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Ikaros family zinc finger 1 regulates dendritic cell
development and function in humans
Urszula Cytlak 1, Anastasia Resteu1, Delfien Bogaert2,3,4,5,6, Hye Sun Kuehn7, Thomas Altmann1,8,

Andrew Gennery1,8, Graham Jackson8,9, Attila Kumanovics10, Karl V. Voelkerding10, Seraina Prader11,

Melissa Dullaers 2,5,12, Janine Reichenbach11,13,14,15, Harry Hill10,16, Filomeen Haerynck2,3,5,

Sergio D. Rosenzweig7, Matthew Collin1,8 & Venetia Bigley 1,8

Ikaros family zinc finger 1 (IKZF1) is a haematopoietic transcription factor required for

mammalian B-cell development. IKZF1 deficiency also reduces plasmacytoid dendritic cell

(pDC) numbers in mice, but its effects on human DC development are unknown. Here we

show that heterozygous mutation of IKZF1 in human decreases pDC numbers and expands

conventional DC1 (cDC1). Lenalidomide, a drug that induces proteosomal degradation of

IKZF1, also decreases pDC numbers in vivo, and reduces the ratio of pDC/cDC1 differentiated

from progenitor cells in vitro in a dose-dependent manner. In addition, non-classical mono-

cytes are reduced by IKZF1 deficiency in vivo. DC and monocytes from patients with IKZF1

deficiency or lenalidomide-treated cultures secrete less IFN-α, TNF and IL-12. These results

indicate that human DC development and function are regulated by IKZF1, providing further

insights into the consequences of IKZF1 mutation on immune function and the mechanism of

immunomodulation by lenalidomide.
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Effective immunity requires the coordinated development
and response of immune cells. This process is orchestrated
by transcription factors (TFs), which may act in multiple

lineages and govern the expression of both differentiation and
functional gene sets. The in vivo functions of specific TFs may be
interrogated through the study of primary immunodeficiencies
resulting from germline mutations, an approach which offers a
wealth of biological insights1,2.

Dendritic cells (DCs) initiate tolerance or immunity through
presentation of antigen and stimulation of naive T cells3. In
addition, they regulate a range of leukocyte responses including
B-cell survival4 and class switching5, natural killer cell prolifera-
tion and homeostasis6 and monocyte and neutrophil chemo-
taxis7. DCs consist of two main subsets, plasmacytoid DCs
(pDCs) and myeloid or conventional DCs (cDCs), each associated
with specific functions8. Human pDCs express CD123/IL-3R,
CD303/BDCA-2 and CD304/BDCA-4 and, in common with
pDCs of all species, secrete large amounts of interferon-α (IFN-α)
in response to viruses and other pathogens9. Two subsets of cDCs
are described; cDC1 and cDC2. In humans these are differ-
entiated by the expression of CD141 and CLEC9A (cDC1) or
CD1c (cDC2). cDC1 are specialised in antigen cross-presentation
to CD8+ T cells, T helper type 1 polarisation of CD4+ T cells and
type III IFN production10. Human cDC2s are the predominant
interleukin-12 (IL-12) secretors, showing plasticity in T-cell
polarisation depending on the environmental stimuli11.

pDCs and cDCs develop independently of monocytes under
the control of specific TFs, largely mapped through the analysis of
knockout mice12. PU.1 and GATA2 are required for specification
of all DCs13, pDCs are dependent upon IRF8 and E2.214, cDC1
on IRF8, Id2 and BATF315–17 and cDC2 on IRF418. Classical
monocytes, expressing CD14 in human (Ly6C in mouse), require
KLF4 at the progenitor stage19. Non-classical monocytes express
CD16 and can arise from conversion of CD14+ monocytes in the
periphery20.

Ikaros family zinc finger 1 (IKZF1) is a zinc finger TF and
member of the IKAROS gene family, with prominent roles in
lymphocyte development and proliferative responses21. Mutation
of Ikzf1 has also been shown to have a dose-dependent effect
upon DC development in the mouse. Homozygous Ikzf1L/L mice,
expressing low levels of wild-type Ikzf1, have a specific defect of
pDCs and loss of IFN-α production22. The null allele (Ikzf1C/C)
prevents formation of pDCs and cDC2s, maintaining a reduced
population of cDC1s, whereas the dominant negative DNA
binding domain mutant (Ikzf1DN/DN) lacks all DCs23. Together,
these results indicate that murine pDCs are most sensitive to
Ikzf1 deficiency and cDC1s the least.

