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Adoptive transfer of T cells gene-engineered with antigen-specific T cell receptors (TCRs)
has proven its feasibility and therapeutic potential in the treatment of malignant tumors.To
ensure further clinical development ofTCR gene therapy, it is necessary to target immuno-
genic epitopes that are related to oncogenesis and selectively expressed by tumor tissue,
and implement strategies that result in optimal T cell fitness. In addition, in particular for
the treatment of solid tumors, it is equally necessary to include strategies that counteract
the immune-suppressive nature of the tumor micro-environment. Here, we will provide
an overview of the current status of TCR gene therapy, and redefine the following three
challenges of improvement: “choice of target antigen”; “fitness ofT cells”; and “sensitiza-
tion of tumor milieu.” We will categorize and discuss potential strategies to address each
of these challenges, and argue that advancement of clinical TCR gene therapy critically
depends on developments toward each of the three challenges.
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TCR transgenes

TCR GENE THERAPY: CLINICAL POTENCY AND TOXICITIES
T cells possess distinct properties such as the ability to specifically
recognize tumor antigens, serially kill tumor cells, self-replicate,
form memory and induce a complete tumor response. It is because
of these properties that the therapeutic use of T cells in certain
types of cancer may be advantageous when compared to drugs,
antibodies, or small molecule inhibitors.

T cell therapy intends to treat cancer by transferring autologous
and ex vivo expanded T cells to patients. Therapy with tumor-
infiltrating T lymphocytes (TILs) preceded by non-myeloablative
lymphodepletion resulted in objective responses in about 50% of
metastatic melanoma patients in two different medical centers (1,
2). Equally notable were the durable complete responses observed
in these trials that ranged between 10 and 22% (ongoing for more
than 3 years) (1, 2). Likewise, adoptive transfer of tumor-specific
T cell clones generated from autologous peripheral T cells resulted
in regression of individual metastases, and responses in 8 out of 10
melanoma patients (3). In addition,co-culture of peripheral T cells
with artificial antigen-presenting cells (APC) loaded with tumor
antigens resulted in T cells that were clinically effective in four out
of seven evaluable melanoma patients (4). Response rates observed
with T cell therapy are generally higher than those observed for
other treatments of melanoma, such as chemotherapeutic drugs,
high-dose cytokines, inhibitors of kinases, or antibodies against T
cell co-inhibitory molecules. See Table 1 for an overview of clinical
outcomes of T cell therapies and other treatments of melanoma.

Despite its clinical successes, T cell therapy has its limitations
in availability and generation of therapeutic T cells for a larger

group of patients. Genetic introduction of T cell receptors (TCRs)
or chimeric antigen receptors (CARs) into autologous T cells,
termed gene-engineering of T cells, can provide an alternative
that is more widely applicable and can potentially be extended
to multiple types of cancer (5). Key preclinical achievements and
clinical tests with TCR-engineered T cells, the focus of the cur-
rent review, are depicted in Figures 1A,B, respectively. Therapeutic
advances with CAR-engineered T cells is reviewed elsewhere (6).
The principle of clinical TCR gene therapy is straightforward:
transferral of TCRαβ genes into T cells; ex vivo expansion of
T cells; and infusion of T cells into the patient. In this way,
TCRα and β genes are used as “off the shelf” reagents to confer
tumor reactivity to patients whose tumor expresses the appro-
priate antigen and HLA restriction element. At the moment of
writing this review, eight clinical trials using TCR-engineered
T cells have reported their results (see Figure 1B and Table 2
for details), and at least another 10 trials using TCR-engineered
T cells are open and actively recruiting patients or will recruit
patients soon1.

Most clinical TCRs tested so far were HLA-A2-restricted and
directed against either melanoma-associated antigen recognized
by T cells 1 (MART-1), glycoprotein (gp) 100, carcinoembryonic
antigen (CEA), p53, melanoma-associated antigen (MAGE-)A3,
or New York esophageal squamous cell carcinoma antigen (NY-
ESO)1. Another TCR tested clinically was HLA-A1-restricted and

1www.clinicaltrials.gov
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Table 1 | Overview of standard and experimental none-gene-based therapies for metastatic melanoma.

Therapy Function Type of trial OR (%)a CR (%)a Reference

T CELLTHERAPY

Tumor-infiltrating lymphocytes (TILs) Adoptive transfer of tumor-specific T cells n.c. 52/93 (56) 20/93 (22) (1)

n.c. 15/31 (48) 3/31 (10) (2)b

T cell clones n.c. 8/10 (80) n.r. (3)

“Educated T cells” n.c. 4/9 (44) 1/9 (11) (4)

STANDARDTHERAPY

High-dose IL-2 Cytokine that induces T cell growth n.c. 43/270 (16) 16/270 (6) (178)

Dacarbazine (DTIC) Drug that alkylates DNA Phase III trial 18/149 (12) 4/149 (3) (179)

Vemurafenib (PLX-4032) Small molecule that inhibits BRAF kinase activity Phase III trial 106/219 (48) 2/219 (1) (180)

EXPERIMENTALTHERAPY

Dabrafenib Small molecule that blocks BRAF kinase activity Phase III trial 29/54 (54) n.r. (181)

Dabrafenib+Trametinib Small molecules that block BRAF and MEK kinase

activities

Phase III trial 41/54 (76) n.r. (181)

Ipilimumab (MDX-010)+ vaccination Antibody that blocks T cell CTLA4 Phase III trial 39/137 (28) 3/137 (2) (182)

Ipilimumab+DTIC Phase III trial 34/252 (14) 26/252 (10) (183)

Nivolumab (MDX-1106)c Antibody that blocks T cell PD1 Phase I trial 5/39 (13) 1/39 (3) (184)

Phase I trial 26/94 (28) n.r. (185)

Nivolumab+ Ipilimumab Phase I trial 21/53 (40) n.r. (186)

Lambrolizumab (MK-3475) Antibody that blocks T cell PD1 Phase I trial 51/135 (38) n.r. (187)

Anti-PD-L1 (MDX-1105) Antibody that blocks tumor cell PDL1 Phase I trial 17/135 (13) n.r. (188)

aOR, objective responses; CR, complete responses; both according to Response Evaluation Criteria for Solid Tumors (RECIST). Number of patients with

responses=before dash; total number of patients treated= after dash; percentage of responses=between brackets.
bDr. Jacob Schachter, Cellular Therapy of Cancer Symposium, September 24–27th, Montpellier, France, 2010.
cThis study included patients with metastatic melanoma, but also patients with renal cell carcinoma, colorectal cancer, prostate cancer, and non-small-cell lung cancer.

