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ABSTRACT
Molecular characterization of organ-specific metastatic lesions, which distinguish 

them from the primary tumor, will provide a better understanding of tissue specific 
adaptations that regulate metastatic progression. Using an orthotopic xenograft 
model, we have isolated isogenic metastatic human breast cancer cell lines directly 
from organ explants that are phenotypically distinct from the primary tumor cell 
line. Label-free Raman spectroscopy was used and informative spectral bands were 
ascertained as differentiators of organ-specific metastases as opposed to the presence 
of a single universal marker. Decision algorithms derived from the Raman spectra 
unambiguously identified these isogenic cell lines as unique biological entities – 
a finding reinforced through metabolomic analyses that indicated tissue of origin 
metabolite distinctions between the cell lines. Notably, complementarity of the 
metabolomics and Raman datasets was found. Our findings provide evidence that 
metastatic spread generates tissue-specific adaptations at the molecular level within 
cancer cells, which can be differentiated with Raman spectroscopy.

INTRODUCTION

Breast cancer is the most common malignant 
neoplasm and is the second leading cause of cancer-related 
death among women in the United States, exceeded only 
by lung cancer [1]. The American Cancer Society recently 
reporting a 5-year survival rate near 99% for local breast 
cancer [1, 2]. However, the 5-year survival for metastatic 
breast cancer that involves distant organs drops to a dismal 
24% [1, 2]. This situation persists because understanding 
the metastatic progression of breast cancer remains 
challenging. This is due to several factors including a 
limited predictability as to which primary tumor is prone 
to metastatic progression, an inability to monitor the 
onset of successful metastatic growth, and incomplete 
knowledge of metabolic, physiologic, and molecular 

adaptations that allow for the cancer to survive and thrive 
within the different tissue types [3]. As such, procuring 
safe and efficacious chemotherapeutic regimen strategies 
that ablate metastatic lesions is an unmet clinical need [4]. 
In addition, the current practice of systemic administration 
of cytotoxic chemotherapy is limited with respect to 
targeting and drug resistance, which results in numerous 
adverse side-effects and no cures [5]. 

When considering potential solutions to this 
problem an important factor is the divergence of the 
metastatic cancer cells growing in visceral organs from the 
primary breast tumor cells [6–18]. Thus, there is a growing 
consensus from retrospective as well as prospective 
clinical trials that matched primary breast tumor and 
metastatic lesion biopsy samples often exhibit divergent 
expression of established biomarkers, for example, ER and 
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HER2 [7, 9–11, 17]. Therefore, metastatic lesions should 
not be considered simply as primary tumor implants at 
new sites but instead as significantly divergent tissue-
specific lesions, which reflect adaptations to organ-specific 
environments [18]. Importantly, it is very difficult to 
discern if various organ-specific metastatic lesions will 
have similar sensitivity to prescribed therapeutic regimens. 
Accordingly, the organ-specificity of the metastatic spread 
needs critical reconsideration, as, at present, databases of 
molecular profiles of matched primary and metastatic 
breast tumors have not been compiled to address global 
distinctions between metastatic sites and thus, cannot 
facilitate generalized metastatic site-specific nor patient 
specific smart therapeutic alternatives. Consequently, 
present clinical treatment decision options for distant 
metastatic breast cancer that rely on an evaluation of a few 
select biomarkers found during assessment of the primary 
tumor, although beneficial to subpopulations of patients 
[19], is also a likely contributing factor to the overall 
diminished response rates for survival from metastatic 
disease [9–11, 13]. Such a conclusion is in line with 
the reported presence of altered and distinct biomarker 
signatures of the metastatic lesions with respect to those 
found at the corresponding primary tumor [7, 9–11, 17, 
18], which, when evaluated, may indicate that a change in 
an ongoing treatment strategy should be considered.

Dissecting metastatic cancers based on objective 
molecular markers remains an important challenge. Here, 
we propose a fundamentally different approach towards 
identification of defining metastatic cancer cell signatures 
from those of primary tumor cells. Harnessing the 
exquisite specificity of Raman spectroscopy in detecting 
molecular phenotypes in cells and tissue, we aimed to 
obtain rapid and label-free profiling of newly generated 
isogenic metastatic human breast cancer cell lines, which 
were produced from a xenograft mouse model. Given its 
lack of sample preparation requirements and ability to 
provide quantitative biochemical analyses in near real-
time conditions, Raman spectroscopy provides a powerful 
tool for live cell analysis [20]. While this spectroscopic 
technique has been recently used to distinguish between, 
normal, benign, and malignant breast tissues, by us and 
others [21–24], the potential for using these spectral 
markers as new routes to recognition of metastatic cell 
types that are isogenic to the primary tumor, as is the 
clinical case, has been understudied. 

Starting from an orthotopic xenograft based mouse 
model system, the studied human cell lines were obtained 
from cultured organ-of-origin explants of: brain, liver, lung, 
and spine, as well as from the primary, i.e., mammary fat 
pad (MFP), site. These metastatic sites are representative 
of the common clinically observed breast cancer metastatic 
destinations [25, 26] with spine representative of bone. 
Despite being isogenic, these cell lines exhibit important 
morphological and growth distinctions that support our 
hypothesis that each metastatic site imbues metastatic tumors 

with unique molecular attributes. Our Raman spectroscopic 
measurements reveal the presence of consistent spectral 
differences of the cell lines. Using multivariate chemometric 
methods, we show that these spectral changes can be 
utilized to develop decision algorithms with high diagnostic 
power. Furthermore, we identify the presence of spectrally 
informative features that bring to light each cell line’s 
unique spectral characteristics, which reflect the inherent 
biochemical distinctions. We reason that these differences 
are a result of intricate reciprocal interactions between the 
cancer cells, parenchyma, and stroma at the target organ 
during metastatic growth. Combined with the ability to assay 
the stromal features, our findings underscore the relevance 
of Raman spectral information in characterizing isogenic 
metastatic lesions at different sites in terms of inherent 
biochemical determinants without staining or requiring 
a priori knowledge of the molecular transformations. 
In addition, preliminary metabolomic analyses provide 
supporting data indicating that cancer cells from different 
metastatic sites acquire metabolic changes, which may 
define a cell line’s metastatic organ of origin. Notably, a 
complementary overlap between the metabolite distinction 
data set and Raman spectroscopic signatures was also found.