The importance of IKZF1 in human biology is illustrated by its
pathogenic involvement in autoimmune disease (systemic lupus
erythematosus) and haematopoietic malignancies (B-cell acute
lymphoblastic leukaemia), including blastic plasmacytoid den-
dritic cell neoplasms (BPDCNs), characterised by the expression
of pDC markers and CD56 on malignant cells24.

Human germline heterozygous IKZF1 mutations, resulting in
haploinsufficiency, cause a variably penetrant combined immu-
nodeficiency associated with progressive attrition of B cells,
hypogammaglobulinaemia and skewing of T-cell subsets25–27.
Clinical manifestations include recurrent or severe respiratory
tract infections, autoimmune phenomena and a predisposition to
childhood B-cell acute lymphoblastic leukaemia.

IKZF1 is also known to be a key target of thalidomide and its
derivatives, used to treat myeloma and 5q-myelodysplasia. It has
recently been shown that their therapeutic actions include acti-
vation of Cereblon-dependent ubiquitination and proteasomal
degradation of IKZF1 and IKZF328,29. Thus, exposure to lenali-
domide induces IKZF1 deficiency offering a further opportunity

to manipulate IKZF1 levels in vivo or during differentiation and
functional analysis of human cells in vitro.

Prompted by the knowledge that murine pDC development is
dependent upon Ikzf1, here we investigate whether IKZF1
mutation or inhibition with lenalidomide causes pDC deficiency
in humans, using phenotypic and functional analyses performed
on patients with IKZF1 haploinsufficiency, those receiving lena-
lidomide, or on progenitor cell cultures exposed to lenalidomide
in vitro. In addition to pDC deficiency, we observe a relative
increase in cDC1 in vivo and in vitro and a loss of non-classical
monocytes in vivo. In the presence of IKZF1 deficiency, pDCs
produce less IFN-α, pDCs and monocytes secrete less tumor
necrosis factor (TNF), and cDC1, although increased, produce
less IL-12. These results extend the known functions of IKZF1 to
include the regulation of human DC haematopoiesis.

Results
IKZF1 haploinsufficiency cohort. The clinical features, muta-
tions and B-cell phenotype of 20 individuals from 4 families with
heterozygous IKZF1 mutations have been previously reported.
Families B, C and F were studied by Kuehn et al.25. Members of
family G have been recently described27. Replicate B-cell counts
performed on blood taken for this study were congruent with the
analyses previously reported. These and further details are sum-
marised in Supplementary Table 1.

pDC deficiency and cDC1 expansion in IKZF1 mutation. In
order to map the global perturbation of DC haematopoiesis
induced by IKZF1 mutation, an unsupervised phenotypic analysis
and enumeration was initially conducted using a member of
family B (B5) and a control. The FlowSOM algorithm was used to
cluster, visualise and compare equal numbers of data from the
Lineage−HLA-DR+ (Lin−DR+) CD14− gate of a 16-colour flow
cytometry panel (Supplementary Figure 1a, Supplementary
Table 2). This algorithm clusters cells of the same phenotype into
populations, each represented as a node. Nodes are presented as
coloured metaclusters on a minimal spanning tree, defining the
relationships between nodes30 (Fig. 1a). With an equal number of
events from the affected and unaffected individual, FlowSOM
identified 6 metaclusters: 1 corresponding to CD123+ pDCs
(blue nodes), 1 corresponding to CD141+BTLA+ cDC1s
(turquoise nodes) and the remaining 4 corresponding to
CD11c+CD1c+CD2+ cDC2s (red nodes). Within metaclusters it
was possible to discern a CD2+ node of pDCs, and variable
expression of CD2, CD5 and CD1c forming discrete nodes of
cDC2s. To analyse the differences between the affected and
unaffected individuals, the relative contribution of cells from each
individual to each node was assessed (Fig. 1b). IKZF1 mutation
was associated with an overall relative reduction in pDCs, but
increase in cDC1s. There was an altered distribution of cells
within the cDC2 nodes. The relative loss of pDCs was consistent
with the highest expression of IKZF1 mRNA and protein in this
subset of DCs (Fig. 1c, d, Supplementary Figure 1b). For com-
parison, IKZF3 expression is shown (Fig. 1c).