BRAF, gene responsible for production of B-Raf-kinase; CTLA4, cytotoxic T-lymphocyte antigen 4; IL-2, Interleukin 2; n.c., not classified; n.r., none reported; mAb,

monoclonal antibody; MAPK, mitogen-activated protein kinase; PD1, programed cell death 1 receptor; PDL1, programed cell death 1 ligand.

directed against MAGE-A3. Collectively, these trials have not only
demonstrated feasibility but also demonstrated significant clin-
ical responses in patients with metastatic melanoma, colorectal
carcinoma, and synovial sarcoma (Table 2). Responses, although
variable and tested in a cumulative number of about 80 patients
(based on trials listed in Table 2), ranged from 12 to 67%. Notably,
the finding that TCR gene-engineered T cells were able to traffic
to the central nervous system and cause complete responses of
brain metastasis in patients with melanoma was not only encour-
aging but also underscored the strength of T cell therapy toward
metastasized and poorly accessible tumors (7). Clinical testing,
however, also clearly demonstrated that therapy is currently ham-
pered by treatment-related toxicity and a transient nature of tumor
regression. Treatment-related toxicity became evident from stud-
ies with TCRs, in particular those of high-affinity, directed against
antigens that are over-expressed on tumors but also expressed on
healthy cells. Toxicities included severe but treatable inflamma-
tion of skin, eyes, ears (MART-1/HLA-A2; gp100/HLA-A2), and
colon (CEA/HLA-A2). In addition, lethal neurological toxicities
were observed in two patients when targeting MAGE-A3/HLA-A2,
and lethal cardiac toxicities were observed in three patients when
targeting MART-1/HLA-A2 (another epitope as above) or MAGE-
A3/HLA-A1. The transient nature of tumor regression became
evident from observations that anti-tumor responses are initially
significant but not sustainable and ultimately incomplete in 80–
90% of patients. Table 2 offers an up-to-date and detailed overview

of toxicities as well as clinical responses reported for TCR gene
therapy trials.

Strategies that aim at preventing or limiting toxicities as well
as tumor recurrences have already been developed, some of which
need further preclinical testing and some of which have already
been implemented in clinical trials. In this review, we have catego-
rized these strategies along three renewed challenges, i.e., “choice
of target antigen”; “fitness of T cells,” and “sensitization of micro-
milieu for T cell therapy,”as illustrated in Figure 2. We propose and
will argue that optimizations along each or combinations of these
challenges will contribute most significantly to the advancement
of clinical TCR gene therapy.

CHOICE OF TARGET ANTIGEN
Ideally, target antigens are selectively expressed by tumor tis-
sue and not healthy tissue, and hence not expected to evoke a
response against self. At the same time, target antigens should
have proficient immunogenicity to initiate an effective anti-tumor
response.

SELECTIVE EXPRESSION
Tumor-associated antigens (TAAs) can generally be divided into
four groups (8).

• Differentiation antigens: cell surface proteins that are expressed
at different stages of tissue development or cell activation.
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FIGURE 1 | Key achievements in the field of TCR gene therapy
directed against solid tumors. (A) Timeline of selected preclinical
findings that have contributed to the development of TCR gene

therapy. (B) Timeline of clinical findings with TCR gene-engineered T
cells. Details with respect to clinically used TCRs can be found in
Table 2.

Expression of these antigens may discriminate tumor cells from
surrounding healthy cells, but expression by healthy cells is not
absent. Examples include MART-1, gp100, CEA, and tyrosinase
related protein (TRP)1 and 2.

• Over-expressed antigens: cell surface proteins that are highly,
but not selectively, expressed by tumor cells when compared
to healthy cells. Examples include the epidermal growth factor
receptor (HER)2 or survivin.

• Cancer Testis Antigens (CTAs): proteins that are expressed by
tumors and a limited number of healthy and adult cell types.
A defined number of CTAs may not be expressed by healthy

adult cell types. Examples include MAGE-A1, MAGE-C2, and
NY-ESO1.

• Neo-antigens: proteins that result from gene mutations or aber-
rations in tumor cells. These proteins are uniquely expressed
by tumor cells but not healthy cells. Examples include mutated
protein (p)53, B-Raf kinase, and cyclin-dependent kinase 4
(CDK4).

Looking at these four groups of TAAs, CTAs, and neo-antigens
may represent the best available choices for therapy with TCR-
engineered T cells. With respect to CTAs, over several hundreds
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Table 2 |T cell receptor gene therapy trials – an update on efficacy and safety.

Target antigen

(epitope)

OriginalT cell

clone/lines

Tumor type OR (%) CR (%) Toxicity

(%)a
Type of toxicity Reference

MART-1(AAG)/

HLA-A2

TIL clone DMF4 from

responding patient

Metastatic

melanoma

2/17 (12) n.r. 0/17 (0) n.r. (189)

MART-1(AAG)/

HLA-A2

TIL clone DMF5 from

responding patient with

high in vitro avidity

Metastatic

melanoma

6/20 (30) n.r. 9/36 (25) Severe melanocyte

destruction in skin, eye, and

ear (in some cases leading to

uveitis and hearing loss)

(190)

gp100(KTW)/

HLA-A2

Splenocytes from

immunized mouse

Metastatic

melanoma

3/16 (19) n.r.

CEA(IMI)/

HLA-A2

Splenocytes from

immunized mouse; TCR

is affinity-enhanced

Metastatic

colorectal

carcinoma

1/3 (33) n.r. (3/3) (100) Severe inflammation of colon (191)

NY-ESO1(SLL)/

HLA-A2

T cell clone 1G4 from

human subject; TCR is

affinity-enhanced

Metastatic

melanoma

5/11 (45) 2/11 (18) 0/11 (0) n.r. (192)

Metastatic

synovial sarcoma

4/6 (67) 0/6 (0) 0/6 (0)

MAGE-

A3(KVA)/

HLA-A2

Splenocytes from

immunized mouse; TCR

is affinity-enhanced

Metastatic

melanoma

5/9 (55) 2/9 (22) 3/9 (33) Changes in mental status,

two patients fell into coma

and subsequently died, one

patient recovered

(29)

MART-1(ELA)/

HLA-A2

T cell clone 1D3 from

human subject; TCR is

codon-optimized and

murinized

Metastatic

melanoma

n.r. n.r. 1/1 (100) Lethal cardiac toxicity in one

patient

b

MAGE-

A3(EVD)/

HLA-A1

T cell clone a3a from

human subject; TCR is

affinity-enhanced

Metastatic

melanoma and

multiple myeloma

n.r. n.r. 2/2 (100) Lethal cardiac toxicity in two

patients

(30)

OR, objective responses; CR, complete responses, both according to Response Evaluation Criteria for Solid Tumors (RECIST). Number of patients with

responses=before dash; total number of patients= after dash; percentage of responses=between brackets.
aNumber of patients with Serious Adverse Events (toxicity grading ≥3 according to National Cancer Institute common toxicity criteria) and total number of patients

treated are put before and after dash, respectively.
bDr. John Haanen, Cellular Therapy of Cancer Symposium, London, UK, February 27th–March 2nd, 2013.

