):

Dcmb ¼ G I�Gð Þ�1 (3)

where I 2 Rn�n is the identity matrix. The convergence of this series

requires that the absolute value of the largest absolute eigenvalue of

G is less than 1 (discussed below).

The relationship between direct and indirect effects given above

describes the situation in a theoretical setting. However, in practice,

the situation can be much more complicated owing to missing links

and noise. A ‘missing link’ problem arises when some links, E, on

Dcmb cannot be measured directly. In experimental data, perturb-

ations can reveal potential links between modules; however, it is dif-

ficult to deduce intra-module crosstalk (Fig. 2, nodes of same color).

(Even a perturbation targeted to one module can affect multiple of

its features, and it is difficult to determine influence of relationships

among affected features.) Noise, N (e.g. white Gaussian noise), is

also an inevitable factor making the practical influence of graph dif-

ferent from the theoretical case.

By taking these issues into consideration, we modeled connections

between the observed graph D with Dcmb by: D ¼ Dcmb � EþN. By

replacing this term in Equation (3), we obtain

Dþ Eð Þ I�Gð Þ �G ¼ N I�Gð Þ (4)

By using the L2 norm on both sides of (4), the following inequality is

obtained:

k ðDþ EÞðI � GÞ �G k2
2¼kNðI � GÞ k2

2� kN k2
2 k ðI�GÞ k2

2 ¼ s

(5)

It is easy to verify the problem in (5) is bounded above under the

assumption that variance of noise is bounded. As mentioned above,

there is a requirement that the largest absolute eigenvalue of G is

less than 1. However, G is not directly observable from data.

Therefore, in cases when this condition does not hold, heuristic

approaches have been developed (Feizi et al., 2013) to normalize the

observed matrix D. In our analysis of the neutrophil data, D satisfied

the constraint without the need for normalization.

A reasonable assumption (or hope) is that missing links only oc-

cupy a small portion of links on the true graph (i.e., E is sparse).

Additionally, we seek to discover the major influences of informa-

tion among observed nodes (i.e. G is sparse). Inspired by the field of

compressed sensing (Baraniuk, 2007), we imposed a sparse prior on

both G and E, which then allowed us to convert (5) to a dual-sparse

optimization formalism in which we seek solutions to:

min jjGjj1 þ jjEjj1ð Þ

s:t:jj Dþ Eð Þ I�Gð Þ �Gjj22 � s
(6)

In the objective function, the L1 norm is used to encourage sparse

structures of G and E. (The L1 norm k Ak1¼
X

i;j

jAijj
1

for a matrix A.)

To make the optimization process tractable, we made use of an ap-

proach (Chen et al., 1998) to transform the objective function to

min jjGj1j þ jjEj1j þ bjj Dþ Eð Þ I�Gð Þ �Gjj22
� �

; (7)

where the relaxation parameter b balances the reconstruction errors

and the sparseness of the final reconstruction. This relaxation strat-

egy is widely used in the signal processing field (Malioutov et al.,

2005; Yang et al., 2010) to handle small noise and errors in the ori-

ginal data.

Problem in (7) falls into the sparse learning paradigm in machine

learning. We used the prevalent Alternative Directional

Minimization (ADM) method (Boyd et al., 2011) to minimize the

dual-sparse optimization problem. In detail, two auxiliary variablesbG and E
_

are introduced to overcome the problem that the gradient

of an L1 norm is hard to derive. With the standard ADM formula-

tion, the problem is converted to an unconstrained problem by mini-

mizing L

L¼: jjG
_

jj1 þ jjE
_

jj1 þ bjj Dþ Eð Þ I�Gð Þ �Gjj22

þl
2
jjG�G

_

þ l�1K1jj22 þ jjE� E
_

þ l�1K2jj22
� �

;
(8)

where K1 and K2 are two Lagrangian multipliers, l>0 is the pen-

alty parameter which will be incrementally increased during the op-

timization iterations. The four variables in (8) are sequentially

updated in the iteration until convergence is achieved. In particular,

we made use of the following numerical approach. A closed-form

solution for the updating rules of bG and E
_

have been previously

described (Boyd et al., 2011; Deng et al., 2013). The updating rules

for G and E only involve the L2 norm, which are easy to derive

(Petersen and Pedersen, 2008). Lagrangian Multipliers, K1 and K2,

are updated according to dual ascending rules. The whole optimiza-

tion was regarded as converged when the change of the objective

function is less than a threshold, chosen empirically as 10� 4. After

convergence, we further set links with weak strengths in G to zero to

remove unexpected artifacts from numerical iterations.