RESULTS

Isogenic metastatic breast cancer cell lines from 
specific organs 

In order to facilitate the tracking of metastatic 
progression in live mice [27], we engineered triple 
negative MDA-MB-435 human breast cancer cells  
[28–34] to stably express a red fluorescence protein 
(tdTomato) and here designate this cell line: 435-tdT. 
Using 435-tdT cells, we initiated the culturing of new 
organ specific metastatic breast cancer cells (Figure 1A 
and 1B) with the inoculation of 435-tdT cells into the 
second thoracic mammary fat pads of female NOD-SCID 
mice. Phase-contrast images of fresh organ explants 
showed unresolved amorphous material without evidence 
of metastatic lesions while the bright tdT-fluorescence 
revealed the presence of the cancer (Figure 1A). 
Identified metastatic lesions were placed into cell culture 
and metastatic cancer cells grew out of native tissue 
environments until pure populations of red fluorescent 
cancer cells were obtained. 

Once adapted to plastic, all metastatic cell lines 
as well as the primary tumor cells grew as loosely 
adherent 3D spherical colonies made up of tightly packed 
spherical cells with various degrees of monolayer growth 
(Figure 1B), which is starkly different from the overall 
monolayer growth of the parental 435-tdT cell line 
(Figure 1B and Figure 2A and 2B). 

Representative images exemplified by brain cell 
line growth patterns show the brain cell line had a colony 
growth pattern as contrasted to the monolayer growth of the 
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parental cell line (Figures 2 and 3). Colonies were apparent 
as early as 24–48 hr post seeding of (Figure 2C–2D 
and Figure 3A-top and middle images). Distinct small 
spherical cells making up each colony are readily seen 
(Figure 2C) and this growth pattern remains throughout 
culturing as exemplified at 120 hr of growth (Figure 
3A-bottom images). In addition, thin cellular extensions, 
micro- or nanotubes, (Figure 2C–2D and Figure 3A) were 
visible, which at relatively low cell numbers, i.e., at 24–48 
hr, appeared to be attached to the substratum and also as 
connections between adjacent colonies. These connections 
become more numerous as the cultures grew (Figure 2D 
and Figure 3A). A characteristic pattern at “confluency” 
(Figure 2E–2F) with colonies elaborately linked together 
by nanotubes is contrasted to monolayer growth patterns 
of the parental cell line (Figure 2A–2B). Interconnections 

between cells/colonies have consistently been recorded 
at > 100 mm in length (Figure 2C–2H and Figure 3A) 
when connecting distant cells/colonies. At high cell/colony 
numbers, depicted in two fields-of-view (Figure 2E–2F) 
and in magnified and expanded images (Figure 2G–2H), 
show that a complex and intricate web of interconnections 
between colonies often occurred. In addition, free floating 
small and large mammospheres (Figure 3B) and small 
floating colonies along with free floating single cells (most 
abundant in brain and spine cell cultures) were a consistent 
feature of these cultures, which was unexpected under the 
adherent plate conditions used throughout the culturing 
process. 

Overall, it was apparent that important distinctions 
between phenotypes and growth patterns (Figure 3) were 
present between cell lines. This and the very distinct non-

Figure 1: Use of fluorescent microscopy to assess the locations of metastatic lesions in ex vivo organ samples and the 
growth patterns of the subsequent pure metastatic cell lines. (A) Fluorescence and corresponding phase-contrast images of brain, 
liver, lung, and spine tissue explants immediately after dissection. (B) Phase contrast images of the different colony growth patterns of 
pure brain, liver, lung, and spine metastatic sublines as well as the primary tumor cell line, compared to the monolayer growth pattern of 
parental 435-tdT cells. Microscopy was on a Nikon eclipse TS100 inverted microscope using in (A) a 10× objective for brain and spine or 
4x objective for liver and lung images, while all images in (B) were obtained using a 10× objective. Microphotographs were acquired using 
a Roper Scientific CoolSnap™ ES camera, images were captured with NIS-Elements F3.2 software, and processed with ImageJ. Scale bars 
in all images depict 100 μm. 
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Figure 2: Representative images of the brain cell line growth patterns on adherent plastic compared to monolayer 
growth of the parental cell line. (A–B) Two fields-of-view of characteristic monolayer growth of the parental cell line. (C) Distinct 
separate colony growth was apparent at 48 hr post inoculation of the plate with distinct small spherical cells making up each colony 
(arrowheads) and thin cellular extensions/filopodia (micro- or nanotubes; arrows). (D) After 120 hr the interconnected colony pattern 
remained. (E–F) Two examples of the characteristic growth pattern at “confluency” of the brain cell line with colonies elaborately linked 
together by nanotubes. These interconnections between cells/colonies have consistently been recorded at > 100 μm in length (see scale 
bars). (G) Higher magnification of the central portion of image (E). (H) Expanded image of the lower left-hand corner of image (G). These 
magnified images allow for a very clear visualization of the complex and intricate web of interconnections between colonies that were in 
place. Microscopy was on a Nikon eclipse TS100 inverted microscope using for (A–F) a 10x objective and for (G) a 20× objective. Both 
objectives were used in combination with a 4× phase contrast ring, which produced the high resolution 3D-like images. Microphotographs 
were acquired using a Roper Scientific CoolSnap™ ES camera, images were captured with NIS-Elements F3.2 software, and processed 
with ImageJ. Scale bars in all images depict 100 μm. 
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monolayer growth, ultimately reflect genetic diversity 
following metastasis and adaptation to the surrounding 
unique tissue environments.