CEA, carcinoembryonic antigen; gp, glycoprotein; HLA, human leukocyte antigen; MAGE, melanoma-associated antigen; MART, melanoma antigen recognized by T

cells; n.r., none reported; NY-ESO1, New York esophageal squamous cell carcinoma 1.

of genes have been identified (see for a full description of CTAs2).
Approximately 40 of these genes belong to multigene families that
are located on the X-chromosome. A selected number of mostly
X-chromosome-located CTAs may be of interest for T cell ther-
apy. First, these antigens are not expressed by healthy tissues except
testes and placentas (determined using RT-PCR), and these latter
tissues do not express Major Histocompatibility (MHC) molecules
and cannot be targeted by T cells (9). Second, CTAs are expressed
by tumor tissues of various histological origins as a result of aber-
rant epigenetic regulation (9), and expression of CTAs has been
associated with advanced stages of disease and unfavorable patient
prognosis (10). Along these lines, there is evidence that MAGE

2http://www.cta.lncc.br

proteins are related to oncogenesis as they suppress p53-dependent
apoptosis and cause fibronectin-controlled increase in tumor cell
proliferation and metastasis (11–15). Third, CTAs are immuno-
genic proteins that have been reported to induce both humoral
and cell-mediated immune responses in patients without the con-
comitant induction of toxicities (10, 16, 17). Undeniably, current
patient studies emphasize the need for careful identification of
target CTAs. In one study, Robbins and colleagues demonstrated
that a TCR directed against NY-ESO1/HLA-A2 showed significant
anti-tumor responses in patients with metastatic melanoma and
synovial sarcoma without detectable toxicities (Table 2). Unex-
pectedly, in another study using a TCR directed against MAGE-
A3/HLA-A2, two patients with metastatic melanoma lapsed into
coma and died. These adverse events were most likely caused by T
cell recognition of rare neurons that were positive for MAGE-A12
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FIGURE 2 |Three challenges that determine the success rate ofTCR
gene therapy. In this figure, recent and successful strategies to improve
TCR gene therapy have been categorized along three renewed challenges:
“choice of target antigen”; “fitness of T cells”; and “sensitization of
micro-milieu for T cell therapy.” Boxes provide selected strategies that are
discussed in more detail in Sections “Choice of Target Antigen,” “Fitness of
T cells,” and “Sensitization of Micro-Milieu for T Cell Therapy.” We propose
that advancement of clinical TCR gene therapy is guided by the principles of

these challenges. *Independent of choice of target antigen, it is
recommended to perform stringent in silico analysis and preclinical tests to
confirm that healthy cells do not express the target antigen prior to
proceeding with the clinical testing of TCR-engineered T cells. **Strategies
to reduce or prevent TCR mis-pairing do not only enhance T cell avidity but
also reduce the potential risk of off-target toxicity. APC, antigen-presenting
cells; DC, Dendritic cells; MDSC, myeloid-derived suppressor cells; Th, T
helper cells; Treg, T regulatory cells.

and possibly MAGE-A9 antigens, which contain shared or highly
similar epitopes compared to MAGE-A3 antigen (Table 2). In a
third study, in which a TCR was used directed against MAGE-
A3/HLA-A1, one patient with melanoma and one patient with
myeloma suffered from cardiovascular toxicity and died. This tox-
icity was possibly caused by T cell recognition of a similar but
not identical peptide from the muscle protein titin (so-called
“off-target” toxicity, Table 2).

With respect to neo-antigens, the expression of these antigens
may vary significantly among different patients, but their expres-
sion is unique to tumor tissues. In case a neo-antigen is the result
of “driver mutations,” the antigen may constitute an ideal target for
T cell therapy. Driver mutations are related to oncogenesis, may
be linked to known genes (∼400), and may provide tumors with
a selective growth advantage (18, 19). Nevertheless, it is impor-
tant to realize that only 15% of up to 100,000 mutations that are
encountered in tumor genomes are considered “driver” mutations

(18, 20). Moreover, not all driver mutations may result in new
immunogenic antigens. A quest for neo-antigen targets does not
only require next-generation sequencing techniques to identify
tumor-specific mutations (21), but also techniques to determine
whether a neo-epitope can be presented by MHC and recognized
by T cells (22, 23).

In short, we consider epitopes from selected (non-shared) CTA
and neo-antigens as potentially safe T cell target antigens. How-
ever, no matter what the antigen, it is recommended to perform
stringent in silico analysis and preclinical testing to confirm the
antigen’s absence from vital organs. Strategies used to identify
titin as a cross-recognized peptide, such as amino acid scanning,
gene database searches, and use of three-dimensional cell cul-
tures, are potentially helpful in this respect (24). In addition, one
could consider using suicide systems to deplete self-reactive T cells
prior to proceeding with clinical testing (25–28). Although sui-
cide genes provide the option to delete TCR-transduced T cells,
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it is questionable whether such a switch could counteract the fast
kinetics of toxicity reported in the above-mentioned trials (29, 30).

IMMUNOGENICITY
The immunogenicity of an antigen, i.e., its ability to initiate
immune responses, is determined by the level of its expression,
how it is processed and presented, and how well it is recognized by
T cells.

