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Abstract
Alzheimer’s disease (AD) is a chronic, irreversible brain disorder, no effective cure for it till now. However, available medicines 
can delay its progress. Therefore, the early detection of AD plays a crucial role in preventing and controlling its progression. 
The main objective is to design an end-to-end framework for early detection of Alzheimer’s disease and medical image clas-
sification for various AD stages. A deep learning approach, specifically convolutional neural networks (CNN), is used in 
this work. Four stages of the AD spectrum are multi-classified. Furthermore, separate binary medical image classifications 
are implemented between each two-pair class of AD stages. Two methods are used to classify the medical images and detect 
AD. The first method uses simple CNN architectures that deal with 2D and 3D structural brain scans from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) dataset based on 2D and 3D convolution. The second method applies the transfer 
learning principle to take advantage of the pre-trained models for medical image classifications, such as the VGG19 model. 
Due to the COVID-19 pandemic, it is difficult for people to go to hospitals periodically to avoid gatherings and infections. As 
a result, Alzheimer’s checking web application is proposed using the final qualified proposed architectures. It helps doctors 
and patients to check AD remotely. It also determines the AD stage of the patient based on the AD spectrum and advises the 
patient according to its AD stage. Nine performance metrics are used in the evaluation and the comparison between the two 
methods. The experimental results prove that the CNN architectures for the first method have the following characteristics: 
suitable simple structures that reduce computational complexity, memory requirements, overfitting, and provide manageable 
time. Besides, they achieve very promising accuracies, 93.61% and 95.17% for 2D and 3D multi-class AD stage classifica-
tions. The VGG19 pre-trained model is fine-tuned and achieved an accuracy of 97% for multi-class AD stage classifications.

Keywords Medical image classification · Alzheimer’s disease · Convolutional neural network (CNN) · Deep learning · 
Brain MRI

Introduction

The most common cause of dementia is Alzheimer’s disease 
(AD) because 60–80% of dementia cases account for it [1, 
2]. In a neurodegenerative form of dementia, AD starts with 

mild cognitive impairment (MCI) and gradually gets worse. 
It affects brain cells, induces memory loss, thinking skills, 
and hinders performing simple tasks [3, 4]. Therefore, AD is 
a progressive multi-faceted neurological brain disease. The 
persons with MCI are more likely to develop AD than oth-
ers [5, 6]. People observe the effects of AD only after years 
of changes in the brain because it initiates two decades or 
more before the symptoms are detected. Alzheimer’s disease 
International (ADI) reports that more than 50 million people 
worldwide are dealing with dementia. By 2050, this percent-
age is projected to increase to 152 million people, which 
means that every 3 s, people develop dementia.

The estimated annual cost of dementia is expected to be 
$1 trillion and is predicted to double by 2030 [7]. Depending 
on the age, the proportion of people affected by AD varies. 
Figure 1 shows 5.8 million Americans in the United States 
(US) aged 65 and older with AD in 2020. And by 2050, it is 
expected to reach 13.8 million [5].
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The biggest challenge facing Alzheimer’s experts is that 
no reliable treatment available for AD so far [8, 9]. Despite 
this, the current AD therapies can relieve or slow down the 
progression of symptoms. So, the early detection of AD at 
its prodromal stage is critical [10, 11]. Computer-Aided Sys-
tem (CAD) is used for accurate and early AD detection to 
avoid AD patients’ high care costs, which are expected to 
rise dramatically [12]. In the early AD diagnosis, traditional 
machine learning techniques typically take advantage of two 
types of features [13], namely, region of interest (ROI)-based 
features and voxel-based features. More specifically, they 
rely heavily on basic assumptions, such as regional cortical 
thickness, hippocampal volume, and gray matter volume, 
regarding structural or functional anomalies in the brain [14, 
15].

Traditional methods depend on manual feature extraction, 
which relies heavily on technical experience and repetitive 
attempts, which appears to be time-consuming and subjec-
tive. As a result, deep learning especially convolutional 
neural networks (CNNs) is an effective way to overcome 
these problems [16]. CNN can boost efficiency further, has 
shown great success in AD diagnosis, and it does not need to 
do handcrafted features extraction as it extracts the features 
automatically [17, 18].

In this study, an end-to-end Alzheimer’s disease early 
detection and classification  (E2AD2C) framework is estab-
lished focused on deep learning approaches and convolu-
tional neural networks (CNN). Four stages of AD such as (I) 
Clinically Stable or Normal Control (NC), (II) Early Mild 
Cognitive Impairment (EMCI), (III) Late Mild Cognitive 
Impairment (LMCI), and (IV) Alzheimer’s disease (AD) 
are multi-classified. Besides, separate binary medical image 
classifications are implemented between each two-pair class 
of AD stages. This medical image classification is applied 
using two methods. The first method uses simple CNN archi-
tectures that deal with 2D and 3D structural brain scans from 
the ADNI dataset based on 2D and 3D convolution. The 

second method applies the transfer learning principle to take 
advantage of the pre-trained models for medical image clas-
sifications, such as the VGG19 model. In addition to that, 
using the final qualified architectures, Alzheimer’s checking 
web application is proposed. It helps doctors and patients to 
check AD remotely, determines the AD stage, and advises 
the patient according to its AD stage.