Isogenic metastatic breast cancer cell lines: 
average specific growth rates

Average specific growth rates along with average 
cell cycle times (Table 1) were estimated by linear 
transformation [35] of the data used to generate the viable 
cell numbers versus days of growth curves presented in 
Figure 4A. Qualitative differences between the growth 

characteristics of the different cell lines can be ascertained 
from Figure 4A. Thus, it was apparent that primary tumor, 
liver, and spine cell lines appeared to have little or no 
lag-phase to their growth, followed by a relative steady 
rapid growth that ended with a plateau phase of slowed 
growth and the latter, for the liver cell line, occurred at 
a relatively low cell density. On the other hand, the brain 
cell line exhibited a protracted lag-phase that was followed 
by a rapid growth phase that did not reach a slowing of 
growth during the time period of this experiment. The 
lung cell line grew without a lag-phase, passed through 
a slowing of growth and then rapidly grew until the end 

Figure 3: Representative images of the brain cell line colony and mammosphere growth patterns. (A) Images highlighting 
(arrows) the very long (> 100 μm: see scale bars) nanotube interconnections (or filopodia; e.g., middle right-hand image) that consistently 
form during: 24 hr (top row), 48 hr (middle row), and 120 hr (bottom row) of growth. (B) Examples, under adherent culture conditions, of 
the large free-floating mammospheres (arrows) that consistently formed during subculturing of smaller floating mammospheres retrieved 
from confluent brain cell line culture medium. All imaging equipment and image processing was the same as described in Figure 1. All 
images in (A) were obtained with a 10x objective. The image in (B) was obtained using a 4x objective. Scale bars in all images depict 
100 μm.
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of the experiment. The parental cell line had a relatively 
steady growth rate for most of the time that may have 
increased somewhat prior to the end of the experiment. 
The analysis of the plots shown in Figure 4B shed light on 
these qualitative evaluations. Thus, except for the parental 
cell line, all cell lines can be evaluated as having two 
distinct average specific growth rate periods shown as red 
tread lines in Figure 4B. The slopes of these lines provide 
estimates of average specific growth rates (µ) for each time 
period (Table 1), which then allows for the calculation of 
the average length of the cell cycle (tc) for each period 
(Table 1). As such, it was found that the parental cell line 
had an average specific growth rate of about 38% per day 
and a corresponding average cell cycle length of 1.8 days 
throughout the six days of growth. For the brain, lung, 
and primary tumor cell lines the two periods of growth 
were from 24–72 hrs and 72–144 hrs (Figure 4B). While 
lung and primary tumor cell lines grew rapidly during 
the first time period, i.e., at average specific growth 
rates of 55% and 61% per day respectively (Table 1),  
with corresponding short average cell cycle times of about 
1.25 and 1.13 days respectively (Table 1), the brain cell 
line exhibited a prolonged initial (24–72 hrs) slow average 
specific growth rate of only about 15% per day (Table 1) 
that corresponded to an average cell cycle time of 4.65 
days. However, between 72 and 144 hrs the brain cell 

line’s average specific growth rate increased greater-than 
3 fold to about 50% per day with an average cell cycle 
time of 1.4 days (Table 1). For the liver and spine cell lines 
the two periods of growth were from 24–72 hrs and 96–
144 hrs (Figure 4B). These cell lines had similar growth 
characteristics with average specific growth rates of 43 
and 46% per day respectively and corresponding average 
cell cycle lengths of 1.6 and 1.5 days respectively during 
the first time period (Table 1). Similarly, both liver and 
spine cell lines reached a stationary growth phase (96–144 
hrs) (Figure 3B) where average specific growth rates of 
only 7.6 and 6.2% per day and corresponding average cell 
cycle times that increased by nearly 10 fold to about 9 and 
11 days respectively (Table 1).

Overall, under these in vitro conditions, these results 
indicate that each of these isogenic cell lines modulates its 
cell cycle rate along with cell loss or senescence rate and 
hence its growth rate differently throughout the six-day 
culture period. 

Isogenic metastatic breast cancer cell lines: 
motility 

Two independent motility assays were carried out in 
standard 24 well Transwell® plates with 8 mm membrane 
inserts. During day two (white bars) and three (gray 

Table 1: Average specific growth rates and length of cell cycle divisions for the indicated growth 
periods

μᵼ

(Day-1)
μ

(hr-1)
tcǂ

(Days)
tc

(hr)

Brain             24–72 hr 0.149 0.0062 4.65 111.8

                    72–144 hr 0.495 0.0206 1.40 33.6

Parental      24–144 hr 0.383 0.0160 1.81 43.4

Liver            24–120 hr 0.430 0.0179 1.61 38.2

                    96–144 hr 0.076 0.0032 9.08 218.0

Lung             24–72 hr 0.555 0.0231 1.25 30.0

                    72–144 hr 0.354 0.0148 1.96 47.0

Spine          24–120 hr 0.464 0.0193 1.49 35.8

                    96–144 hr 0.062 0.0026 11.18 268.3

1o Tumor      24–72 hr 0.613 0.0255 1.13 27.2

                    72–144 hr 0.142 0.0059 4.89 117.3

ᵼDenotes average specific growth rate from equation: ln(Nt/No) = μt, where Nt is the number of cells at time ‘t’, No is the initial 
number of cells, and t is time.
ǂDenotes the average length of the cell cycle division and is derived from: tc = ln2/µ.
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Figure 4: Growth curves and estimation of average specific growth rates (µ) off of plots of ln(Nt/No) versus time. (A) 
Growth curves of viable cell numbers vs days of growth depicting distinctions in growth characteristics between cell lines. Each data point 
of the growth curves represents a mean (n = 3 to 4 wells of cells) ± 1 standard deviation (error bars) except for the last point of the brain 
and the last two points of the liver where these are averages of two wells of cells. (B) The same data sets use in (A) plotted as ln(Nt/No) vs 
growth interval in hrs where Nt is the number of cells at time ‘t’, No is the initial number of cells, i.e., viable cell counts on day 1 (24 hrs 
after seeding the plates), and t is time. As, ln (Nt/No) = μt, it can be seen that the slope (µ) of each treadline (shown in red) provides an 
estimate of the average specific growth rates over the course of each growth interval (red lines) shown (see Materials and Methods for a 
definition of growth interval). 
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bars), the parental cell line’s motility was relatively high 
(Supplementary Figure 1) as compared to the isolated 
isogenic cell lines (Supplementary Figure 1). On day 
two, the motility of the parental cell line was significantly 
higher than the primary tumor and all metastatic cell lines 
(P < 0.05, two tailed t-test), and this remained the case 
on day three for all cell lines except the liver cell line. 
By day three the liver cell line’s motility was significantly 
higher than the primary tumor and metastatic cell lines (P 
< 0.005) but not the parental cell line. In addition, it was 
noted that, except for the parental cell line, the numbers 
of cells migrating were very low being on average only 
1.5% of the total cell numbers in the wells. Also, little or 
no motility was seen in a “wound”/scratch motility assay 
(not shown). Both results are consistent with the fact that 
these metastatic cell lines do not exhibit extensive lateral 
monolayer growth patterns (Figures 1–3), which favors 
migration to and through a pore or into a “wound” but 
instead propagate vertically in stationary colonies. 