Level of expression and processing of antigens
Ideally, target antigens should be expressed at high levels by most
if not all tumor cells. Such a property is generally restricted to
those antigens that are related to oncogenesis and that tumors
cannot easily do without (see Selective Expression). It is notewor-
thy that the production of antigens, such as those of MAGE-A
family members and NY-ESO1, is enhanced and becomes more
homogeneous within tumors by treatment with demethylation
agents and/or histone deacetylases (31–34). In a phase II clini-
cal study, in which hematological malignancies were targeted and
which included treatments with epigenetic drugs, it was observed
that T cell responses directed against CTA were enhanced with no
evidence of adverse events (35). In addition, the production of
antigens may depend on immune or intermediate proteasomes,
rather than standard proteasomes, and on unconventional post-
translational events such as reverse splicing and deamidation of
proteins (36–38). Such processing of antigens, in particular when
mediated by immune proteasomes, may benefit from local produc-
tion of interferon (IFN)γ. Finally, the release and hence the avail-
ability of antigens may be enhanced via treatment-induced cell
death following (co-treatments with) chemotherapy, irradiation,
and/or therapy with tyrosine kinase inhibitors (39, 40).

Cross-presentation of antigens
Antigen cross-presentation may take part in the infiltration of
antigen-specific CD8 T cells (41) and cause activation of T cells
and subsequent stroma destruction, thereby preventing outgrowth
of antigen-negative tumor cells. Recently, Engels and colleagues
revealed that peptide:MHC affinities of 10 nM or less allowed
for cross-presentation of antigens by stromal cells (42). Notably,
using an experimental model in which mice transgenic for TCRs
with different antigen specificities were used either as donors or
recipients of T cells, they showed that the use of peptide tar-
gets that can be cross-presented result in complete anti-tumor
responses. Destruction of tumor stroma, a bystander response
that may put an advantage to T cells over drugs (43, 44), may
require optimal T cell fitness (as measured by production of IFNγ)
and IFNγ-mediated preservation of Fas expression by stromal
cells (45).

Robustness of antigenicity
Loss of tumor antigen expression after infusion of T cells, and its
impact on the recurrence of tumors, is an important yet contro-
versial aspect. Decreased antigen expression has been proposed
to be a consequence of molecular alterations in tumor cells, such
as genetic and epigenetic changes in antigen genes, MHC genes,
and genes related to antigen processing and presentation (46–48).
Indeed, selective loss of antigen or HLA-A2 expression has been

reported in primary and metastatic melanoma lesions in non-
treated patients (49, 50) as well as patients treated with T cells
(51, 52). Also, Landsberg and colleagues, using a gene-engineered
model of melanoma, have eloquently demonstrated that a therapy-
resistant phenotype may be directed by an inflammatory milieu
and tumor necrosis factor (TNF)α’s ability to lead to epithelial
dedifferentiation and decreased expression of melanoma antigens
(53). In contrast to these findings, there is increasing evidence to
support the view that tumors progress without loss of T cell anti-
gens. In various preclinical models, in which either skin, lung, or
ovarium tumors were studied, it was observed that tumors pro-
gressed despite continued antigen expression (54–56). In these
models, tumor progression was rather a consequence of reduced
T cell infiltration and reduced T cell responsiveness. We postu-
late that in the setting of T cell therapy, loss of target antigen,
whether by T cell-dependent selection or epigenetic silencing (57,
58), is not necessarily a driving mechanism in tumor recurrence
(Straetemans et al., manuscript submitted).

Target multiple antigens simultaneously
In current TCR gene therapy trials, single MHC class I-restricted
antigens are targeted. Preclinical studies have suggested that the
targeting of two or more antigens enhances the therapeutic poten-
tial of T cells. For example, adoptive transfer of two CD8 T cell
populations to simultaneously target ovalbumin and gp100, rather
than either one antigen, resulted in delayed recurrence of tumors
(59). Interestingly, treatment with viruses positive for three MHC
class II-restricted antigens, i.e., neuroblastoma RAS, TRP1, and
cytochrome c1, resulted in complete anti-tumor responses that
were accompanied by significant CD4 T helper cell type 17 (Th17)
responses (60). Since cooperation of CD4 and CD8 T cells appears
important in the effector phase of an anti-tumor response and may
contribute to the bystander elimination of tumor stroma (61), it
may be worthwhile to simultaneously target MHC class I and II
targets. With respect to human antigens, it is interesting to note
that X-chromosome linked CTAs are coordinately expressed in
tumor tissues (62), which may allow the simultaneous targeting of
multiple CTAs.

FITNESS OF T CELLS
The responsiveness of T cells toward tumor antigen is generally
tuned down, most likely at various levels. First, reactive T cells
may be deleted during T cell development in the thymus; sec-
ond, peripheral T cells may be susceptibility to anergy; and third,
intra-tumoral T cells may require enhanced co-stimulation (63).
To overcome such T cell tolerizing mechanisms one can optimize T
cell fitness. Here, we define T cell fitness according to the following
three T cell properties: functional T cell avidity, T cell co-signaling,
and T cell differentiation.

FUNCTIONAL T CELL AVIDITY
Functional T cell avidity is considered as the ability of T cells
to respond to a given concentration of cognate peptide anti-
gen, and can be enhanced via strategies, often involving gene-
engineering of TCRαβ transgenes, that either increase the level
of cell surface expression of TCR chains or the TCR’s affinity for
peptide-MHC.
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Expression level of TCR transgenes
One angle to enhance the surface expression of TCR transgenes
is through optimization of the TCR gene transfer methodology,
including choice of gene delivery method, use of optimal vector
elements, and use of transgene cassettes [reviewed in Ref. (6, 64)].
Another angle to enhance the surface expression of TCR trans-
genes is through limitation or abolishment of TCR mis-pairing.
TCR mis-pairing is the formation of TCR heterodimers that com-
prise one transgenic TCR chain and one endogenous TCR chain,
and represents a phenomenon that is inherent to the generation of
TCR-engineered T cells. Importantly, TCR mis-pairing dilutes the
surface expression of the transgenic TCRαβ chains, and mis-paired
TCRs are of unknown specificity and can yield self-reactive T cells.
Although in clinical trials performed so far, no formal observations
of toxicities mediated by TCR mis-pairing have been made, pre-
clinical studies have clearly demonstrated that TCR mis-pairing
has the potential to induce harmful recognition of self-antigens
(65, 66). Strategies to promote preferential pairing between trans-
genic TCRα and TCRβ chains (and consequently prevent or reduce
TCR mis-pairing) can be grouped according to those that depend
on gene-engineering of TCR transgenes and those that do not. The
first group of strategies are reviewed in Ref. (67). In short, these
strategies include murinization of TCR (68), addition of cysteine
amino acids to TCR (69, 70), mutations in TCR transmembrane
and constant domains (71, 72), and equipment of TCR with a
signaling cassette that replaces TCR transmembrane and intracel-
lular domains with the CD3ζ accessory molecule (73, 74). More
recently, a limited number of murine amino acids have been iden-
tified that are responsible for enhanced expression and preferential
pairing of murinized TCRs (75, 76). Similar efforts to minimize
the number of amino acids in a CD3ζ signaling cassette failed,
and it was observed that properties of TCRs equipped with CD3ζ