DC subset skewing in IKZF1 haploinsufficiency. The relative
decrease in pDCs and expansion of myeloid cDC1s and cDC2s
was further defined by performing absolute whole blood counts
on all patients compared with healthy controls. Within the CD3−

mononuclear cell gate, the HLA-DR+CD4+ population contained
CD14+ classical and CD16+ non− classical monocytes, CD123+

pDC, CD141+ cDC1 and CD1c+ cDC2 (Fig. 2a, Supplementary
Figure 1c). All affected individuals had a profound reduction in
pDCs but expansion in cDC1s (p< 0.05, by two-tailed
Mann–Whitney U-test) (Fig. 2b). In absolute counts, cDC2s
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were not affected. Classical monocytes were also in the normal
range but non-classical monocytes were reduced, even in patients
who had received no therapy (p< 0.05, by two-tailed
Mann–Whitney U-test). Quantitative changes were less pro-
nounced in family F carrying a multi-gene deletion on chromo-
some 7, encompassing IKZF1.

There was no effect of age on the DC phenotype, which was
present in clinically asymptomatic and symptomatic individuals
(Fig. 2c). An increased proportion of CD56+ cells was confirmed
in all three DC subsets (Fig. 2d).

IKZF1 deficiency and pDC depletion in lenalidomide treat-
ment. An independent verification of the effect of IKZF1 muta-
tion on pDC development was sought through the analysis of
patients receiving lenalidomide for haematological malignancy.
Patient characteristics are summarised in Supplementary Table 3.
Owing to the fact that a range of lenalidomide dosing schedules
are employed, the level of IKZF1 protein was first quantified by
intracellular flow cytometry of peripheral blood B cells. Lenali-
domide treatment on the day of sample analysis resulted in a
reduction in B-cell IKZF1 protein, comparable to that seen in
heterozygous IKZF1 mutation in family G (Fig. 3a). Patients on

maintenance lenalidomide sampled between treatment courses
had intermediate levels that correlated with dose (Fig. 3b). A
negative correlation between lenalidomide dose and the number
of circulating B cells was also observed. (Fig. 3c).

Absolute pDC counts showed a significant positive correlation
with IKZF1 protein level in 24 patients treated with lenalidomide
(n = 22) or pomalidomide (n = 2) by linear regression analysis
(r2 = 0.6561, p< 0.0001). The inclusion of 4 healthy controls and
3 affected family G members did not significantly alter the slope
or significance of the linear regression analysis (r2 = 0.6541,
p< 0.0001) (Fig. 3d).

Patients on lenalidomide also showed a reduction in CD16+

non-classical monocytes, reaching statistical significance (p = 0.02
by Mann–Whitney U-test) in those with the lowest IKZF1 protein
levels (defined as R2 in Fig. 3d). Unlike the families with IKZF1
mutation, lenalidomide treatment was associated with a slight
depression in cDC2 and no increase in cDC1 (Fig. 3e) compared
to healthy controls.

Lenalidomide also causes depletion of IKZF3, but IKZF1 is
expressed at more than 100 times the level of IKZF3 in human
pDCs (mean log2 9.8 and 1.4 respectively; Fig. 1c).
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Fig. 1 FlowSOM analysis of PB reveals a reduced proportion of pDC but increased cDC1 in a patient carrying IKZF1 mutation. a Minimal spanning tree
visualisation of a self-organising map using compensated flow cytometric data from a family B member (B5) compared to a travel control (equal number of
events). Data were taken from the lineage (CD3, CD7, CD14, CD16, CD19, CD20)-negative HLA-DR-positive gate. FlowSOM nodes represent clusters of
cells. Metaclusters of the nodes, determined by the map, are represented by the background colour of the nodes. Star charts represent the mean marker
value of cells in that node with the height of each part corresponding to marker intensity. b Comparison between samples used to generate the map; size of
nodes represents proportional number of cells in each node, colour represents proportional differences between samples with red and blue indicating
higher or lower numbers in IKZF1mutation compared to wild type, respectively. cmRNA and d protein expression of IKZF1 in healthy donor monocytes and
dendritic cells by NanoString gene expression analysis of FACS sorted cells or intracellular flow cytometry, respectively (n= 3 donors for each experiment).
IKZF3 mRNA expression is shown for comparison in c. cDC1/2, conventional dendritic cell 1/2; pDC, plasmacytoid dendritic cell; 14+ CD14+, classical
monocyte; 16+ CD16+, non-classical monocyte