3 Results

3.1 Test of graph reduction using simulated data
Before analyzing our experimental dataset, we performed in silico

simulations to test the ability of PHOCOS to recover sparse direct

effects from noisy observations when ground truth is known. First,

we started with a graph structure containing three modules and five

‘common’ features per module (motivated by our experimental data

used below), leading to a graph with 15 nodes (but no edges yet)

and fraction S of edges randomly selected to be present. Here, the

parameter S controls the sparsity of the graph. The strength of the

edges was randomly drawn in the range of (0,1]. This graph, G, was

considered as the ground truth (Fig. 3a, left).

Next, we generated simulated data via a process, inspired by a

previously established data generative process (Feizi et al., 2013).

First, we added indirect effects as in Equation (2) to obtain Dcmb. As

previously discussed (Section 2.4), we cannot infer intra-module links

from our experimental data, and hence, all such simulated links were

removed. Second, a noise matrix N was generated with p% (noise

rate) of non-zero entries and edge strength chosen from a Gaussian

distribution N 0;0; 2ð Þ. Then N was added to Dcmb, and all links with

negative strength were removed. Third, a missing-link matrix E was

computed by removing m% of inter-module links in Dcmb (Fig. 3a,

same versus different colored nodes). The final ‘observed’ graph was

given by D ¼ Dcmb þN� E (Fig. 3a, ‘Observed graph’).

We then applied PHOCOS to recover the ground truth (Fig. 3a,

‘Result using PHOCOS’). A major design of PHOCOS is its ability

to robustly remove noise and identify missing links in the observed

graph D. For comparison in our study, we compared the perform-

ance of PHOCOS with an existing approach for inferring direct-

effect graphs (Feizi et al., 2013). It is worth noting that this previous

approach recovers direct effects by a closed-form solution (CF) with-

out explicitly considering errors and missing links. Comparison of

sample graphs showed that PHOCOS achieved much better
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recovery accuracy than CF (Fig. 3a). In the example shown, the

ground truth graph contains 17 links. PHOCOS recovered 16 links,

with 13 true positive, 3 false positives and 4 false negatives. The CF

method recovered a dense graph of 35 links with 14 true positive,

21 false positives and 3 false negatives.

Next, we performed simulations to assess the performance of

PHOCOS. First, we incrementally increased the missing link and

noise rates. This allowed us to compare PHOCOS and CF for differ-

ent error levels. Each entry in the heat-map (Fig. 3b) was obtained

by averaging F-scores (which report accuracy; defined by the har-

monic mean of precision and recall) calculated from 200 randomly

generated graphs with S ¼ 0.8. These simulations showed that

PHOCOS has an improved ability to accurately recover ground

truth networks (F-score ¼ 0.71, compared with F-score ¼ 0.64 for

CF). We further performed a Wilcoxon rank-sum test to compare

the F-score results of PHOCOS to CF (Fig. 3c) on each of the 200

simulations per entry in Figure 3b (i.e. each entry in the heat-map).

The results suggested that PHOCOS significantly outperformed CF.

Second, the robustness of parameter selection was also examined

for the b (see Equation (7)) in the optimization step. We computed

the corresponding F-score for both the PHOCOS and CF

approaches as we varied b across a realistic range for PHOCOS (Fig.

3d). (If b is too small, then the optimization favors a trivial solution

of no links and if b is too high there is no penalty for sparsity of G

and E.) We found the accuracy curve of PHOCOS is reliable across

a range of parameter settings for b.

Third, we assessed the performance of PHOCOS based on the

sparseness of the ground truth graph. Specifically, we varied the

level of sparsity, S, and repeated the previous numerical simulations.

Again, we found that PHOCOS consistently outperformed CF

across levels of sparsity and did particularly well for the difficult

case of dense graphs (Fig. 3e).