signaling cassettes are best preserved when incorporating a com-
plete CD3ζ molecule (77). The other group of strategies includes
technologies that enhance expression levels of CD3 molecules in
T cells and those that interrupt expression of endogenous TCR
chains. Co-transfer of CD3 and TCR genes into T cells resulted
in higher levels of TCR expression and allowed T cells to respond
to lower concentrations of antigen, and to infiltrate and elimi-
nate tumors with faster kinetics (78). RNA interference techniques
have been shown to specifically down-regulate the expression of
endogenous but not transgenic TCR chains (79, 80). An alterna-
tive method encompasses the use of zinc finger nucleases and a
sequential knock-out of endogenous TCRα and β chains, followed
by introduction and sorting of TCRα and β transgenes (81). The
latter method is relatively new and not yet widely or clinically
applied, but holds promise to effectively address TCR mis-pairing.

Affinity-enhancement of TCRαβ transgenes
Affinity-enhancement of tumor-specific TCRs, and its exploita-
tion, relies on the existence of a window for optimal TCR affinities.
The existence of such a window is based on observations that TCRs
specific for HLA-A2-restricted pathogens have K D values that
are generally about 10-fold lower when compared to TCRs spe-
cific for HLA-A2-restricted tumor-associated self-antigens (82).
In support of this notion are the observations that a high-affinity
MART-1/HLA-A2 TCR mediated improved objective response

rates compared to a lower affinity MART-1/HLA-A2 TCR, and that
an affinity-enhanced NY-ESO1 TCR mediated significant clini-
cal responses (Table 2). Affinity-enhanced TCRs can be obtained
through various routes. First, allo-reactive settings can be used
to circumvent self-tolerance and yield T cells with a higher avid-
ity when compared to T cells derived from autologous settings
(=patients). Examples of such settings include in vitro genera-
tion of allo-HLA reactive, peptide-specific T cells (83–85), and
immunization of mice transgenic for human-MHC or human
TCR (86, 87). Second, TCR affinities can be enhanced by rationally
designed mutations of the TCR’s complementarity-determining
regions (CDRs) (88, 89). Third, high-affinity TCR variants can be
selected from a library of CDR mutants by yeast, phage, or T cell
display (90–92). Although the affinity of TCRs significantly con-
tributes to the functional avidity of T cells, recent studies warrant
caution when therapeutically implementing this strategy. Clini-
cal reports suggest that CDR mutations in TCRs directed against
CEA/HLA-A2, MAGE-A3/HLA-A2, and MAGE-A3/HLA-A1, but
not NY-ESO/HLA-A2, were possibly related to patient toxicities
(Table 2). Investigations whether defined locations and types of
mutations are more prone to lead to toxicities than others would
most likely benefit further development of CDR-mutated TCRs.
Also, preclinical reports suggest the existence of a functional ceiling
with respect to TCR affinity (93, 94). In fact, studies with primary
human T cells transduced with affinity-enhanced TCRs directed
against NY-ESO1/HLA-A2 (93) or gp100/HLA-A2 (Govers et al.,
manuscript submitted) pointed to the existence of a K D threshold
of 1–5 µM, below which T cell function became compromised.
The functional impairment of high avidity T cells in the pres-
ence of high levels of antigen, as is often the case in tumors, may
be related to enhanced expression of the exhaustion marker pro-
gramed cell death (PD1) and enhanced activity of its downstream
sarcoma homology domain 2 phosphatase (SHP)1 (95, 96).

T CELL CO-SIGNALING
T cell co-signaling is directed by interactions between co-
stimulatory or co-inhibitory molecules and their ligands and
determines, in addition to interactions between TCR and peptide-
MHC, the functional outcome of T cells [reviewed by Chen
and Flies (97)]. The best characterized co-stimulatory and co-
inhibitory molecules expressed by T cells are CD28 and cytotoxic
T-lymphocyte associated protein (CTLA)4, respectively, which
both interact with CD80 and CD86 ligands expressed by APCs.
More recent examples of co-stimulatory and co-inhibitory mole-
cules include inducible T cell co-stimulation (ICOS),4-1BB,OX40,
CD40, B and T-lymphocyte attenuator (BTLA), and PD1.

Tumors provide continuous stimulation with antigen often
in the absence of co-stimulatory ligands, which may result in
exhausted T cells with reduced proliferative capacity, reduced
effector function (such as IFNγ production) (98), and up-
regulated expression of T cell co-inhibitory molecules (99).
Immunotherapy with monoclonal antibodies to block the T cell
co-inhibitory molecules CTLA4, PD1, PDL1, or the combination
of CTLA4 and PD1 showed clear clinical successes in the treat-
ment of advanced melanoma (see Table 1). These clinical activities
have provided an impetus for the development of blocking other
co-inhibitory molecules and/or stimulation of co-stimulatory
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molecules (100–104). The beneficial outcome of targeting T cell
co-signaling most likely relies on enhancement of infiltration of T
effector cells (Teff) into tumor tissue and activation of Teff, as well
as depletion of intra-tumoral T regulatory cells (Treg) (103–105).
We would advocate explorative studies to test the combination
of blocking T cell co-inhibitory molecules and adoptive trans-
fer of Teff. In addition to this combination of immune therapies,
two other approaches to implement T cell co-signaling in pro-
tocols of T cell therapy have already been clinically tested. First,
TCR transgenes can be equipped with a signaling cassette that har-
bors a co-stimulatory molecule. Such a signaling cassette, designed
in analogy to those used in co-stimulatory CARs (6), typically
introduces accessory and co-stimulatory molecules to enhance the
function of T cells expressing the TCR transgene. It is notewor-
thy that clinical trials using CARs containing CD28 or CD137
demonstrated significant objective responses in patients with B
cell leukemia (106–108), and while CARs may evoke immune
responses, these were directed against murine idiotypes, but never
against boundaries between genetically introduced human mol-
ecules (109). According to this rationale, single and two-chain
TCR genes have been coupled to a combination of CD28 and
CD3 molecules and were shown to provide T cells with improved
function in vitro (110, 111) (Govers et al., manuscript submitted).
Second, T cells can be stimulated ex vivo with human artificial
APC (aAPCs) that express co-stimulatory ligands (4, 112). In addi-
tion to co-stimulatory ligands, these aAPCs are mostly engineered
to express HLA-A× 0201 and used to stimulate T cells in the
presence of common-γ cytokines other than interleukin (IL)-2.
These combined activations allow for the generation of HLA-
A2-restricted, antigen-specific T cells with a less differentiated
phenotype (CD45RA+ CD62L+) and superior T cell functions
in vivo (112). In a clinical study, T cells educated with aAPC pre-
senting CD80, CD83, and a MART-1 peptide, and cultured in
the presence of IL-2 and IL-15, resulted in objective responses in
patients with metastatic melanoma (Table 1). Notably, inclusion
of T cell co-stimulation by either one of the two above-mentioned
approaches relieved the requirement for patient preconditioning
with chemotherapy and/or in vivo IL-2 administration (4, 106).