The remainder of this paper is organized as follows: in the 
“Related Work” section, the relevant works are reviewed. 
The “Problem Statement and Plan of Solution” section 
outlines the major issues and the aims of this study. In the 
“Methods and Materials” section, the methods and materi-
als are discussed. In the “Experimental Results and Model 
Evaluation” section, the experiments and the results are 
assessed. The “Conclusion” section summarizes the paper.

Related Work

AD detection has been widely studied, and it involves sev-
eral issues and challenges. A sparse autoencoder and 3D 
convolutional neural networks were used by Payan et al. 
[19]. They built an algorithm that detects an affected per-
son’s disease status based on a magnetic resonance image 
(MRI) scan of the brain. The major novelty was the usage of 
3D convolutions, which gave a better performance than 2D 
convolutions. The convolutional layer had been pre-trained 
with an auto-encoder, but it had not fine-tuned. Performance 
is predicted to improve with fine-tuning [20].

Sarraf et al. [21] used a commonly used CNN architec-
ture, LeNet-5, to classify AD from the NC brain (binary 
classification). Hosseini et al. [22] developed the work pre-
sented in [19]. They predicted the AD by a Deeply Super-
vised Adaptive 3D-CNN (DSA-3D-CNN) classifier. Three 
stacked 3D Convolutional Autoencoder (3D-CAE) networks 
were pre-trained using CAD-Dementia dataset with no skull 
stripping preprocessing. The performance was measured 
using ten-fold cross-validation.

Korolev et  al. [23] proved that an equivalent perfor-
mance could be realized. When the residual network and 
plain 3D CNN architectures were applied on 3D structural 
MRI brain scans, the results showed that the two networks’ 
depth was very long, and the complexity was high. They did 
not achieve high performance as expected.

An eight-layer CNN structure was studied by Wang et al. 
[24]. Six layers served the feature extraction process in 
convolutional layers and two fully connected layers in clas-
sification. The results showed that max-pooling and Leaky 
Rectified Linear unit (LReLU) gave a high performance. 
Khvostikov et al. [25] used a 3D Inception-based CNN 
for the AD diagnosis. The method depended on Structural 
Magnetic Resonance Imaging (SMRI) and Diffusion Tensor 

Fig. 1  A proportion of people affected by AD according to ages in 
the United States [5]
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Imaging (DTI) modalities fusion on hippocampal Regions 
of Interest (RoI). They compared the performance of that 
approach with the AlexNet-based network. Higher perfor-
mance was reported by 3D Inception than by AlexNet.

A HadNet architecture was proposed to study Alzheimer’s 
spectrum MRI by Sahumbaiev et al. [26]. The dataset of  
MRI images is spatially normalized by Statistical Paramet-
ric Mapping (SPM) toolbox and skull-stripped for better 
training. It is projected that when the HadNet architecture 
improved, sensitivity and specificity would improve as well.

The model of Apolipoprotein E expression level4 
(APOe4) was suggested by Spasov et al. [27]. MRI scans, 
genetic measures, and clinical evaluation were used as 
inputs for the APOe4 model. Compared with pre-trained 
models such as AlexNet [28] and VGGNet [29], the model 
minimized computational complexity, overfitting, memory 
requirements, prototyping speed, and a low number of 
parameters.

A novel CNN framework was proposed based on a multi-
modal MRI analytical method using DTI or Functional 
Magnetic Resonance Imaging (fMRI) data by Wang et al. 
[30]. The framework classified AD, NC, and amnestic mild 
cognitive impairment (aMCI) patients. Although it achieved 
high classification accuracy, it is expected that using 3D 
convolution instead of 2D convolution would give better 
performance.

A shallow tuning of a pre-trained model such as Alex net, 
Google Net, and ResNet50 was suggested by Khagi et al. 
[31]. The main objective was to find the effect of each sec-
tion of the layers in the results in the natural image and 
medical image classification. PFSECTL mathematical model 
was proposed by Jain et al. [32] based on CNN and VGG-
16 pre-trained models. It worked as a feature extractor for 
the classification task. The model supported the concept of 
transfer learning.

Ge et al. [33] developed a 3D multi-scale CNN (3DMSCNN) 
model. For AD diagnosis, 3DMSCNN was a new architecture. 
Additionally, they proposed an enhancement strategy and 

feature fusion for multi-scale features. Graph Convolutional 
Neural Network (GCNN) classifier was proposed by Song 
et al. [34] based on the Graph-theoretic tools. They trained and 
validated the network using structural connectivity graphs rep-
resenting a multi-class model to classify the AD spectrum into 
four categories.

For the detection of AD, Liu et al. [35] used speech info. 
The features of the spectrogram were extracted and obtained 
from elderly speech data. The system relied on methods for 
machine learning. Among the tested models, the logistic 
regression model gave the best results. Besides, a multi-
model deep learning framework was proposed by Liu et al. 
[36]. Automatic hippocampal segmentation and AD classifi-
cation were jointed based on CNN using structural MRI data. 
The learned features from the multi-task CNN and the 3D 
Densely Connected Convolutional Networks (3D DenseNet) 
models were combined to classify the disease status.