Isogenic metastatic breast cancer cell lines: 
metabolomics

To gain a better understanding of the underlying 
molecular changes that are contributing to or are the 
result of adaption to different tissue microenvironments 
metabolomic analyses of our isogenic metastatic breast 
cancer cell lines were carried out. Our global metabolomics 
analyses provided strong evidence that our isogenic 
metastatic cell lines have distinct metabolomes (Figure 
5 and Table 2). Principal components analyses (PCA) 
of aqueous phase as well as lipid phase (predominately 
lipids) metabolites (Figure 5A–5B) revealed that all the 
isogenic cell lines unambiguously clustered into discrete 
classes (depicted as spheres) in both cases, which reflects 
each cell line’s inherently distinct metabolome and 
lipid characteristics. PCA mapping of aqueous phase 
metabolites (Figure 5A) shows that PC #1 contributes to 
49.9 % and PC #2 contributes to 21.9 %, while PC #3 
contributes to 20.4 % (data not shown) of the variation 
observed in the various samples. PCA demonstrates that 
there is a large difference, primarily indicated by PC 
#1, in metabolites of the metastatic cell lines relative 
to the primary tumor cell line (Figure 5A). Similarly, 
metastases are mainly differentiated by PC #2 indicating 
that they are more similar to one another. Hierarchical 
clustering confirmed that the primary tumor cell line was 
clustered separately from the metastases (Figure 5C). The 
dendrogram also confirmed that brain and liver metastases 
were more related to each other with respect to aqueous 
metabolite components (Figure 5C). PCA mapping of 
lipid phase metabolites (Figure 4B) shows that PC #1 
contributed to 45.3 % and PC #2 contributed to 33.1 % 
while PC #3 contributed to 15.3 % (data not shown) of 
the total variation. PCA showed that primary tumor lipids 
phase metabolites were closely related to brain lipid 

phase metabolites. Hierarchical clustering confirmed PCA 
analysis showing that lipid phase metabolites in primary 
tumor were closely related to brain (Figure 5D). The 
largest variation in lipid phase metabolites expression was 
observed in spine metastases. 

Raman spectroscopic differentiation of organ-
specific metastatic isogenic breast cancer cell 
lines

Mean Raman spectra (±1 standard deviation) of 
the metastatic isogenic breast cancer cell lines and the 
primary tumor cell line are shown in Figure 6A, where the 
spectra have been normalized and offset for visualization 
purposes but displayed without background correction. 
The Raman spectra are an aggregate expression of 
cellular biochemistry and structure, since the vibrational 
signatures inform not only on the composition of the 
complex biological material but also on structural states 
of the molecules in the specimen. The observed spectral 
features encode a vast amount of information of the 
principal constituents, [36] namely lipids, proteins, nucleic 
acids, carbohydrates and small molecules. Table 3 lists 
the assigned vibrational modes for a selection of these 
spectral features. Though the spectra grossly appear to 
have similar profiles, detailed inspection reveals subtle but 
discernible and reproducible shape differences, especially 
on removal of the broad fluorescence background [37]. 
Based on our previous experience in differentiation of 
breast tissue lesions [21], we reasoned that while the 
subtle distinctions between the spectra of each cell line 
impede the possibility of differentiation using a single 
feature, multivariate classification methods could enable 
recognition and segmentation of the cell pathology - as 
long as the between-class distinctions are reproducible and 
surpass within-class distinctions. 

Hence, we employed principal component analysis 
(PCA) to transform the dimensions of the acquired 
spectra into a set of linearly uncorrelated variables, i.e., 
principal components, along which the variation in the 
data is maximal (Figure 6B). This dimensional reduction 
step is critical to enabling sample exploration via visual 
assessment of similarities and differences between 
samples and, ultimately, in identifying the smallest 
possible subset of discriminatory features necessary to 
build a robust decision algorithm. PC1 and PC2 accounts 
for approximately 67% and 12% of the total variance 
in the dataset. In addition to homing in on the spectral 
features responsible for the variance between the cell lines 
(indicated by the dashed lines in Figure 6B), we employed 
the PC scores to assess the feasibility of recognizing 
individual cell lines based on the Raman data. Specifically, 
the PC scores were used to create a radial visualization 
plot (Figure 6C). The plot reveals the degree of clustering 
of the spectra recorded from the same cell line and, 
critically, the inter-cell line spectral variations. Together, 
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Table 2: Fold increases of top metabolites from the 1o Tumor1 and metastatic sites
1o Tumor vs:

Metabolite Brain Liver Lung Spine
Biotripyrrin 4.2 14.0 7.5 34.6
2-Amino-3-Carboxymuconic Acid Semialdehyde 17.3 14.7 2.9 12.0
L-Thyroxine ----2 18.0 2.5 7.9
Phosphatidylinositol Trisphosphate (PIP3) (18:0/16:1) 3.5 4.6 6.7 3.9
Lysophosphatidylethanolamine (LysoPE) (15:0/0:0) 5.4 3.7 2.3 3.7
L-Dihydroorotic Acid 4.0 3.8 2.0 3.6
Cholesterol Ester (14:1) 2.7 3.3 4.8 3.7
Cholesterol Ester (20:4) 2.0 2.2 2.7 3.4

Brain vs:
1o Tumor Liver Lung Spine

Neurotensin 1-10 85 3.8 100 9.9
Tryptophyl-Tryptophan 60 24 ---- 36
Phosphotidylethanolamine  (PE) (18:3/14:1) 23 2.2 ---- 9.6
Phosphotidylglycerolphosphate (PGP) (16:1/16:1) 8.0 4.5 ---- ----

Liver vs:
1o Tumor Brain Lung Spine

N1,N8 Diacetylspermidine 42 2.8 ---- 2.0
1-Phenylethylamine 2.5 2.1 19.7 5.2
Pantetheine ---- ---- 7.3 ----

Lung vs:
1o Tumor Brain Liver Spine

CL3 ---- ---- ---- ----
Arginyl-Proline 4.6 5.3 22 3.4
DG4 (14:0/24:1/0:0), (16:1/22:0/0:0), (18:1/20:0/0:0) 2.9 4.7 9.7 2.5
Putreanine 3.5 3.3 7.9 3.1