T CELL DIFFERENTIATION
The differentiation of naïve T cells into mature CD8 Teff or CD4
Th1 or Th17 cells is required for T cells to make full use of their
functional attributes directed against tumor cells, such as cytotox-
icity and production of IFNγ and TNFα. The differentiation of
T cells is largely driven by environmental stimuli, with cytokines
being well-studied examples of such stimuli (113, 114). Progres-
sion of T cells into a differentiated subset is not necessarily perma-
nent, and in particular T helper cell subsets have shown plasticity
and may change into another T helper cell subset (114). Differen-
tiation of CD8 and CD4 T cells, although occurring according to
similar principles, follow different routes and show different out-
comes. Strategies to manipulate T cell differentiation to advance
T cell therapy are discussed separately for both T cell subsets.

CD8 T cells
Naïve CD8 T cells can differentiate, depending on the quantity
and quality of the initial antigenic and co-stimulatory stimuli, into

stem-cell memory T cells, central memory T cells, effector mem-
ory T cells, or T effector cells (115). An important observation that
came from preclinical studies was the inverse relationship between
CD8 T cell differentiation and proliferation, and hence the inverse
relationship between CD8 T cell differentiation and in vivo per-
sistence and therapeutic activity (113). Two strategies have been
reported to exploit this inverse relationship and improve adoptive
T cell therapy. In one such strategy, as shortly mentioned in Section
“T Cell Co-Signaling,” T cells are exposed to common-γ cytokines
other than IL-2 prior to adoptive T cell transfer. For example,
treatments with either IL-7+ IL-15 or IL-15+ IL-21 generated
gene-engineered T cells with a less differentiated CD8 T cell phe-
notype (i.e., central memory phenotype), prolonged peripheral
persistence, and potent antigen reactivity (116, 117). In addition
to soluble cytokines, Singh and colleagues reported on aAPC that
express membrane-bound IL-15 and IL-21 and facilitate the gen-
eration of “young” T cells (112). In other reports, the anti-tumor
efficacy of T cells was enhanced either via in vivo administration of
IL-15+ IL-21 (118) or conjugation of nanoparticles, encapsulat-
ing these cytokines, to the surface of therapeutic T cells (119). In
a second strategy, T cells are enriched for less differentiated T cell
populations, i.e., based on CD62L expression, and subsequently
used as recipient cells for gene transfer (120, 121). A recently iden-
tified population of “stem-cell memory” CD8 T cells, expressing
high levels of CD95, IL2Rβ and demonstrating increased prolifer-
ative potential and ability to mediate anti-tumor responses, may
represent a promising subset of T cells for gene-engineering and
therapeutic application (122). In fact, Cieri and colleagues have set
up a protocol to obtain and gene-modify stem-cell memory CD8
T cells, which includes the use of CD3/CD28 mAbs and IL-7 and
IL-15 and could potentially be translated to a clinical setting (123).

CD4 T cells
Naïve CD4 T cells can differentiate into multiple subsets, includ-
ing Th1, 2, 9, 17, 22, follicular helper and various Tregs, often
defined by the expression of “signature cytokines” or typical func-
tions, such as B cell activation or the down-modulation of T cell
responses (124). With respect to anti-tumor responses, it appears
that upon cell transfer Th1 and Th17 are the most potent CD4 T
cell subsets (125, 126). Administration of CD4 T cells, and in par-
ticular Th1 cells, has been shown to prevent exhaustion of CD8
T cells, enhance tumor infiltration of CD8 T cells and result in
effective tumor eradication (125, 127–130). More recently, it was
discovered that adoptive transfer of Th17 cells effectively mediate
rejection of TRP1-positive tumors in a TCR-transgenic mouse
model (126). Furthermore, Th17 cells appear to be long-lived
and their molecular signature resembles that of stem-cell memory
CD8 T cells (131). Interestingly, the anti-tumor activity of Th17
cells depended on its (incomplete) differentiation and conversion
into Th1 cells, resulting in a co-existence of Th17 and Th1 cells,
and it may very well be this multi-potent aspect that provides a
therapeutic advantage.

Collectively, these data argue in favor of a combined therapeu-
tic use of CD8 T cells and Th1 or Th17 cells. To this end, CD4
T cells can be functionally endowed with MHC I-restricted TCR
and/or CD8 via gene transfer (132–135). Alternatively, one could
opt for strategies that induce in vivo conversion of CD4 T cells
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into Th1 cells, such as IL-12, IFNα, IFNγ, or blocking PD1 liga-
tion (136–139). Also, metabolic signals, such as activation of T cell
mammalian target of rapamycin (mTOR) and aerobic glycolysis
can enhance differentiation toward IFNγ-producing T cells and
may be exploited therapeutically (140, 141).

SENSITIZATION OF MICRO-MILIEU FOR T CELL THERAPY
Tumors, following initial regression upon treatment with T cells,
most often become resistant to T cell therapy and recur. Recent
understanding suggests that, at least in some tumors, therapy resis-
tance may be part of a negative feedback loop that is initiated once
an anti-tumor CD8 T cell has occurred (142). Therapy resistance is
often characterized by a dis-balance between numbers and activa-
tion state of immune effectors cells versus those of suppressor cells.
Strategies to manipulate numbers and activation state of immune
cells are discussed separately for effector and suppressor cells.