A protocol was introduced by Impedovo et al. [37]. This 
protocol offered a “cognitive model” for evaluating the rela-
tionship between cognitive functions and handwriting pro-
cesses in healthy subjects and cognitively impaired patients. 
The key goal was to establish an easy-to-use and non-invasive 
technique for neurodegenerative dementia diagnosis and mon-
itoring during screening and follow-up. A 3D CNN architec-
ture is applied to 4D FMRI images for classifying four AD 
stages (AD, EMCI, LMCI, NC) by Harshit et al.[38]. In addi-
tion to that, other CNN structures that deal with 3D MRI for 
different AD stage classification are suggested by Silvia et al. 
[39] and Dan et al. [40]. A 3D Densely Connected Convolu-
tional Networks (3D DenseNets) is applied in 3D MRI images 
for 4-way classification by Juan Ruiz et al. [41].

Problem Statement and Plan of Solution

Recently, numerous architectures that can accommodate 
AD detection and medical image classification have been 
proposed in the literature, as seen in the “Related Work” 

Table 1  Demographic data for 
300 subjects

Alzheimer stages AD EMCI LMCI NC

Subject number 75 75 75 75
Male/female 21/54 51/24 43/32 32/43
Age (mean ± STD) 75.95 ± 0.91 76.08 ± 0.89684 77.44 ± 1.33801 75.68 ± 0.469617

Fig. 2  Slices of MR images: 
Accelerated Sagittal MPRAGE 
view, Axial Field Mapping 
view, and 3 Plane. Localizer 
view from left to right of AD 
patient
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section. However, most of them lack applying transfer learn-
ing techniques, multi-class medical image classification, 
and applying Alzheimer’s disease checking web service to 
check AD stages and advise patients remotely. These issues 
have not been sufficiently discussed in the literature. So, the 
novelties of this study, according to other state-of-the-art 
techniques reviewed in the “Related Work” section, can be 
organized as follows:

• An end-to-end framework is applied for the early detec-
tion of Alzheimer’s disease and medical image classification.

• Medial image classification is applied using two meth-
ods as follows:

The first method is based on simple CNN architectures 
that deal with 2D and 3D structural brain MRI. These 
architectures are based on 2D and 3D convolution.
The second method uses transfer learning to take advan-
tage of the pre-trained models such as the VGG19 model.

• The main challenges for medical images are the small 
number of the dataset. So, data augmentation techniques 
are applied to maximize the dataset’s size and prevent the 
overfitting problem.

• Resampling methods are used, such as “oversampling, 
downsampling” to overcome collected imbalanced dataset 
classes.

• Three multi-class medical image classification and 12 
binary medical image classification have experimented with 
four AD stages.

• The experimental results give high performance accord-
ing to nine performance metrics.

• Due to the COVID-19 pandemic, it is difficult for people 
to go to hospitals periodically to avoid gatherings and infec-
tions. Thus, Alzheimer’s disease checking web service for 
doctors and patients is proposed to check AD and determine 
its stage remotely. Then, it advises according to the specified 
AD stage.

Methods and Materials

Early detection of Alzheimer’s disease plays a crucial role 
in preventing and controlling its progress. Our goal is to pro-
pose a framework for the early detection and classification 
of the stages of Alzheimer’s disease. There will be a com-
prehensive explanation of the proposed  E2AD2C framework 
workflow, the preprocessing algorithms, and medical image 
classification methods in the next sub-sections.

The Proposed  E2AD2C Framework

The proposed  E2AD2C framework comprises six steps, 
which are as follows:

Step 1—Data Acquisition Step: All trained data is col-
lected from the ADNI dataset in 2D, T1w MRI modality. It 
includes medical image descriptions such as Coronal, Sagit-
tal, and Axial in the DICOM format. The dataset consists of 
300 patients divided into four classes AD, EMCI, LMCI, and 
NC. Each class has 75 patients with a total number of images 
of 21 and 816 scans. AD class contains 5764 images, EMCI 
has 5817 images, LMCI includes 3460 images, and NC has 
6775 images. All medical data were derived with a size of 
256 × 256 in 2D format. Table 1 depicts demographic data 
for 300 subjects from the ADNI dataset. It gives an overview 
of the data, such as the number of patients in each class, 
the ratio of male or female patients in each class, and the 
mean of ages with the standard deviation (STD). Figure 2 
shows three slices in a two-dimensional format. The slices 
were extracted from an MRI scan in MR Accelerated Sagit-
tal MPRAGE view, MR Axial Field Mapping view, and MR 
3 Plane Localizer view.

Step 2—Preprocessing Step: The collected dataset suf-
fers from imbalanced classes. To overcome this problem, 
we resampling the dataset using two methods (oversampling 
and undersampling). Oversampling means coping instances 
for the under-represented class, and undersampling means 
deleting instances from the over-represented class. We apply 
oversampling method on AD, EMCI, and LMCI. Also, the 
undersampling method is utilized for the NC class. All AD 
classes after resampling methods become 6000 MRI images. 
As a result, the dataset becomes 24,000 images. The data-
set is then processed, normalized, standardized, resized, 
denoised, and converted to a suitable format. The data is 
denoised by a non-local means algorithm for blurring an 
image to reduce image noise.