Spine vs:
1o Tumor Brain Liver Lung

Methionyl-Proline 71 20.8 3.1 44
Asparaginyl-Glutamate ---- 26.6 16.6 ----
Gentisate Aldehyde ---- 26.6 16.6 ----
Dityrosine 22.4 12.6 2.5 4.8
PIP2 (16:0/20:1), (16:0/22:4), & (18:0/18:1) 21.8 15.3 2.3 20.5
4-Guanidinobutanoic Acid ---- 20.9 ---- 2.3
5-Methyldeoxycytidine ---- 16.6 4.5 ----
Ferrocytochrome 6.4 14.8 8.9 6.9
Pentacaboxylporphrinyl ---- 10.2 5.2 5.5
SCICAR5 ---- 7.9 4.3 8.0
4-Aminobutyraldehyde 6.1 6.1 5.3 2.5
N2, N2-Dimethylguanosine ---- 6.6 6.9 3.3
D-Lactaldehyde 6.2 6.6 6.1 2.5
7,8-Dihyderoneopterin 3.1 3.9 2.9 2.0

11o Tumor denotes primary tumor. 2A dash indicates that the metabolite was below the detection limit in that organ. 3CL 
denotes cardiolipins: (16:0/16:0/18:1(9Z)/18:1(9Z)), (16:0/16:0/18:1(11Z)/18:1(11Z)), (16:0/16:0/18:1(9Z)/18:1(11Z)), & 
(16:1 (9Z)/18:0/16:1(9Z)/18:0). 4DG denotes diacylglycerol. 5SCIAR denotes: (S)-2-[5-Amino-1-(5-phospho-D-ribosyl)
imidazole-4-carboxamido]succinate.
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these qualitatively suggest the presence of differential 
molecular constituents in the isogenic cell lines that 
are driven by site-specific adaptations. The Raman 
spectra-derived dendogram (Figure 6D), reinforces these 
feasibility results but also hints at the relative difficulty 
in separating the liver and brain cell lines based solely on 
the vibrational signatures. Notably, the overlap between 
the brain and liver Raman signatures is consistent with 
the metabolomics findings (Figure 5) underscoring the 

correspondence between the two complementary data 
sets. 

To quantify the classification capability of Raman 
spectroscopy, we developed decision algorithms based 
on partial least squares discriminant analysis (PLS-
DA) and support vector machines (SVM). The overall 
classification accuracy obtained for the PLS-DA-derived 
decision algorithm was found to be 96.8% with the 
classification accuracy for each cell line being in excess 

Figure 5: Principal component analysis (PCA) maps along with hierarchical clustering’s of metabolites and lipids. (A) 
3D PCA mapping of aqueous metabolites (top panel) displaying sample classes as spheres. Bottom panel displays hierarchical clustering of 
the samples along with the associated heat map of aqueous metabolite distributions. (B) 3D PCA mapping of lipid soluble metabolites (top 
panel) with spheres representing the sample classes. Panel at the bottom displays a heat map of lipid soluble metabolite distributions along 
with the associated dendrogram. Expression values for the heat maps are indicated by a key at the bottom of the maps.
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Table 3: Assignment of specific Raman spectral components to subcellular constituents
Raman Shift 

(cm-1) DNA/RNA Proteins Lipids

620 C-C Twist Aromatic Ring

643 C-C Twisting of Tyrosine

702 Cholesterol

715 Adenine C-N (Membrane Phospholipid 
Head Group)/C-N-(CH3)3

781 Cytosine/Uracil 
Ring Breathing

810 Phosphodiester

828 O-P-O Stretching Tyrosine Phosphodiester

853 Ring Breathing of Tyrosine
C-C Stretch of Proline Ring

878 C-C-N+ Symmetric Stretching

938 Hydroxyproline/Proline
ν(C-C) Vibration of Collagen Backbone

1005 Phenylalanine

1035 Collagen

1066 Proline Fatty Acid

1086 ν1CO3
2-, ν3PO4

3-, ν(C-C)
Acyl Backbone

1128 C-N Stretching

1156 C-C, C-N Stretching

1176 C-H Bending Tyrosine

1209 Tryptophan & Phenylalanine ν(C-C6H5)

1241 Asymmetric Phosphate Stretching

1254 C-N in Plane Stretching

1266 Amide III (α-Helix)/Tryptophan/Collagen

1302 CH3/δ(CH2) Twisting, Wagging, Collagen,
Amide III, & -CH2- Bending

CH3/δ(CH2) Twisting, Wagging,
Phospholipids, &-CH2- Bending

1334 Nucleic Acid CH3CH2 Wagging, Collagen

1342 CH Deformation

1367 vs (CH3) Phospholipids

1391 C-N Stretching in Quinoid Ring-Benzoid

1437 CH2 Deformation

1451 CH2 Bending/CH3 Bending
C-H Deformations

C-H Deformation

1556 Tryptophan ν(CN) & Amide II
ν(C=C) Porphyrin & Tyrosine

1605 Cytosine Phenylalanine & Tyrosine

1657 ν(C=O) Amide I (α-Helix)
C=O Stretching of Collagen & Elastin

C=C Stretch
Fatty Acids
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of 93% (Table 4). The SVM-derived decision algorithm 
also provides similar levels of classification performance 
affirming that the richness of the spectral data is the 
principal driver for the prediction performance. Next, 
we performed difference analyses across the normalized 
spectra obtained from pairwise comparison of cell lines 
to delineate the informative regions with the goal of 
identifying biomarkers, which would be either universal 
or characteristic to a specific pair of cell lines. Figure 6E 
exhibits two representative cases of these comparisons, 
namely between primary tumor and liver cell lines 
and between primary tumor and spine cell lines. The 
accompanying PC loadings were obtained from analysis of 
the spectral dataset constituted by the primary tumor and 
liver, and primary tumor and spine cell lines, respectively. 
By merging the difference analyses and spectroscopic 
basis of the PC loadings, the following informative 
regions were identified: 1000–1006 cm-1, 1136–1211 cm-

1, 1298–1330 cm-1 and 1435–1470 cm-1. 
Using only the selected regions (highlighted by 

the yellow bars of Figure 6E), we developed a PLSDA-
derived decision algorithm to reclassify all the cell lines 
that provided equally impressive prediction performance 
(Table 4) as that obtained using the full spectral analysis. 
Only 9.6% of the spectral information was used in this 
case thereby underlining the presence of specific spectral 
markers in the dataset.