3.2 Feature selection for neutrophil polarization network
We applied our approach to the dataset of perturbed primary

human neutrophils (see Fig. 4a and (Ku et al., 2012) for sample

images). We measured 76 features that were extracted from each of

three biomarkers. We next applied our feature reduction approach

(Section 2.2) to identify archetypal phenotypes that showed distinct

patterns of deviations in response to perturbations. In particular, we

used k-mean clustering (with 20 replicates to avoid initialization

artifacts). Two model selection criteria, Akaike information crite-

rion (AIC) and Bayesian information criterion (BIC), were used to

determine, k, the number of clusters (Burnham and Anderson,

2002). Both model fit criteria suggested k¼4�6 as optimal cluster

numbers (Fig. 4b). Therefore, we fixed k ¼ 5 in the analysis.

Clustering results were visualized with class separation boundaries

and plotted in a projected 2D space using Fisher Discriminant ana-

lysis (Fig. 4c). This visualization served as a sanity check to show

that our selected five clusters are well separated.

Which types of features were selected? In our feature extraction

step, the attribute of each feature was annotated according to its im-

plementation into one of six a priori classes (Fig. 4d, right panel, top

axis): intensity (I), brightest pixel compactness (B), polarity (P),

Haralick (H), shape (S) and Zernike (Z). We note that the intensity,

shape, Haralick and Zernike features were computed as previously

described (Boland and Murphy, 2001). The ‘brightest pixel com-

pactness’ features measure properties of the spatial coverage of the

smallest region covering the brightest pixels (Ku et al., 2010).

‘Polarity’ features also analyze the spatial distribution of brightest

pixels, but additionally takes into account cell boundary properties

(Ku et al., 2012).

Our unsupervised clustering revealed strong consistency in at

least three of the five clusters in terms of feature-type composition

(Fig. 4d). All the features in cluster (B) are from the hand-annotated

brightest pixel compactness class. Cluster (I) contains a large portion

of intensity features and a small portion of Haralick features

Fig. 4. Phenotypic class discovery from neutrophil polarization assays. (a)

Sample images of polarized Neutrophil captured at different time points. (b)

An ‘optimal’ number of classes was chosen based on two information-theor-

etic model selection criteria: AIC and BIC. Both indicators suggested five

classes. (c) The visualization of class margins and corresponding projections

of each feature vector in a 2D space suggested strong class separation (white

symbols indicate feature class). (d) Unsupervised clustering showed common

phenotypic attributes of grouped features in each of the five clusters, which

provided intuitive cluster labels. (e) The feature nearest each cluster center

was selected as cluster representative (symbols are as in c).

Fig. 3. Simulation results of PHOCOS graph reduction. (a) Shown is a simulated

graph of three biomarkers and five features per marker. From left to right are

ground truth graph (direct effect), noisy and dense experimental observation

(input to PHOCOS), the direct effect inferred by the CF and the recovered cross-

talk graph from PHOCOS. (b) Large-scale simulations of CF (left) and PHOCOS

(right) graph recovery methods for varying noise rates and missing link ratios

of graphs with 0.8 sparsity. (c) The P-value of the Wilcoxon rank-sum test for F-

score results in b. (d) Performance of PHOCOS with different values of b. (e)

Assessment of graph recovery for varying levels of sparsity.
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(Haralick features also contain intensity information). Most of the

features in cluster (P) are polarity features. For the remaining two

clusters: cluster (M) contains morphology, Zernike coefficients and

brightest pixel compactness features, which mostly relate to the

morphology of the biomarker; and cluster (T) contains Haralick and

Zernike features, which relate to properties of texture. The feature

closest to each cluster center mean was selected as a representative

(Fig. 4e). The deviation curves of these representative features were

used in subsequent steps to identify crosstalk.

3.3 Inference of multi-feature neutrophil crosstalk

network
We applied PHOCOS to investigate the polarization networks of

human neutrophils at different time intervals (the relaxation par-

ameter b was empirically set to 100). Multi-feature influence

graphs were computed (Section 2.3). Then, PHOCOS was applied

to the influence graphs obtained in each time interval to recover

time-varying crosstalk networks. We noted in the reduced graph,

there were still some links with small weights, which were re-

garded as numerical artifacts from the optimization. We heuristic-

ally removed the link if its weight is <60% of the mean weight of

the graph.

We followed previous work (Ku et al., 2012) to divide the dy-

namic polarization process of neutrophil into three periods corres-

ponding to the initialization (0�180s), establishment (180�450s)

and maintenance (450�600s) phases of cell polarization. We then

used PHOCOS to infer graphs for each period (Fig. 5, top graphs).