Step 3—Data Augmentation Step: Due to the scarcity of 
medical datasets, the dataset is augmented using traditional 
data augmentation techniques such as rotation and reflec-
tion (flipping) that flips images horizontally or vertically. 
So, the dataset’s size becomes 48,000 images divided into 
12,000 images for each class. The major reasons for using 
data augmentation techniques are to (i) maximize the dataset 
and (ii) overcome the overfitting problem.

The balanced augmented dataset of 48,000 MRI images 
is then shuffled and split into training, validation, and test 
set with a split ratio of 80:10:10 on a random selection basis 

Table 2  Training, validation, and test set size

Class label Training set size Validation 
set size

Test set 
size

Total

0 AD 9600 1200 1200 12,000
1 EMCI 9600 1200 1200 12,000
2 LMCI 9600 1200 1200 12,000
3 NC 9600 1200 1200 12,000
Total 38,400 4800 4800 48,000
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Fig. 3  The proposed framework  E2AD2C architecture
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for each class. Table 2 summarizes the resulting training, 
validation, and test set sizes for 4-way classification (AD vs. 
CN vs. EMCI vs. LMCI) as well as 2-way classification or 
multi-class and binary classifications.

Step 4—Medical Image Classification Step: In this step, 
four stages of AD spectrum (I) NC, (II) EMCI, (III) LMCI, 
and (IV) AD are multi-classified. Besides, separate binary 
classifications are implemented between each two-pair class. 
This medical image classification is done via two methods. 
The first method depends on simple CNN architectures that 
deal with 2D, 3D structural brain MRI scans based on 2D, 
3D convolutions. The CNN architectures are built from 
scratch. The second method uses transfer learning tech-
niques for medical image classification, such as VGG 19 
model, to benefit from the pre-trained weights.

Step 5—Evaluation Step: The two methods and the CNN 
architectures are evaluated according to nine performance 
metrics.

Step 6—Application Step: Based on the proposed quali-
fied models, an AD checking web application is proposed. It 
helps doctors and patients to check AD remotely, determines 
the Alzheimer’s stage of the patient based on the AD spec-
trum, and advises the patient according to its AD stage. The 
full pipeline of the proposed framework is shown in Fig. 3.

Preprocessing Techniques

Data Normalization Data normalization is the process that 
changes the range of pixel or voxel intensity values. It aims 
to remove some variations in the data, such as different sub-
ject pose or differences in image contrast, to simplify subtle 
difference detection. Zero-mean, unit variance normaliza-
tion, [−1, 1] rescaling, and [0, 1] rescaling are examples of 
the data normalization methods. The last method is applied 
in the current study. The difference between these normali-
zation methods appears in Fig. 4. It illustrates an original 
image and its output shape based on applying the different 
data normalization methods.

Proposed Classification Methods and Techniques

Feature extraction, feature reduction, and classification are 
three essential stages where traditional machine learning 
methods are composed. All these stages are then combined 
in standard CNN. By using CNN, there is no need to make 
the feature extraction process manually. Its initial layers’ 
weights serve as feature extractors, and their values are 
improved by iterative learning. CNN gives higher perfor-
mance than other classifiers. It consists of three layers: 

Fig. 4  Example of the normalization methods applied on MRI image

Fig. 5  Illustration of the convo-
lutional operation
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(i) the convolution layer performs the feature extraction 
process, (ii) the pooling layer performs the dimensional-
ity reduction, and (iii) the fully connected layer performs 
the classification and converts from the two-dimensional 
matrices into a one-dimensional vector [42].

The convolutional layer represents a learnable filter that 
extracts features from an input image. For a 3D image 
with size H × W × C where H is the height, W is the width, 
and C is the number of channels. Using a 3D filter-sized 
FH × FW × FC where FH is the filter height, FW is the filter 
width, and FC is the number of filter channels. Therefore, 
the output activation map should be with a size of AH × AW, 
where AH is the activation height and AW is the activation 
width. The values of AH and AW can be obtained using 
Eqs. 1 and 2.

(1)AH = 1 +
H − FH + 2P

S

P represents the padding and S is the stride; n filters 
may exist, so the activation map size should become 
AH × Aw × n, as illustrated in Fig. 5.

Non-linearity in the network is handled by the activa-
tion function, making a non-linear transformation to the 
neuron’s inputs. For the proposed binary classifier, we 
apply the sigmoid function in the output layer. It gives the 
probabilities of a data point belonging to a particular class 
in values between 0 and 1, calculated by Eq. 3. The Recti-
fied Linear Unit (ReLU) activation function is applied for 
all hidden layers because of sigmoid drawbacks, as it gives 
zero results for the negative input values. So, the neuron 
is not activated, and only a definite number of neurons are 
activated, which accelerates the computation and training, 
calculated by Eq. 4. An improved version of the ReLU 
activation function is called the Leaky rectified linear layer 

(2)AW = 1 +
W − FW + 2P

S

Fig. 6  The difference among 
the sigmoid, Relu, and LRelu 
activation functions [24]

Fig. 7  The 2D-M2IC model architecture

1717Cognitive Computation (2022) 14:1711–1727



1 3

(LReLU), calculated by Eq. 5. The difference between the 
three activation functions is depicted in Fig. 6.