Additionally, to ensure the robustness of these 
findings, we implemented a negative control study. In 
this case, the labels (primary tumor, brain, liver, lung and 
spine) were assigned in a randomized order, regardless 
of their actual identity. Using the acquired spectra in 
conjunction with these control labels, we re-derived the 
PLS-DA and SVM decision algorithms and used them 

in the same analysis protocol as detailed previously. In this 
situation, a low correct classification rate for each cell line was 
obtained with the average rate of correct classification below 
20%. This underscores the robustness of the spectroscopic 
measurements to confounding variables and chance 
correlations. Collectively, these results demonstrate that 
Raman spectroscopy offers a reliable tool for discriminating 
these isogenic metastatic breast cancer cell lines on the basis 
of distinct organ-of-origin driven biochemical adaptations. 

We also compared Raman signatures of specific 
cell line pairs and tallied the spectral markers against 
the known Raman features of the cell line specific 
expressed metabolites. As show in in Figure 7-top panel, 
a comparison of metabolite profiles in the spine and the 
primary cell line reveals the overexpression of Raman-
active analytes in spine, namely gentisate aldehyde 
and dityrosine. Similarly, complementarity of the 
metabolomics and Raman datasets was reinforced through 
detection (using liver as a control) of the overexpressed 
Raman-active analytes in the primary tumor: L-thyroxine 
and L-dihydroorotic acid (Figure 7-middle panel) and 
Raman-active 1-phenylethylamine in the liver (using 
primary tumor as a control; (Figure 7-bottom panel). 
Analyses of the difference spectra between cell line pairs 
and their corresponding PC loadings reveals the presence 
of subtle features at wavenumbers (scattering frequencies) 
where these metabolites show Raman activity (Figure 7 
and Table 5). 

DISCUSSION

An inherent challenge within cancer research is 
the cataloguing of fundamental information on what is 
generally fatal metastatic disease within vital organs. 

Table 4: Raman spectroscopy based classification of isogenic metastatic breast cancer cell lines
PLSDA1

algorithm
SVM2

algorithm
PLSDA1 feature-specific

algorithm

Reference
Identification

Correct
Classification (%)

Correct
Classification (%)

Correct
Classification (%)

1o Tumor3 99.3 (0.7)4 98.9 (1.1) 97.2 (2.8)

Brain 98.0 (2.0) 99.6 (0.4) 91.7 (8.3)

Liver 97.4 (2.6) 94.3 (5.7) 91.1 (8.9)

Lung 93.3 (6.7) 97.3 (2.7) 85.8 (14.2)

Spine 96.1 (3.9) 98.2 (1.9) 90.6 (9.4)

1Denotes Partial Least Squares Discriminant Analysis.
2Denotes Support Vector Machines.
3Denotes Primary Tumor cell line.
4Values in parenthesis = percentage misclassifications.
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Figure 6: Raman spectroscopic analyses of organ-specific metastatic breast cancer cell lines reveals distinct spectral 
characteristics for each cell line. (A) Representative Raman spectra acquired from brain, primary tumor (1o Tumor), liver, lung, 
and spine cell lines. The solid profile depicts the mean spectrum of each sample group and the shadow represents ±1 standard deviation. 
Spectra were normalized and offset for visualization. Dashed vertical lines delineate Raman shifts (cm-1) detailed in Table 3. (B) Principal 
component (PC) loadings for PC 1, 2, 3 and 5, for the Raman measurements are shown. Dashed vertical lines delineate prominent Raman 
shifts (cm-1) detailed in Table 3. (C) Radial visualization principal component scores plot, corresponding to the most discriminative PCs 
(PC1, 2, 3, and 5), shows the clustering of the spectral data corresponding to each organ-specific cell line, red: primary tumor, blue: brain, 
green: liver, orange: lung, and purple: spine. (D) Dendrogram of organ-specific breast cancer cell lines cluster analysis. Each color bar 
represents one organ-specific cell line. (E) Identification of informative spectral regions via PCA data exploration as exemplified by the 
PC loadings corresponding to the spectral dataset acquired from: primary tumor and liver (left panel) and primary tumor and spine (right 
panel) cell lines. The top to bottom profiles in each panel show difference spectra: (DS) between liver/primary or spine/primary spectra 
along with their PC1 and PC2 loadings, respectively. The highlighted yellow bars (1–4), represent the wavelength regions elucidated from 
the difference spectra (DS) as those with the most significant variability amongst the considered cell lines.
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Figure 7: Raman spectroscopic analysis to probe the presence of cell line specific expression of molecules identified 
through metabolomics analysis. The top panel highlights the differential expression of spectral markers in the spine cell line. The 
primary cell line spectrum was used as the control to calculate the difference profiles. Additionally, principal components (PC) 1 and 2, 
calculated from the spine and primary cell line data, are provided to capture the variance. The presence of spectral features, corresponding 
to the peaks of dityrosine and gentisate aldehyde, are highlighted by the dashed lines and detailed vibrational mode assignment is presented 
in Table 5.  Similarly, the middle panel compares the Raman spectra of the primary cell line with a control group, i.e., Raman spectra 
acquired from the liver cell line, to illustrate the presence of features of overexpressed metabolites L-dihydroorotic acid and L-thyroxine. 
The bottom panel compares the Raman profiles of the liver cell line with the control group (primary) to delineate the overlap with features 
of 1-phenylethylamine. Profiles in blue represent the difference spectra: (DS) whereas the red and green profiles show the PC1 and PC2 
loadings respectively for each chosen pair of cell lines. 
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Monitoring and treating metastatic progression remains 
a formidable task due to many gaps in our knowledge 
including: an inability to monitor the onset of successful 
metastatic growth along with specific differential 
molecular adaptations that allow for the cancer to survive 
and thrive within different tissue types [18, 38, 39].  
Consequently, we have taken up the important 
consideration that metastatic cancer cells growing in 
visceral organs ought not to be considered simply as 
primary tumor implants. Rather metastatic lesions need 
to be understood as significantly influenced and altered 
by tissue-specific microenvironments that the cancer 
cells must adapt to [18, 38, 39]. To address this problem, 
we choose to characterize isogenic human breast cancer 

metastatic cell lines that spontaneously arose from 
dissemination from the primary mammary fat pad site of 
our mouse model. 