To help visualize and interpret these results, we paired these results

with graphs that summarized the total influence (across all features)

observed between modules (Fig. 5, bottom graphs).

We calculated the fraction of all cross-feature links between any

pair of modules. In detail, after PHOCOS reduction of the tth tem-

poral graph, we counted the total number of cross-feature links be-

tween biomarkers a and b by:

Nt a; bð Þ ¼
X
f1 ;f2

sign wt af1 ; bf2

� �h i
;

where wt af2 ; bf2

� �
is the weight between phenotypic nodes af1 and

bf2 . Then we normalized N
t
ða;bÞ by the total number of links Ktð Þ

on the temporal graph at time t as
Nt ða;bÞ

Kt
. We drew a link between

modules if the normalized number of cross-feature links exceeded a

heuristically determined threshold of 0.2 (Fig. 5, bottom graphs).

From these results, it can be seen that patterns of multi-feature

crosstalk networks dynamically evolve across different periods.

This agrees with previous results on the same dataset from single-

feature analysis (Ku et al., 2012). More interestingly, the major in-

formation flow among these modules appears to evolve from an

initial large feedback loop to a fan-in network motif (Liberali

et al., 2014).

As a different approach to interpret our time-varying multi-fea-

ture crosstalk graphs, we examined only the links that were persist-

ent across all time intervals (Fig. 6a, left panel). We applied

PHOCOS to this graph (Fig. 6a, right panel) and extracted single-

feature, crosstalk sub-networks (Fig. 6b). We observed that the

crosstalk diagrams of different features are different. The intensity

graph exhibits a cascade topology from F to B to M. There is only

one persistent link identified in the ‘brightest pixel’ network from F

directly to M. The polarity graph also exhibits a cascade topology,

but from M to B to F, which is in the reverse direction of the inten-

sity graph. These intensity and polarity feature networks largely

agree with previous work obtained by single-feature crosstalk infer-

ence (Ku et al., 2012). There are also many new predictions about

the presence or absence of information flow that are more difficult

to assess directly from current literature. New experimental

approaches, such as ontogenetic control of signaling components

(Toettcher et al., 2013), will make it more feasible in the future to

design directed perturbations that alter one phenotype (e.g. spatial

pattern of activation) of a biomarker while holding another pheno-

type (e.g. total level of activation) constant.

We also observed no persistent links for ‘texture’ and ‘morph-

ology’ single-feature crosstalk diagrams. However, it is apparent

that the texture and morphology features play important roles in the

multi-feature network (Fig. 6a). As one example, reorganization of

the MTs (node MT) was related to changes in the localization of p-

MyosinII (node BP), which is consistent with current evidence that

MTs transport signaling activators to the back of neutrophils (Wang

et al., 2013; Xu et al., 2003). The observation that these types of

interactions cannot be identified by single-feature analysis highlights

the importance of conducting multi-feature network learning.

Importantly, the inferred graphs serve as starting points for more

targeted experimental validation studies that investigate how cross-

talk regulates specific phenotypes, such as intensity versus localiza-

tion, of biomarkers.

Fig. 5. Multi-feature graphs recovered by PHOCOS in different periods. In

each column, the top panel shows the multi-feature graph and the bottom

panel summarizes the major information flow in the corresponding period.

Fig. 6. Persistent crosstalk during neutrophil polarization. (a) Shown are links

that appeared in all periods (Fig. 5) before and after graph reduction. (b)

Single-feature persistent crosstalk diagrams identified from the multi-feature

PHOCOS graph.
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4 Robustness of PHOCOS

We investigated several aspects of robustness for graph inference

using the neutrophil data. First, we considered an alternative div-

ision of periods. Based on the multiphasic responses of neutrophils

to chemoattractant, we originally divided the polarization phases

into the three periods. As comparison, we reanalyzed our data using

a higher-resolution division into five periods (Fig. 7a; Section 2.2).

We applied PHOCOS to obtain crosstalk networks in each period

and visualized the major information flow as before (Fig. 5 bottom).

Reassuringly, merged graphs based on their coarser periods (i.e.

merging periods 1 and 2, and 3 and 4) are identical to the original

coarse-grained graphs except for a single extra link from B to F dur-

ing establishment (3-7.5 min). These experimental results support

the intuition that dividing data into more precise time regions can

provide more details about the graph evolution processes, while re-

maining consistent with more coarse-grained analysis of the dy-

namic processes. For the purposes of investigating robustness of

PHOCOS, we chose to proceed with these higher-resolution

periods.