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02977-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1239 |DOI: 10.1038/s41467-018-02977-8 |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Reduced IL-12 and IFN-α production in IKZF1 deficiency.
Functional defects associated with loss of IKZF1 were investigated
by examining intracellular cytokine production by specific DC
and monocyte subsets in response to a cocktail of Toll-like
receptor (TLR) agonists (polyinosinic:polycytidylic acid (poly(I:
C)), lipopolysaccharide (LPS), CL075 and CpG). In healthy
control peripheral blood mononuclear cells (PBMCs), no differ-
ences were observed in cell-specific production of IFN-α, IL-12 or
TNF in response to the relevant single TLR agonist compared to
the cocktail (Supplementary Figure 2a).

Individuals with IKZF1 mutation and healthy control PBMCs
with or without exposure to lenalidomide were examined. TNF
production by all DC and monocyte subsets was reduced in the

presence of IKZF1 mutation or exposure to lenalidomide (Fig. 4a,
b, Supplementary Figure 2b, c). IFN-α production by pDC and
monocytes was also abolished or greatly reduced, respectively, on
a per-cell basis, especially with IKZF1 mutation. Production of
IL-12 by myeloid cDC1s and cDC2s was also reduced in both
conditions. IL-10 was quite strongly induced by lenalidomide in
monocytes and myeloid cells but was inversely affected by IKZF1
mutation.

In an attempt to dissect whether the loss of IL-12 production
was a secondary effect of the reduction in IFN-α secretion by
pDCs, it was observed that production of IFN-α by healthy
control pDCs could be abrogated by ligation of CD303 and
CD304 with anti-CD303/4 antibodies. Although exogenous
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Fig. 2 Reduced pDC and non-classical monocytes but expanded cDC1 in the IKZF1 haploinsufficiency cohort. a Flow cytometric quantification of PB
monocyte and dendritic cell (DC) subsets showing HLA-DR+CD4− B cells, CD14+ classical (orange) and CD16+ non-classical monocytes (brown), CD123+

plasmacytoid DCs (pDC) (blue), CD141+ conventional DC1 (cDC1) (turquoise) and CD1c+ cDC2 (red) in healthy donor (cont, (control)) and representative
individual with IKZF1mutation. b Absolute counts of monocytes and DCs in 20 individuals from 4 affected families compared to n= 32 healthy donors. Bars
show mean± 95% confidence interval (CI). Histograms show subset-specific p-values for each family compared to healthy donors by two-tailed
Mann–Whitney U-test with significance set at p< 0.05. c Absolute pDC or cDC1 counts plotted against the age of the individual. Grey zones represent the
normal range of healthy controls (n= 32), black lines represent linear regression analysis with p= 0.77 and p= 0.86, respectively. d Proportion of cells
expressing CD56 in healthy donors (n= 5) and individuals carrying IKZF1 mutation (n= 6). Bars represent mean± 95% CI. The p-values derived from two-
tailed Mann–Whitney U-test

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02977-8

4 NATURE COMMUNICATIONS |  (2018) 9:1239 |DOI: 10.1038/s41467-018-02977-8 |www.nature.com/naturecommunications

www.nature.com/naturecommunications


IFN-α had a slightly enhancing effect on the secretion of IL-12 by
cDC2, the baseline production of IL-12 by cDC2 was not at all
affected when IFN-α production by pDCs was completely
blocked, suggesting that the loss of IL-12 production in the
preceding experiments was directly attributable to loss of IKZF1
(Fig. 4c).

IKZF1 deficiency impairs pDC differentiation in vitro. The
effect of IKZF1 deficiency on human DC development was
examined in vitro. DC subsets were generated from human bone
marrow CD34+ progenitors after 22 days (D22) of culture in the
presence of a lenalidomide titration.