The establishment of metastatic lesions integrated 
into vital visceral organs is a multistep process that 
includes: i) the cancer cells ability to survive as 
independent entities that thrive outside the normal cell-
cell interactions of healthy epithelial tissues, ii) surviving 
harsh circulation conditions, and iii) embed and adapt 
to growth within microenvironments that are distinct, 
from a developmental as well as functional basis, from 
the primary tumor site. In order to mimic this process, 
we have generated isogenic cell lines directly from 
organ-specific metastatic lesions of the brain, liver, lung, 

Table 5: Raman shifts and associated band assignments of cell line specific metabolites

Tissue Metabolite
Raman 

Shift 
(cm-1)

Band Assignment

Spine Dityrosine 818 Tyrosine, Proline, & Hydroxyproline, ν2PO2- stretch of
nucleic acids

1168 Tyrosine: C-H in-plane bending

1207 Tyrosine & Phenylalanine: C-C6H5 stretching, 
Hydroxyproline

1605 Tyrosine & Phenylalanine: C=C in-plane bending

1616 Tyrosine & Tryptophan: C=C stretching mode

Gentisate Aldehyde 804 νC-C, νC-O

1133 βC-H, νC-C

1612 νC-C, βC-H

1o Tumor1 L-Dihydroorotic Acid 607 βC=O, βC-Oca, βCrg-Cca

652 γNH, γOH

734 βC=Oca, νC-Oca, νrg, βC-Oca

1131 νNC, βCH1, νNC,

1414 νNC, βNH, νrg, βrg

L-Thyroxine 1177 Out-of-phase νCβ-O

1239 In-phase νC-O, C-OHo.o.ph

1381 Stretching aromatic ring

1537 In-phase aromatic ring

1579 Stretching aromatic ring

Liver 1-Phenylethylamine 1031 C-H in-plane bending mode, C-N stretching

1327 CH3 wagging mode

1440 CH3, CH deformation vibrations
11o Tumor denotes Primary Tumor.
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and spine (bone), which are the organs most commonly 
affected, i.e., bone (60%), lung (34%), liver (20%), and 
brain (10–15%), during human metastatic breast cancer 
progression [25, 26]. We initially cultured these as organ 
explants along with a cell line from the primary tumor 
site, i.e., mammary fat pad, in an attempt to preserve 
tissue adaptation attributes acquired during adaptation to 
each in vivo microenvironment [40, 41]. In addition, these 
culturing conditions minimized damage as well as stresses 
imposed during harsher multistep single cell isolation 
protocols, which likely also bias cancer cell selection 
to subpopulations that survive the isolation procedures. 
This overall model is analogous to the natural course of 
metastatic progression found in the clinic where metastatic 
lesions are composed of cells that are isogenic to the 
primary breast cancer but also distinct at the molecular 
and cellular level [6–18, 38, 39]. 

Once adapted to plastic these new isogenic cell lines 
exhibited distinct phenotypic/morphological differences 
in growth patterns along with similarities that went 
across cell lines including those established from the 
primary tumor site. The most evident of the latter was 
a tendency for all cell lines to grow as complex arrays 
of interconnected 3D colonies with various degrees of 
loosely held together monolayers (Figures 1–3). The 
distinctions in average specific growth rates and average 
cell cycle rates (Figure 4 and Table 1) support the concept 
that the different growth patterns reflect metabolic, cell 
cycle, and hence, likely genetic/epigenetic differences 
between cell lines. Given that, in general, cytotoxic 
chemotherapies are more efficient in killing cycling cells, 
understanding differences in growth and cell cycle rates of 
cells in metastatic lesion will provide us with an optimum 
treatment strategy [42].

Attempts to distinguish between cell lines using 
motility assays proved inconclusive (Supplementary 
Figure 1) possibly due in part to the relative lack of 
monolayer growth exhibited to different degrees across 
cell lines (Figures 1–3), which is the type of lateral growth 
pattern that generally propagates a migration to and 
through a pore or into a “wound”. It is also possible that 
the low motility reflects a loss of this metastatic trait that 
is generally associated with movement out of the primary 
tumor, into the blood/lymph systems, and subsequent 
local/systemic dissemination, which may be suppressed 
once growth is established in a distal organ. Nevertheless, 
the little or no motility seen across all cell lines in the 
Transwell motility assay (Supplementary Figure 1) 
revealed that these cell lines were able to survive and grow 
in the low nutrient (0.1% FBS) serum conditions of the top 
chamber, which may reflect an adaptation to survival in a 
hostile microenvironment within portions of the primary 
tumor prior to dissemination or at the new site of growth. 
From a different perspective, these cell lines are ‘motile’ in 
up-ward growth in the form of 3D spheres and all exhibit a 

tendency to shed viable free-floating cells into the medium 
that either remained as single cells or grew as free-floating 
colonies that resemble mammospheres (Figure 3B). The 
latter trait is unusual as mammosphere growth patterns 
have consistently been shown to be limited to growth on 
non-adherent plates [43] unlike the adherent conditions 
used here. This trait may reflect an in vivo attribute of 
the metastatic process or adaptation to plastic. The latter 
seems unlikely as most available cancer cell lines adapted 
to growth on adherent plastic do so as monolayers with 
little or no “sphere” formations. 

Interestingly, the colonies of brain and spine 
(and to a lesser extent the other cell lines as well) are 
interconnected and therefore, in apparent communication 

[44–46], by nano- or microtubes, which were observed at 
well over 100 μm in length (Figures 2 and 3) and at high 
colony densities formed complicated intricate networks 
between colonies (Figure 2E–2H). It appears that under 
these conditions the cell lines have a propensity to grow 
as semi-separate entities/colony arrays that require an 
interacting exchange of materials via these conduits [44–
46]. This may be a reason for the lag-phase growth period 
exhibited by the metastatic brain cell line as these cells 
may require a relatively extensive interconnected network 
to support higher growth rates and shortened cell cycle 
times. To the best of our knowledge, at the abundance seen 
in our cultures, the interconnected nanotube network is a 
very unique characteristic along with the mammosphere 
formation on adherent plates. 