Next, we considered using alternative features for PHOCOS in-

ference. We sequentially changed the representative feature in each

phenotypic cluster (Fig. 4d) and investigated how the graph infer-

ence results would be affected. In our previous analysis, the feature

closest to the cluster center was chosen as a representative. Here, the

jth closest feature as the representative for each phenotypic class

(Fig. 4d). Our investigations were performed independently on each

previously identified phenotypic class. We applied PHOCOS to

these new feature sets and inferred both the raw and the reduced

(after PHOCOS reduction) graphs in each of the five periods. The

Jaccard index was chosen to evaluate the similarity of graphs (based

on the presence and absence of links) obtained with the different fea-

ture sets with the reference graphs (based on the first closet feature

in each cluster). The Jaccard index scores (across the five periods)

were averaged and summarized for both the raw (Fig. 7b, left) and

reduced (Fig. 7b, right) graphs.

We noted that phenotypic classes I, B, P, T are quite robust. The

Jaccard score curves are reliable even though we altered the repre-

sentative feature in these clusters. However, crosstalk inferred using

the morphological features M are less robust, reflecting the diversity

of features in this class (Fig. 4d). Together, these investigations pro-

vide a general framework for studying robustness of PHOCOS to

alternative choices of time resolution and feature choice.

5 Discussion

We propose PHOCOS as a framework for inferring multi-feature

crosstalk networks from perturbation assays. Previous approaches

have been developed to analyze gene regulatory networks from image

readouts (Collinet et al., 2010; Graml et al., 2014; Nir et al., 2010).

These approaches focused on single measurements on each bio-

marker. To the best of our knowledge, PHOCOS is the first crosstalk

inference method that explicitly considers the potential interactions

among different features (attributes) of biomarkers. The contribu-

tions of PHOCOS are summarized in the following three points.

First, from the view of data analysis, we conducted feature

screening to identify common phenotypic classes from patterns of

feature deviation profiles. In particular, for microscopy there are

many possible features that could be extracted from images, and it is

often not obvious which features offer novel insights into crosstalk.

Our feature-screening step identified a small number of archetypical

deviation patterns, which helped reduce the complexity of graph

inference.

Second, from the view of graph inference, we proposed a dual-

sparse optimization framework for direct-effect pursuit from experi-

mental observations. The effectiveness of PHOCOS was demon-

strated by its ability to identify core, direct-effect motifs from missing

links, noise and indirect effects. From simulation studies, PHOCOS

handled difficult cases (with noise and missing links) well for direct-

effect graph learning. While the PHOCOS reduction method is moti-

vated by the multi-feature network problem, it is based on a general

framework that can be directly applied to other network inference

problems, e.g. for gene or protein interaction networks.

Third, from the view of systems biology, we applied PHOCOS

to study multiple phenotypic responses across multiple modules and

time periods defined within the neutrophil polarization network.

Consistent with previous work, we found that crosstalk can evolve

dynamically and differently across different features. More import-

antly, we were able to identify novel cross-feature interactions that

were missed by single-feature graph-learning approaches.

With the ability to infer multi-feature crosstalk influence net-

works comes both increased resolution and increased complexity.

Depending on the features selected, some links may be immediately

interpretable (e.g. activity levels of A affect localization of B), while

others (e.g. activity levels of A affect the texture of B) may be diffi-

cult to interpret directly in terms of molecular mechanisms and

interactions. As previously mentioned, new techniques, including

optogenetics, will allow perturbation of specific features while hold-

ing others constant; these experimental approaches will both inspire

the development of multi-feature crosstalk inference methods, such

as PHOCOS, and be invaluable for testing predictions.

PHOCOS has the potential to help provide deeper insights into

how biological networks transduce information. Content-rich

approaches for monitoring cellular phenotypes, such as microcopy,

provide multi-dimensional views into how molecular components

respond to perturbations. PHOCOS can use these data to provide

‘high-resolution’ views of which phenotypic attributes support inter-

action among biomarkers. While PHOCOS was developed and

tested on microscopy images, it can be extended to infer cross-

feature interactions for other biological datasets that capture multi-

attributes per biomarker.
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