DC subsets were identified by their surface marker expression
profile corresponding to blood counterparts: CD11c+CD14+

monocytes, CD141+CLEC9A+ cDC1, CD11c+CD1c+ cDC2 and
CD303+CD304+CD123+ pDC (Fig. 5a, Supplementary Figure 1d).
There was a negative correlation between lenalidomide concen-
tration in the culture and IKZF1 protein level in Lin−DR+ cells at
D22 of culture (Fig. 5b). This was associated with a reduction in
pDC and cDC2 but increase in cDC1 output. CD14+ cells were
unaffected (Fig. 5c). A reduction in the number of cells generated
per input progenitor was seen at lenalidomide concentrations
above the published in vivo plasma Cmax for therapeutic dosing
(1.7–2.3 μM)31 (Fig. 5d), but there remained a clear dose-
dependent effect on the cDC1/pDC ratio (Fig. 5e).
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Discussion
IKZF1 is a key regulator of haematopoiesis and a critical factor in
murine lymphocyte development and function21. Normal IKZF1
protein levels are also necessary for the development of IFN-α-
producing pDC in mice22,23. Recent descriptions of human
IKZF1 haploinsufficiency have confirmed its role in human
lymphocyte biology but human DC development has not been
studied25–27. In this study we analysed blood monocytes and DCs
from patients ex vivo carrying heterozygous IKZF1 mutations, or
treated with lenalidomide, an IKZF1-depleting

immunomodulatory drug. We also probed the effects of IKZF1
deficiency on human DC development and function in vitro.

In keeping with the pleiotropic actions of haematopoietic TFs,
IKZF1 deficiency resulted in multi-lineage developmental and
functional defects. In addition to the previously described pro-
gressive loss of B cells and skewing of T-cell subsets, we found
deficiency of pDCs and non-classical monocytes but expansion of
cDC1s. Classical monocytes and cDC2 remained numerically
unaffected. The near universal finding of this antigen presenting
cell phenotype, independent of age, lymphocyte phenotype or
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clinical status, provides a cellular signature of human IKZF1
mutation. The quantitative changes were remarkably similar in all
individuals with missense proteins (families B and C), or trun-
cated protein (family G27), but less severe in members of family F
who carry a heterozygous, 11-gene deletion of chromosome 7. In
homodimeric proteins, it has been proposed that a heterozygous
missense mutation may result in a more severe phenotype than a
null allele due to the lower proportion of WT/WT dimers (25%
versus 50%, respectively)32. However, in the case of family F, a

compensatory effect due to the loss of additional genes cannot be
excluded.

The requirement for IKZF1 in human pDC development and
function mirrors that seen in the mouse and was supported by its
high level of expression in healthy control pDCs. There was no
significant increase in absolute number or proportion of cDC1 in
mice carrying the heterozygous Ikzf1 L allele, tested in cohorts of
3 animals22, representing either a species or mutation-specific
difference. Targets of IKZF1, identified by chromatin

cD
C

1/
pD

C
 r

at
io

O
ut

pu
t/

in
pu

t r
at

io

C
D

14
+
, c

D
C

2 
%

Li
n– D

R
+

Len
(μM)

Lenalidomide (μM)

0 0.1 1 10 0 0.1 1 10 0 0.1 1 100 0.1 1 10

0.1 1 100
Lenalidomide (μM) Lenalidomide (μM)

0.1 1 100

0.1

1

10

Iso

0

cD
C

1, pD
C

 %
Lin

–D
R

+

Lineage CD11c Clec9A CD11c CD303/4

H
LA

-D
R

C
D

14

C
D

14
1

C
D

12
3

C
D

1c

Cont
(DMSO)

Blood

Len
0.1 μM

Len
1 μM

Len
10 μM

IKZF1 MFI

Lin–DR+

CD45+Live

0

10

20

30

40

50

0.0

0.5

1.0

1.5

2.0

2.5

31

33

45

38

1%

0.1

45

30

21

25

2.1

4.2

1.1

91% 50%

67%

0.8

0.1

1.2

3.4

0

2

4

6

8

10

12

0.1

1

10

100
CD14+

cDC2
cDC1
pDC

Therapeutic
Cmax

0

–103

103

104

105

0

–103

103

104

105

0

–103

103

104

105

0

–103

103

104

105

0

–103

103

104

105

–103 1030 104 105–103 1030 104 105–103 1030 104 105–103 1030 104 105–103 1030 104 105