RECRUITMENT AND ACTIVATION OF IMMUNE EFFECTOR CELLS
Immune effector cells that have been recognized for their contri-
bution to an anti-tumor response are numerous and, in addition to
CD4 and CD8 T cells, include natural killer (NK), natural killer T
cells (NKT), macrophages, and neutrophils. Here we will focus on
Teff and macrophages and how manipulation of the micro-milieu
may enhance their recruitment and activation.

Enhance recruitment of T effector cells
Clinical studies have demonstrated an unfavorable prognostic
value of a limited CD8 T cell infiltration in melanoma, colorec-
tal and ovarium carcinomas (143–145). Vascular changes have
been reported to contribute to arrested T cell infiltration and
include insufficient vascular maturation and enhanced expres-
sion of endothelin B receptor, regulator of G-protein signaling 5
(Rgs5) and/or extracellular matrix components [reviewed in Ref.
(146)]. Such changes may be targeted, as evidenced by angiostatic
therapy in which antibodies directed against vascular endothelial
growth factor (VEGF) or angiopoietin 2, or in which T cells gene-
engineered with a CAR directed against VEGF receptor (VEGFR)2
resulted in enhanced T cell infiltration (147–149). In addition,
drugs that inhibit angiogenesis or endothelin receptor B were
able to enhance the expression of intercellular adhesion molecule
(ICAM)1 on endothelial cells and to normalize T cell infiltration
(150, 151). In various solid tumors, T cell infiltration appears to be
facilitated by vessels that closely mimic high endothelial venules
(HEV) and which may be part of ectopic lymphoid structures in
tumor stroma (152, 153). A better understanding of the develop-
ment of such HEV in tumor stroma may provide novel targets to
improve T cell infiltration in tumors.

In addition to vascular changes, spontaneous cutaneous
melanoma tumors in mice demonstrated a decreased mRNA
expression of chemoattractants that contribute to recruitment of
CD8 T cells, such as chemokine (CC motif) ligand (CCL)5 and
chemokine (CXC motif) ligands (CXCL)9 and 10 (146). In a subset
of patients with melanoma metastases, lack of chemoattractants
coincides with limited migration of CD8 T cells and limited pres-
ence of lymphoid structures (154). Current findings from our lab-
oratory suggest that a decreased expression of selected chemoat-
tractants and adhesion molecules are related to a decreased infil-
tration of CD8 T cells and tumor relapse following T cell therapy

(Straetemans et. al., manuscript submitted). Interestingly, Hong
and colleagues have shown that the chemotherapeutic drugs dacar-
bazine, temozolomide, and cisplatin enhanced the expression
of CCL5, CXCL9, and CXCL10 in patient melanoma, which in
turn correlated with improved immune control of tumors (155).
Vice versa, T cells when gene-engineered to express chemokine
(CXC motif) receptor (CXCR)2 displayed enhanced trafficking
toward tumor cells secreting the corresponding chemokine ligand
CXCL1 (156). Also, in xenograft tumor models of mesothelioma
and neuroblastoma, the genetic introduction of chemokine (CC
motif) receptor (CCR)2 in T cells resulted in increased T cell infil-
tration in tumors secreting CCL2 and was associated with signif-
icantly increased anti-tumor activity (157, 158). Other molecules
often present in the micro-milieu that, when targeted, resulted in
enhanced T cell accumulation at the tumor site are indoleamine
2,3-dioxygenase (IDO) and reactive nitrogen species. Inhibition of
IDO by a small molecule blocks tryptophan depletion, enhances T
cell infiltration, and delays tumor growth (159). Reactive nitrogen
species induce TIL unresponsiveness (160), nitration of the TCR
complex (161), and modification of the chemokine CCL2 (162).
Drugs affecting the local production of reactive nitrogen species
restore TIL function and improve intra-tumoral T cell migration
and an anti-tumor T cell response (160, 162). Taken together, the
above studies show the drug-ability of molecules that are involved
in T cell extravasation and T cell migration into tumor tissues,
and advocate studies to combine such drugs with adoptive T cell
therapy.

Enhance T cell effector functions
Early protocols of adoptive T cell therapy already demonstrated the
beneficial effects of co-treatments such as chemotherapy, vaccina-
tion, and/or cytokine support on T cell activation [reviewed in Ref.
(64)]. More recently, additional strategies that enhance anti-tumor
functions of Teff have been reported. A first strategy became appar-
ent from clinical success with additional T cell co-stimulation
or blocking of T cell co-inhibition (see T Cell Co-Signaling and
Table 1). A second strategy relates to the inhibition of T cell sup-
pressive cytokines, such as transforming growth factor (TGF)β.
For example, genetic introduction of a dominant-negative TGFβ

receptor II in TCR-engineered T cells resulted in increased anti-
tumor T cell responses in a spontaneous tumor model of prostate
cancer (163). Another study tested the safety of mouse T cells
engineered with this dominant-negative receptor, and could not
detect spontaneous proliferation of these T cells in vivo (164).
Genetic knockdown of negative regulators of T cell activation rep-
resents yet another strategy to enhance T cell activation. T cells
with siRNA-mediated knockdown of casitas B-lineage lymphoma
b (Cbl-b) displayed a lower threshold for T cell activation and,
when adoptively transferred in mice with disseminated leukemia,
resulted in enhanced anti-tumor effects (165). These latter findings
warrant further testing of T cells with enhanced T cell activation,
including tests that assess the safe use of these T cells.

Enhance recruitment and activation of macrophages
High numbers of macrophages with a tumor-promoting (M2)
phenotype, but not those with a tumor-inhibiting (M1) phe-
notype, correlate with poor prognosis for patients with various
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cancers (166). When conjugated to a vascular homing peptide and
targeted to tumors, TNFα resulted in a switch from M2 to M1
macrophages, which was accompanied by normalization of tumor
vasculature and enhanced infiltration of CD8 T cells (167). Inter-
estingly, T cells gene-engineered to release the cytokine IL-12 were
shown to improve the therapeutic efficacy of T cells, an effect that
is likely mediated by cells of the innate immune system (168, 169).
T cells that express IL-12 under the control of the Nuclear Factor of
Activated T cell (NFAT) promoter, and deliver IL-12 locally in the
tumor environment upon encounter of cognate antigen, induce
destruction of antigen-negative cancer cells with a prominent role
for monocytes and monocyte-derived TNFα (168). Such findings
are not necessarily restricted to IL-12 since IL-15, when provided
locally into tumors, also enhanced the responsiveness of adoptively
transferred T cells and facilitated the removal of antigen-negative
tumor cells (170).