For the proposed multi-classifier, the SoftMax function 
is used [32], which returns the probability for a data point 
belonging to each class, calculated from Eq. 6.

where x is the input vector, exi is the standard exponential 
function for the input vector, k is the number of classes in 
the multi-class classifier, and exj is the standard exponential 
function for the output vector.

For medical image classification and AD stage detec-
tion, we use two methods. The first method uses simple 
CNN architectures built from scratch. These architectures 
are a competitive tool for Multi-class medical image clas-
sification  (M2IC) and binary medical image classifica-
tion (BMIC) that deal with 2D, 3D MRI based on 2D, 3D 
convolution. So, we called these architectures (2D-M2IC, 

(3)fsigmoid =
1

1 + exp(−x)

(4)fRelu = max(0, x)

(5)fLRelu =

{

x

.01

if x > 0

otherwise

}

(6)f (xi) =
exi

∑K

j=1
exj

for i = 1, 2....., k and x = [x1, ....., xk]

3D-M2IC, 2D-BMIC, and 3D-BMIC). The 2D-M2IC 
model uses three convolutional layers in a two-dimensional  
format by convolutional kernels (sized: 3 × 3), with 3  
max-pooling kernels (sized: 2 × 2). After that, there are 
two dropout layers followed by a flatten layer and 2 FC 
layers. Rectified linear layer (ReLU) is the activation func-
tion of the hidden layers. Eventually, a final FC layer with 
a softmax activation function is used to handle the four 
stages of Alzheimer’s disease. The dataset format in this 
model is the 2D format with a size of (100 × 100) pixels 

Fig. 8  The 3D-M2IC model architecture

Table 3  The tuning applied in the vgg19 model

Model: "sequential"

Layer (type) Output shape Param #

vgg19 (functional) (None, 3, 3, 512) 20,024,384
flatten (Flatten) (None, 4608) 0
dense (Dense) (None, 1024) 4,719,616
dense_1 (Dense) (None, 512) 524,800
dense_2 (Dense) (None, 256) 131,328
dropout (Dropout) (None, 256) 0
dense_3 (Dense) (None, 128) 32,896
dropout_1 (Dropout) (None, 128) 0
dense_4 (Dense) (None, 4) 516
Total params: 25,433,540
Trainable params: 25,433,540
Non-trainable params: 0

1718 Cognitive Computation (2022) 14:1711–1727



1 3

for MRI images. The architecture of the 2D-M2IC model 
is shown in Fig. 7.

The 3D-M2IC model has the same structure as the 
2D-M2IC model, but it uses 3D convolutional layers. It 

comprises three convolution layers, three max-pooling, and 
2 FC layers, followed by a softmax output layer. All 3D con-
volution kernels are sized 3 × 3 × 3 with a stride value of 1 in 
all three dimensions. All pooling kernels are sized 2 × 2 × 2. 

Table 4  Summarization of the applied performance metrics

Metric Description Expression

Accuracy (ACC) •It is the number of the correct prediction to 
the total number of predictions

ACC  = TP + TN

TP + TN + FP + FN

where TP, TN, FP, and FN represent the True Positive, True 
Negative, False Positive, and False Negative values

Loss •For binary classification, we use binary cross-
entropy loss

l(y, p) = −(ylogp + (1 − y)log(1 − p))

where y is the actual value and p is the predicted value
•For multi-classification, we use categorical 

cross-entropy loss
l(y, p) = −

∑M

c=1
yo,clogpo,c

where M is the number of classes, l is the loss value, and p is the 
predicted value

F1 Score •It is the harmonic mean of precision and 
recall. It has a range of [0, 1]. The higher the 
F1 Score is, the better the model performance 
is

F1 = 2TP

2TP + FP + FN

Recall •It is the correct positive result amount to all 
relevant sample amount

Recall = TP

TP + FN

Precession •It is the correct positive result amount to 
the positive result amount predicted by the 
classifier

P = TP

TP + FP

The receiver operating 
curve (ROC) and Area 
under the Curve (AUC)

•It picks a good cut-off Threshold for the 
model from plotting True Positive Rate 
(TPR) against False Positive Rate (FPR) for 
different values of the Threshold in the range 
of [0, 1]

TPR (sensitivity) = TP

TP + FN

FPR (1-specificity) = FP

FP + TN

Matthews Correlation 
Coefficient (MCC)

•The higher the correlation between True and 
predicted values is, the better the model 
prediction is

MCC = TP × TN−FP × FN
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

Confusion matrix •It is the complete description of the model 
performance

•It gives a matrix as an output, and it forms the 
basis of other types of metrics that depend on 
TP, TN, FP, and FN metrics

To understand the definition of TP, TN, FP, and FN, assume the 
proposed binary model classifies between AD and NC then:

– TP: The case that p is AD and y is AD
– TN: The case that p is NC and y is NC
– FP: The case that p is AD and y is NC
– FN: The case that p is NC and y is AD