102 103 104

a

c d e

b

Fig. 5 Impaired in vitro pDC development in IKZF1 deficiency. a Phenotypic flow cytometric analysis of dendritic cell (DC) subsets generated after 22 days
of culture in vitro, compared to PB counterparts. Found within the Lineage−HLA-DR+ gate were CD14+CD11c+ monocytes, CD141+CLEC9A+ cDC1s,
CD11c+CD1c+ cDC2s and CD123+CD303+CD304+ pDC. b IKZF1 protein levels, determined by flow cytometric analysis and IKZF1 mean fluorescence
intensity (MFI), in Lin−DR+ cells after 22 days of culture in the presence of a lenalidomide titration. c Summary of the proportion of in vitro generated Lin
−DR+ cells identified as CD14+ monocytes (orange), cDC2 (red), cDC1 (turquoise) and pDC (blue). Bars represent mean and s.e.m. of triplicate wells, dots
represent single cultures. d Ratio of total number of Lin−DR+ cells generated in vitro per input CD34+ cell in the presence of increasing concentrations of
lenalidomide. e Lenalidomide dose response of the cDC1 to pDC ratio of in vitro generated cells. Grey zone indicates published human in vivo plasma Cmax

of lenalidomide (450–600 ng/ml or 1.7–2.3 μM). Dots represent mean, bars represent s.e.m. and lines represent individual cultures

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-02977-8 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1239 |DOI: 10.1038/s41467-018-02977-8 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


immunoprecipitation sequencing33, include ID2, suppression of
which is necessary for pDC development and BATF3, required
for cDC1 terminal differentiation. De-repression of these loci due
to IKZF1 deficiency is consistent with the observed phenotype of
absent pDCs but preserved or expanded cDC1s.

The reduction in non-classical monocytes, to our knowledge,
has not been reported in Ikzf1-deficient mice. This finding was
independent of therapeutic interventions including intravenous
immunoglobulin and corticosteroid treatment, previously repor-
ted to result in transient depletion of CD16+ monocytes34.
Ly6Clow murine monocytes, corresponding to human CD16+

non-classical monocytes, convert from classical monocytes under
the control of NOTCH2 signalling stimulated by endothelial cell
notch-ligand delta-like 1 (DLL1)35. The role of notch signalling in
the generation of CD16+ classical monocytes is untested, but it is
known that the regulation of notch target genes is IKZF1
dependent in human T cells36.

The cell-intrinsic effect of IKZF1 mutation on DC phenotype
was confirmed in patients receiving therapeutic lenalidomide,
known to target IKZF1 for proteosomal degradation28,29.

Varying lenalidomide dose schedules resulted in a range of
IKZF1 levels in vivo, revealing a linear relationship between
IKZF1 protein and the frequency of pDCs. Such an in vivo dose-
response effect would be difficult to demonstrate from the series
of germline mutations that confer idiosyncratic, allele-specific
effects upon protein structure and function. Parallel observations
on the in vitro generation of DCs from primary bone marrow
progenitors showed a lenalidomide dose-dependent decrease in
the production of pDCs and increase in cDC1s. Although the
increased ratio of cDC1 to pDCs was strikingly similar in the
ex vivo analysis of patients with germline IKZF1 mutation and
those treated with lenalidomide, cDC1s were not expanded and
cDC2s were reduced by the drug. This may be due to the known
myelosuppressive effect of lenalidomide as concentrations above
the therapeutic Cmax of lenalidomide resulted in a reduction in
the cellular output per input progenitor cell in vitro. In addition,
cereblon-dependent suppression of IRF4 by lenalidomide37 may
contribute to the dose-dependent reduction in cDC2 seen in vivo
and in vitro. While our data are unable to exclude an effect of
IKZF3 deficiency on the DC phenotype in lenalidomide treat-
ment, it is expressed at a much lower level than IKZF1 in human
DCs and a role for this factor in DC differentiation has not been
described in murine models.

In functional terms, IKZF1 haploinsufficiency resulted in per-
turbed cell-specific cytokine secretory responses to TLR agonists.
Remaining pDCs were unable to secrete IFN-α, production of IL-
12 by cDCs was reduced and all cells failed to elaborate as much
TNF. A similar pattern was seen in healthy donor DCs exposed to
lenalidomide. The reduction in IL-12 secretion contrasted with
reports showing that lenalidomide does not compromise IL-12
production from monocyte-derived DCs (moDCs) stimulated
with CD40L38,39. However, moDCs are not dependent on IKZF1
for development40 and in vitro stimulation with CD40L triggers
IL-12 production through the non-canonical, nuclear factor
(NF)-κB (p52/p100) pathway.