REDUCE NUMBERS AND ACTIVITY OF IMMUNE SUPPRESSOR CELLS
T regulatory cells, M2 macrophages, and myeloid-derived sup-
pressor cells (MDSC) are among the major immune-suppressive
cell types in the tumor micro-milieu. Immune suppressor cells
can reduce T cell infiltration into the tumor and suppress local T
cell responses by: release of reactive nitrogen and oxygen species
(171); expression of IDO and arginase (159, 172); and produc-
tion of cytokines such as TGFβ, IL-4, and IL-13 (173). Despite
initial removal of these cells by administration of chemotherapeu-
tic agents, the populations of MDSCs and Tregs may recover at
a faster rate than CD4 and CD8 Teff (174). Furthermore, Jensen
and colleagues demonstrated that therapeutic CD4+ T eff can con-
vert into a Foxp3+CD4+ Treg population (175). Various strategies
have been reported to deplete or inactivate Tregs. These strategies
include administration of anti-CD25 antibodies, combined intra-
tumoral injection of anti-CTLA4 and OX40 mAbs, or blocking
IDO (104, 176). Interestingly, blocking IDO may induce conver-
sion from Treg to Th17 helper cells, which can further contribute to
anti-tumor T cell responses (176). With respect to MDSCs, it is of
interest to note that classical chemotherapeutic agents, such as doc-
etaxel, are able to deplete these cells. Docetaxel-mediated depletion
of MDSC, when combined with adoptive T cell therapy and den-
dritic cell vaccination, was shown to enhance anti-tumor responses
(174). Alternatively, differentiation of MDSC into mature myeloid
cells, which can be established upon administration of β-glucans
(glucose monomers from cell walls), may also provide an angle to
relieve immune suppression (177).

FUTURE PERSPECTIVES
By now, the feasibility of TCR gene therapy studies has been well
established by the pioneering trials listed in Figure 1B, and is fur-
ther enhanced by current optimizations and standardizations of
protocols. TCR gene therapy, alike any cell-based therapy, requires
specialized good manufacturing practice (GMP) and patient treat-
ment facilities. Such facilities allow the generation and testing of
virus batches and the gene processing and expansion of T cells, and
are already integrated in multiple academic and private centers.
Notably, parameters, such as time-lines and costs to manufac-
ture a therapeutic T cell product, are considered competitive when
compared to other clinical-grade products, such as antibodies. An

ongoing EU project to treat metastatic esophagus-gastric cancer
and melanoma with NY-ESO1 TCR-engineered T cells, in which
we participate, shows that time-lines and costs to obtain a T cell
product are about 2 weeks and 36 kC per patient (13.5 kC for pro-
duction, quality testing, and test runs of virus batch; and 22.5 kC
for T cell processing), respectively. For comparison: estimated per
patients costs of Ipilimumab (3 mg/kg every 3 weeks, 4 times) and
Vemurafenib (0.96 g twice daily for 6 months), both registered
treatments for metastasized melanoma in The Netherlands since
2012, are 84 and 57 kC [Association of Health Insurances (CVZ),
The Netherlands]. The next step, and allowing a more valid com-
parison, would be the testing of T cell therapy versus standard
treatment of care in a randomized trial.

Clinical testing of TCR-engineered T cells, when looking at
single trials, demonstrated impressive and unprecedented efficacy
but at the same time is hampered by treatment-related toxicity
and a transient nature of tumor regression (Table 2). There exists
a multitude of strategies that are developed and tested toward
advanced safety and efficacy of TCR gene therapy. Here, we have
defined three challenges and have categorized recent and successful
strategies along these three challenges, which have been schemat-
ically depicted in Figure 2. With respect to the first challenge,
i.e., choice for target antigen, an important criterion is minimal
or no expression of such an antigen by healthy tissues. In this
respect, non-shared and tumor-restricted CTAs as well as neo-
antigens should be considered as potentially safe target antigens.
Advances in the isolation and characterization of anti-tumor T
cells from individual patient samples may increase the number
of CTAs and neo-antigens that may qualify as target antigens. T
cell-based recognition of similar, but unrelated peptides should
be excluded, and to this end it is strongly recommended to per-
form stringent in silico analysis and preclinical tests to confirm
that cross-reactive antigens are absent in healthy tissue. In order
to improve patient safety further, measures to allow directed killing
of engineered T cells have been tested and should be considered,
at least for novel TCRs tested in the near future. In addition to
tumor-restricted expression, another criterion to choose target
antigens is maximal immunogenicity. Peptide epitopes that are
cross-presented or the targeting of a more than a single peptide
have been reported to induce complete anti-tumor responses, and
may represent examples to consider when selecting target antigens.

With respect to the second and third challenges, i.e., fitness of
T cells and sensitization of tumor micro-milieu, we would like to
propose a two-step treatment protocol. The first step represents the
transfer of fit T cells. T cell fitness involves optimal T cell avidity,
additional T cell co-signaling,and using T cells with a preferred dif-
ferentiation stage. T cell avidity can be optimized by enhancement
of TCR affinity, yet reported treatment-related toxicities warrant
caution when using affinity-enhanced TCRs (Table 2) and recom-
mend further studies to define rules of TCR binding of cognate
versus non-cognate peptides. With respect to T cell co-signaling,
antibodies that block T cell co-inhibitory molecules and T cells
gene-engineered with co-stimulatory receptors have demonstrated
clinical successes. The implementation of such strategies in T cell
therapy protocols holds promise for future trials. Also, develop-
ments to obtain and gene-modify early differentiation stages of
CD8 T cells, including stem-cell memory CD8 T cells, are at the
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brim of being translated to a clinical setting. Whatever the cho-
sen route, an important measure for T cell fitness in vivo is the
ability of these cells, whether it be CD8 T cells or certain subsets
of CD4 T cells, to produce IFNγ and TNFα. The production of
these cytokines not only determines T cell responsiveness, but also
to what extent innate immune cells are recruited into the tumor
and become activated to further improve an anti-tumor response
and potentially avoid tumor relapse. The second step represents
antagonism of an immune-suppressed milieu. Various strategies,
such as antibodies or drugs to mediate angiostasis, chemothera-
peutic agents to enhance intra-tumoral T cell infiltration, and local
(T cell-mediated) delivery of cytokines, have proven beneficial to
enhance the local ratio between effector and suppressor immune
cells. Development of such a two-step protocol, together with the
targeting of a selected antigen, is the way forward and expected to
further enhance the success rate of TCR gene therapy to treat solid
tumors.
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