Table 5  Comparison of the proposed models with the state-of-the-art models

Approach Dataset Modality Type of classification Accuracy

Payan et al. [19] 755 in each class (AD, 
MCI, and HC)

ADNI MRI Binary, multi AD vs. EMC vs. HC: 
89.47%

AD vs. HC: 95.39%
AD vs. MCI: 86.84%
HC vs. MCI: 92.11%

Sarraf et al. [21] 302 subjects (211 AD, 91 
NC)

ADNI MRI, fMRI Binary AD vs. HC: 98.84%

Hosseini-Asl et al. [22] 210 subjects (70 AD, 70 
NC, 70 MCI)

CAD-dementia MRI Binary, multi AD vs. EMC vs. HC: 89.1%
AD + MCI/NC: 90.3%
AD/NC: 97.6%
AD/MCI: 95%
MCI/NC: 90.8%

Korolev et al. [23] 50 AD, 43 LMCI, 77 
EMCI, 61 NC

ADNI MRI Binary AD vs. NC: 80%
AD vs. EMCI: 63%
AD vs. LMCI: 59%
LMCI vs. NC: 61%
LMCI vs. EMCI: 52%
EMCI vs. NC: 56%
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The 2D MRI medical images’ processing is performed to 
convert them to the 3D format with size (50 × 30 × 20) voxels 
to be more suitable to this model, as shown in Fig. 8. The 
number of trainable parameters is 875.588 and 1,654,468 
for 2D-M2IC and 3D-M2IC, respectively. The number 
of non-trainable parameters is zero for the two architec-
tures. The Adam optimization algorithm is also used in the 

proposed models to improve the weights with a learning 
rate = “0.0001” to optimize the loss function.

The second method uses the transfer learning principle for 
medical image classification. Transfer learning is a deep learning 
procedure whereby a neural network model is first trained on a 
problem similar to the issue being solved. Transfer learning’s key 
benefit is that (i) it benefits from the pre-trained weights resulting 

Table 5  (continued)

Approach Dataset Modality Type of classification Accuracy

Wang et al. [24] 98 AD, 98 NC Local hospitals, OASIS MRI Binary AD/NC: 97.65%
Khvostikov et al. [25] 53 AD, 228 MCI, 250 NC ADNI sMRI and DTI AD/MCI/NC: 68.9%

AD/NC: 93.3%
AD/MCI: 86.7%
MCI/ NC: 73.3%

Sahumbaiev et al. [26] 530 subjects (185 AD, 185 
MCI, 160 HC)

ADNI MRI Multi AD/MCI/NC: 88.31%

Spasov et al. [27] AD 192, 184 NC ADNI MRI Binary AD/NC: 99%
Yan Wang et al. [30] 35 AD, 30 aMCI, 40 NC Beijing Xuanwu Hospital DTI, fMRI Multi AD/aMCI/NC: 92.06%
Khagi et al. [31] 28 AD, 28 NC OASIS MRI Binary AD/NC: 98.51%
Jain et al. [32] 150 subjects (AD 50, NC 

50, MCI 50)
ADNI sMRI Multi, binary AD/MCI/NC: 95.73%

AD vs CN: 99.14%
AD vs MCI: 99.30%
MCI vs. CN: 99.22%

Song et al. [34] AD 12, NC 12, EMCI 12, 
LMCI 12

ADNI DTI Multi AD/EMCI/LMCI/NC: 89%

Ge, C., & Qu, Q. et al. 
[33]

337 subjects (198 AD, 
139 NC)

ADNI MRI Binary AD/NC: 98.80%

Harshit et al. [38] 120 subjects, 30 for each 
class (AD, EMCI, LMCI, 
NC)

ADNI 4D FMRI Multi-classification AD/EMCI/LMCI/NC: 93%

Silvia et al. [39] 407 HC, 418 AD, 280 
c-MCI, 533 stable MCI 
[s-MCI]

ADNI 3D MRI Binary AD vs. HC: 99.2%, c-MCI 
vs HC: 87.1%, s-MCI 
vs. HC: 76.1%, AD vs. 
c-MCI: 75.4%, AD vs. 
s-MCI: 85.9%, c-MCI vs. 
s-MCI: 75.1%

Dan et al. [40] 787 subjects for (AD, 
 MCIc,  MCInc, HC) 
classes

ADNI 3D MRI Binary AD vs. HC: 84%, MCIc 
vs. HC: 79%, MCIc vs. 
MCInc: 62%

Juan Ruiz et al. [41] 600 brain MRI images ADNI 3D MRI Multi AD, EMCI, LMCI, NC: 
66.67%

Proposed 2D-M2IC model 300 subjects (75 AD, 75 
EMCI, 75 LMCI, 75 NC)

Total size = 48,000 MRI 
images

ADNI 2D MRI Multi, binary AD vs. NC: 97.11%
AD vs. EMCI: 96.32%
AD vs. LMCI: 96.62%
LMCI vs. NC: 98.10%
LMCI vs. EMCI: 95.23%
EMCI vs. NC: 98.39%
AD/EMCI/LMCI/NC: 