Our data are consistent with a direct effect of IKZF1 deficiency
upon canonical NF-κB (Rel-A/p50) signalling in which IKZF1 is
necessary for the upregulation of Rel-A41 and is itself upregulated
by LPS-TLR4 stimulation42. We considered the additional sce-
nario that down regulation of IL-12 might have been an indirect
effect of loss of type I IFN production by pDCs, as exogenous IFN
augmented IL-12 production43. However, CD303/CD304 ligation,
which also abrogates IFN-α, failed to reduce IL-12 production
and lenalidomide resulted in a similar reduction in IL-12, despite
only a modest fall in IFN-α. From these observations we conclude

that lower IL-12 production by cDCs was most likely intrinsic to
loss of IKZF1.

The multi-lineage and multi-level influence exerted by hae-
matopoietic TFs complicates the attribution of immunodeficiency
resulting from TF mutation to defects in specific immune cell
types. In DC deficiency states, the functional diversity of DCs,
their combined roles in innate and adaptive immunity and their
potential to both activate and tolerise add further complexity. In
summarising the consequences of IKZF1 deficiency, pDC dys-
function is likely to play a role. An increased risk of bacterial
infection, particularly respiratory infection in the context of
germline haploinsufficiency, is consistent with the role of pDC in
prompt bacterial clearance and limitation of inflammation in the
lung44, in addition to their known anti-viral properties. Humoral
immune responses are also dependent upon pDC function
through the promotion of naive and memory B-cell proliferation,
plasma cell differentiation and immunoglobulin secretion45. This
is in keeping with a contribution of pDC deficiency to progressive
hypogammaglobulinaemia seen in IKZF1 haploinsufficiency,
despite the persistence of plasma cells in tissues25. In other set-
tings, pDCs promote peripheral and central tolerance, through
induction of natural and induced regulatory T cells and direct
suppression of T-cell responses46. Related to their tolerogenic
role, pDCs in the bone marrow microenvironment have been
shown to support multiple myeloma cell growth and mediate
myeloma-associated immunodeficiency47. The loss of pDCs may
therefore promote the development of autoimmunity in IKZF1
haploinsufficiency and confer therapeutic benefit in the treatment
of multiple myeloma. These effects are potentially enhanced by an
increase in the cDC1/pDC ratio. cDC1s, specialised for cross-
presentation of antigen to cytotoxic T cells, are the most potent
DCs in immunity to tumours and vaccinations. Consistent with
this, in the murine model of multiple myeloma, lenalidomide
synergistically enhances the anti-tumour effect of DC vaccines48

and in myeloma patients, lenalidomide enhances responses to a
pneumococcal vaccine49.

Finally, IKZF1 and pDC are connected in a number of other
conditions. IKZF1 is a susceptibility locus in systemic lupus
erythematosus, notable for a type I IFN signature and dysregu-
lated pDC function (reviewed in ref. 50). In BPDCN, frequently
involving deletion or loss of function mutations of IKZF1,
increased CD56 expression is a hallmark of the neoplastic pDC
phenotype24. In the studies described here, increased CD56
expression is seen to arise directly from IKZF1 deficiency.

In summary, our data demonstrate that in addition to its cri-
tical role in B-cell differentiation, IKZF1 is required for human
pDC development and function. Together with the parallel
expansion of cDC1s and reduction of non-classical monocytes,
this comprehensively defines the cellular signature of IKZF1
haploinsufficiency. DC dysregulation is highly likely to have
pathological consequences for immunity in germline IKZF1
mutation but confer additional therapeutic benefit in lenalido-
mide treatment of plasma cell dyscrasias. In common with other
haematopoietic TFs, germline deficiency reveals multi-level and
multi-lineage roles in immune cell development and function
with effects in B-cell, T-cell, DC and monocyte lineages.

Methods
Study approval. The study was performed in accordance with the Declaration of
Helsinki. Written informed consent was obtained from participants, or their par-
ents, prior to recruitment. The study was approved by local review boards: NRES
Committee North East–Newcastle and North Tyneside 1, 08/H0906/72; KEK-ZH
Nr. 2015-0135; IRB 00029386; Ethical Committee of Ghent University Hospital,
2012/593.

Patients. Individuals carrying an IKZF1 mutation, and family members, were
recruited at their local medical centres in accordance with local ethical permissions.
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All participating patients were included in the study. The family nomenclature
(families B, C and F) corresponds to the nomenclature published in ref. 25, with the
exception of a newly described family ‘G2749,50.

Patients receiving lenalidomide treatment were recruited from a local
ambulatory myeloma clinic. There were no specific inclusion or exclusion criteria
and analyses from all tested patients were included.

Flow cytometry and cell sorting. PBMCs, separated by density centrifugation,
were stained in aliquots of 1–3 × 106 cells in 50 µl of Dulbecco's phosphate-buffered
saline with 2% fetal calf serum and 0.4% EDTA. Dead cells, usually <5%, were
excluded by 4',6-diamidino-2-phenylindole (Partec) or Zombie (Biolegend). Ana-
lysis was performed with an LSRFortessa X-20 and sorting with a FACSAria III
(BD Biosciences) running BD FACSDIVA™ 8.0.1 or 8.0 software, respectively.
Data were processed with FlowJo 10.1r5 (Tree Star, Inc.). Absolute cell counts were
obtained using TruCount™ tubes (BD Biosciences) with 200 µl whole blood and
900 µl of red cell lysis buffer. Intracellular staining was performed after surface
staining, lysis and fixation (eBioscience) according to the manufacturer’s instruc-
tions. Antibodies used are given in Supplementary Table 2.

FlowSOM analysis. Flow cytometric analysis of PBMCs from a member of family
B (B5) carrying IKZF1 mutation and a travel control were analysed using an 18-
channel (16 fluorochromes, 2 light scatter) panel. Compensated FCS files were
manually gated (FlowJo 10.1r5, Treestar, Inc.) to export Lin−DR+CD14− cells.

FlowSOM 1.7.1 was used for further analysis. From each of the two files, 550
cells were randomly selected. A total of 12 surface markers were used for building
the self-organising map (SOM): CD5, CD141, CD123, CD2, BTLA, HLA-DR,
CD1c, CD303, CD304, CD11c, CD45RA, and BTLA. CD56 was included in
visualisation.

SOM grid dimensions were set to 4 × 5 and the resulting SOM visualised in a
minimal spanning tree with 20 nodes, corresponding to cell clusters. The
maximum number of metaclusters, equivalent to predicted cell types, was set to 15.
The software identified 6 metaclusters, represented by background colour of the
nodes.

The differences for each node were calculated by subtracting the number of
patient cells from the number of healthy control cells.

DC functional analysis. The 3 × 106 PBMCs from healthy donors or individuals
carrying heterozygous IKZF1 mutation were cultured in the presence poly(I:C)
(10 μg/ml, Invivogen), LPS (5ng/ml, Sigma), CL075 (1 μg/ml, Invivogen) and CpG
(ODN 2216, 7.5 μΜ, Invivogen) with or without IFN-α (3000 IU/ml, R&D), with or
without anti-CD303 and anti-CD304 (Biolegend), with or without 0.1, 1 or 10 μM
lenalidomide (Sigma). Cells were cultured for 14 h at 37 oC, 5% CO2, with addition
of Brefaldin A (10 μg/ml, eBioscience) after 3 h. For dead-cell exclusion (usually
<30%) cells were stained with Zombie amine dye (Biolegend), surface markers and
then intracellular cytokines antibodies after fixation and permeabilization
(eBioscience), as above.

In vitro generation of DCs. CD34+ bone marrow progenitors were purified by
fluorescence-activated cell sorting (FACS) (>98% purity) and seeded (3000/well)
onto OP9 stromal cells (5000/well) in 96-well U-bottomed plates. Cells were cul-
tured in 200 μl αMEM (Gibco™) supplemented with 1% penicillin/streptomycin
(Sigma), 10% fetal calf serum (Gibco), 20 ng/ml granulocyte-macrophage colony-
stimulating factor (R&D systems), 100 ng/ml Flt3-ligand (Immunotools), 20 ng/ml
stem cell factor (Immunotools), with or without 0.1, 1 or 10 μM lenalidomide
(Sigma) or 0.01% dimethyl sulfoxide control. Half the volume of media, with
cytokines, was replaced weekly. At day 22, cells were harvested on ice, passed
through a 50 μm filter, washed and stained for flow cytometric analysis.

Statistics. Graphs were plotted with Prism V5 (GraphPad software Inc.) and
mean, 95% confidence interval, s.e.m., s.d., linear regression analysis and
Mann–Whitney U-tests (two-tailed) were calculated within the software.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files, or are
available upon reasonable requests to the authors.
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