93.60%
Proposed 3D-M2IC model 3D MRI Multi, binary AD vs. NC: 97.36%

AD vs. EMCI: 97.07%
AD vs. LMCI: 97.16%
LMCI vs. NC: 98.05%
LMCI vs. EMCI: 96.03%
EMCI vs. NC: 98.47%
AD/EMCI/LMCI/NC: 

95.17%
Proposed fine-tuned 

VGG19 model
2D MRI Multi AD/EMCI/LMCI/NC: 97%
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from the training of millions of images from the ImageNet data-
base. (ii) It decreases the training time for a learning model. (iii) 
Its ability to reduce generalization errors. Therefore, we use the 
VGG-19 pre-trained model for MRI multi-class classification. 
VGG-19 is a convolutional neural network that has 19 layers in 
its architecture. A basic fine-tuning is applied to the final layer of 
VGG19 to be optimal for the proposed medical image classifica-
tion problem. The trainable parameter for fine-tuned VGG19 is 
25,433,540, and the non-trainable parameter is zero. The tuning 
applied in the VGG 19 model is shown in Table 3.

Experimental Results and Model Evaluation

The proposed models take into consideration different con-
ditions. The experimental results are analyzed in terms of 
nine performance metrics: accuracy, loss, confusion matrix, 
F1 Score, recall, precession, the receiver operating charac-
teristic curve (ROC), True Positive Rate (Sensitivity), Area 
under Curve (AUC), and Matthews Correlation Coefficient. 
The summarization of the applied performance metrics is 
shown in Table 4.

Fig. 9  The comparison of the 
proposed models with other 
models for multi-class medical 
image classification

Fig. 10  The comparison 
among the proposed mod-
els (2D-M2IC, 3D-M2IC, 
2D-BMIC, 3D-BMIC, and 
fine-tuned VGG19 model) with 
one another
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Methods and Model Evaluation

For multi-class and binary medical image classification meth-
ods applied, we propose simple CNN architecture models 

called 2D-M2IC, 3D-M2IC, 2D-BMIC, 3D-BMIC, and fine-
tuned VGG19 model. According to the accuracy metric, 
these models will be evaluated by comparing their perfor-
mance to other state-of-the-art models, as shown in Table 5.

Table 6  Comparison of the 
performance metrics of the two 
proposed models (2D-M2IC 
model, 3D-M2IC model)

2D-M2IC 3D-M2IC

Precision Recall F1 Score Precision Recall F1 Score Support

AD 0.96 0.93 0.95 0.98 0.94 0.96 1200
EMCI 0.90 0.97 0.94 0.92 0.96 0.94 1200
LMCI 0.98 0.90 0.93 0.97 0.88 0.92 1200
NC 0.98 0.95 0.96 0.97 0.98 0.98 1200
Micro-avg 0.95 0.94 0.95 0.96 0.95 0.95 4800
Macro-avg 0.95 0.94 0.95 0.96 0.94 0.95 4800
Weighted-avg 0.95 0.94 0.95 0.96 0.95 0.95 4800
Samples-avg 0.94 0.94 0.94 0.95 0.95 0.95 4800

Fig. 11  Training and validation 
accuracy and loss for 2D-M2IC
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Table 5 shows that for multi-class medical image classifi-
cation of AD stages (AD, EMCI, LMCI, NC), the proposed 
fine-tuned vgg19 achieved the highest accuracy of 97%. The 
proposed 3D-M2IC achieved the second-highest accuracy of 
95.17%. The proposed 2D-M2IC achieved the third-highest 
accuracy of 93.6%. Harshit et al. [38] get the fourth-highest 
accuracy value of 93%, and Juan Ruiz et al. [41] get the 
lowest accuracy of 66.7%. Therefore, from the empirical 
results, it is proved that the proposed architectures are suit-
able simple structures that reduce computational complexity, 
memory requirements, overfitting, and provide manageable 

time. They also achieve very promising accuracy for binary 
and multi-class classification.

Figure 9 shows the comparison of the proposed models 
(2D-M2IC, 3D-M2IC, and fine-tuned VGG19 model) with 
other state-of-the-art models for multi-class medical image 
classification.

The comparison among the proposed models (2D-M2IC, 
3D-M2IC, 2D-BMIC, 3D-BMIC, and fine-tuned VGG19 
model) with one another for multi-class and binary medical 
image classifications for four stages of Alzheimer’s disease 
is shown in Fig. 10. It shows three multi-class medical image 

Fig. 12  Training and validation 
accuracy and loss for 3D-M2IC
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classifications and 12 binary medical image classifications 
for the AD spectrum.

The performance metrics, such as precision, recall, and F1 
Score of the models (2D-M2IC model, 3D-M2IC model) on 
the test set after 25 epochs of learning, are shown in Table 6.

When evaluating the models (2D-M2IC model, 3D-M2IC 
model) by training and validation accuracy and the training 
and validation loss, it is noticed that the accuracy increases 
and the loss is decreased for the models, as shown in Figs. 11 
and 12, respectively.

The confusion matrix shows the number of patients diag-
nosed as NC and classified as AD and vice versa, the number 
of patients diagnosed as NC and classified as LMCI and 
vice versa, the number of patients diagnosed as LMCI and 
classified as EMCI and vice versa, and so on. The confu-
sion matrix and normalized confusion matrix for the models 
(2D-M2IC model, 3D-M2IC model) are shown in Table 7.

The ROC-AUC for the models (2D-M2IC model, 
3D-M2IC model) where class 0 refers to AD, class 1 refers 
to EMCI, class 2 refers to LMCI, and class 3 refers to NC, 
shown in Figs.  13 and 14, respectively. Besides, when 

applying the MCC metric for evaluating the proposed mod-
els, MCC = 92.51134% for 2D-M2IC and 94.3247% for 
3D-M2IC for medical image multi-class classifications.

Table 7  The confusion metric and normalized confusion metric for the proposed models (2D-M2IC model, 3D-M2IC).

Confusion Metric of 2D M2IC Confusion Metric of 3D M2IC

lebaL
eurT

AD 1128 48 1 23

Tr
ue

 L
ab

el AD 1164 24 0 12

EMCI 23 1161 8 8 EMCI 24 1152 12 12

LMCI 23 94 1075 8 LMCI 24 24 1140 12

NC 44 16 0 1140 NC 12 12 0 1176

AD EMCI LMCI NC AD EMCI LMCI NC

Predicted Label Predicted Label

lebaL
eurT

AD 0.94 0.04 0 0.02

Tr
ue

 L
ab

el AD 0.97 0.02 0 0.01

EMCI 0.02 0.97 0.01 0.01 EMCI 0.02 0.96 0.01 0.01

LMCI 0.02 0.08 0.9 0.01 LMCI 0.02 0.02 0.95 0.01

NC 0.04 0.01 0 0.95 NC 0.01 0.01 0 0.98

AD EMCI LMCI NC AD EMCI LMCI NC
Normalized 
confusion 

Metric
Predicted Label

Normalized 
Confusion 

Metric 
Predicted Label

Fig. 13  The ROC-AUC of the proposed 2D-M2IC
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Alzheimer Checking Web Service

Because of the COVID-19 pandemic, it is difficult for 
people to go to hospitals periodically to avoid gather-
ings and infections. Thus, a web service based on the 
proposed CNN architectures is established. It aims to 
support patients and doctors in diagnosing and checking 

Alzheimer’s disease remotely. It also determines in which 
Alzheimer’s stage the patient suffers from based on the 
AD spectrum. The application is created using the python 
programing language. Python is used to program the back-
end of the website. Besides, HTML, CSS, JavaScript, 
and Bootstrap languages are used for the design of the 
website. The website is divided into sections. The first 
contains information about Alzheimer’s disease. It also 
includes the causes that lead to it. The second contains 
the stages of Alzheimer’s and the features in each AD 
stage. The third is a dynamic application that works as a 
virtual doctor. The patients or doctors can upload the MRI 
images for the brain. The application then checks if that 
MRI has the disease or not and to which stage the MRI 
images belong. After that, the application advises the 
patient according to the AD stage diagnosed, as appeared 
in Fig. 15. Figure 15 shows how the Alzheimer Checking 
Web Service is tested using random MRI images from the 
ADNI dataset for different stages of Alzheimer’s disease. 
After the patient uploads the MRI image, the program 
classifies the MRI as belonging to one of the phases of 
Alzheimer’s disease (AD, EMCI, LMCI, and NC). Moreo-
ver, the application guides the patient with advice relied 
on the classified stage.

Fig. 14  The ROC-AUC of the proposed 3D-M2IC

Fig. 15  The AD stage prediction for MRI medical images
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Conclusion

In this paper, the  E2AD2C framework for medical image clas-
sification and Alzheimer’s disease detection is proposed. The 
proposed framework is based on deep-learning CNN architec-
tures. Four AD stages are multi-classified. Besides, separate 
binary classifications are implemented between each two-pair 
class. This medical image classification is applied using two 
methods. The first method uses simple CNN architectures that 
deal with 2D and 3D structural brain scans from the ADNI 
dataset based on 2D and 3D convolution. The second method 
applies the transfer learning principle to take advantage of the 
pre-trained models. So, the VGG19 model is fine-tuned and 
used for multi-class medical image classifications. Moreover, 
Alzheimer’s checking web application is proposed using the 
final qualified proposed architectures. It helps doctors and 
patients to check AD remotely, determines the Alzheimer’s 
stage of the patient based on the AD spectrum, and advises 
the patient according to its AD stage.

Nine performance metrics are used in the evaluation and 
comparison between the two methods. The experimental 
results prove that the proposed architectures are suitable 
simple structures that reduce computational complexity, 
memory requirements, overfitting, and provide manageable 
time. They also achieve very promising accuracy, 93.61% 
and 95.17% for 2D and 3D multi-class AD stage classifi-
cations. The VGG19 pre-trained model is fine-tuned and 
achieved an accuracy of 97% for multi-class AD stage clas-
sifications. In the future, it is planned to apply other pre-
trained models such as EfficientNet B0 to B7 for multi-
class AD stage classifications and check the performance. 
Furthermore, the dataset is augmented by simple data aug-
mentation techniques. It is intended to use the DCGAN 
technique. In addition to that, it is planned to apply MRI 
segmentation to emphasize Alzheimer’s features before AD 
stage classifications.
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