Importantly, the metabolomics data indicates that 
the isogenic metastatic cell lines have diverged from 
the primary tumor as well as from each other (Figure 5). 
Table 2 shows fold increases of top metabolites, i.e., those 
at least 2 fold greater in each tissue-specific cell line vs 
all other cell lines. Although further work is needed to 
definitively prove whether an increase in a metabolite in a 
specific metastatic cell line has arisen from organ-of-origin 
influences, select metabolites in Table 2 can be associated 
with specific organs. For example, as reflected in Table 2,  
Neurotensin 1-10, a neurotransmitter, was found to be 
increased in the brain cell line and has been reported to be 
principally of brain origin [47] while pantetheine (vitamin 
B5) an intermediate in the enzyme-CoA formation 
pathway, which is increased in the liver cell line, is 
generally most abundant in liver [48]. Some classes of 
the tetra-acylated anionic phospholipids: cardiolipins, are 
only found in relatively high abundance in the lung cell 
line (Table 2) and cardolipins have been reported to be 
increased in human lung cancer [49]. Interestingly, N1, 
N8 diacetylspermidine has been found to be a marker of 
breast cancer and from our results (Table 2) it appears 
that it can potentially reflect metastatic progression 
to the liver [50]. Future studies are required to provide 
experimental evidence that cell line specific metabolomes 
contain metabolites that reflect a cell line’s tissue of origin. 
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Such work would also strive to obtain information on 
metabolic pathways associated with such metabolites and 
their potential relationships to metastatic adaptations at 
each site. 

We also had the aim of obtaining rapid, non-
destructive, and label-free profiling of these isogenic 
metastatic breast cancer cell lines and to this end have 
undertaken a Raman spectroscopy characterization 
approach (Figure 6). Raman spectroscopy was considered 
as a complementary alternative to a purely “omics” 
approach as the latter has some well-characterized 
limitations [51]. Our Raman spectroscopy-based decision 
algorithms showed the ability to differentiate between our 
isogenic cell lines with high accuracy (Table 4). These 
algorithms exploit subtle differences in the vibrational 
signatures of the molecular markers that are reflective 
of the multiple and complex interactions between 
metastatic cells and host homeostatic mechanisms. The 
complementary nature of these distinct analytical tools 
(metabolomics and Raman spectroscopy) was observed; 
e.g., with the general overlap that was found between 
the dendograms obtained from the two methods, which 
in both case indicated that brain and liver cell lines are 
closely related. 

Notably, we sought more evidence of a 
complementarity between the two methods and found 
examples of Raman-active analytes, i.e., discriminating 
spectral markers were ascertained for cell line specific 
metabolites (Figure 7). As discussed earlier, the principal 
variations in the Raman spectra of the cell lines are largely 
attributable to proteins, lipids and nucleic acids however, 
signatures of metabolites and other small molecules 
are also embedded in the Raman spectra. Hence, even 
though fingerprinting specific metabolites through the 
vibrational features alone is challenging, one can infer the 
contributions of these metabolites towards the composite 
cellular biochemical status represented in the Raman data. 
Further probing of the high wavenumber region may 
provide complementary molecular insights, particularly 
of the lipid phenotype along with other important 
biochemical features [52–56].

Overall, important differences between organ-
specific metastatic cell lines reflect the fact that organs 
differ vastly with unique attributes of metabolism, 
developmental programs, microenvironments, and 
function, all of which results in defined identities with 
specific growth challenges for invading cancer cells. For 
example, normal oxygen tension varies greatly between 
tissues [57]. Therefore, if one considers only this single 
vital nutrient change between organ types, it ought not to 
be surprising that a metastatic growth embedded in lung 
tissue with high oxygen tension would acquire different 
characteristics as compared to metastatic cells thriving in 
brain or bone at a much lower oxygen levels [57, 58]. 

MATERIALS AND METHODS

Mice 

All animal handling procedures were performed 
in accordance with protocols approved by the Johns 
Hopkins University Institutional Animal Care and Use 
Committee and conformed to the Guide for the Care and 
Use of Laboratory Animals published by the NIH. Non-
Diabetic severe combined immunodefcient (NOD-SCID) 
female mice, ages 6 to 8 weeks and initial weights of about 
19–20 g, were used throughout these studies. At the end 
of the experiments, mice were sacrificed by administering 
an overdose of anesthetic [saline:ketamine:acepromazine 
(2:1:1)] followed by cervical dislocation. 

Cell culture and treatments 

The human breast cancer cell line, MDA-MB-435, 
was obtained from ATCC. The MDA-MB-435 cell 
line was established in 1976 from a pleural effusion 
from an untreated 31-year-old female diagnosed with 
adenocarcinoma of the breast [59, 60]. MDA-MB-435 
cells were authenticated at the Johns Hopkins Genetic 
Resource Core Facility with the short tandem repeat 
marker results cross checked against cell lines at the 
ATCC bank. Generation and characterization of the 
parental MDA-MB-435-tdTomato (435-tdT) cell line has 
been previously described [27]. All culturing was done 
in standard humidified incubators at 37o C and 5% CO2. 
Primary tumors were initiated by injection of 2 × 106 435-
tdT cells into the second thoracic mammary fat pad of 5 
female NOD-SCID mice. After 13 - 15 weeks of primary 
tumor growth the mice were sacrificed and primary 
tumor, brain, liver, lungs, and, spine, were immediately 
excised from individual animals, dissected away from fat 
and muscle, and placed into sterile PBS on ice. Pieces of 
primary tumor, and heavily diseased lungs, and a small 
portion of liver with a macroscopic metastatic lesion were 
then immediately minced in 100 mm cell culture dishes 
containing 10 ml of medium within a sterile hood. All 
other organs/bones were inspected using fluorescence 
microscopy for any signs of metastatic burden, which was 
easily discerned as bright tdT red fluorescence (Figure 1). 
Areas of fluorescence along with adjacent tissue were cut 
away and placed into cell culture plates in sterile medium. 
In all cases, tissues from individual animals were cultured 
separately and there was no pooling of tissue samples. 

All organ/bone tissue explants were initially 
cultured in RPMI-10%FBS supplemented with antibiotics 
(100 I.U./ml penicillin, 100 mg/ml streptomycin, 100 
mg/ml ampicillin, and 100 mg/ml kanamycin) and, as 
necessary, Fungizone. The latter was often used during 
culturing cells out of spine as these pieces of bone, tended 
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to float, i.e, became collagen rafts, and thus somewhat 
exposed at the medium to air surface, which promoted 
fungal growth. Medium was refreshed every 2–3 days and 
after two weeks of culture the medium was changed to 
RPMI-10%FBS supplemented with pen/strep. Over the 
course of 1–3 months pure red fluorescent cell cultures 
were obtained and the use of pen/strep in the medium was 
eliminated. During routine passages the medium/floating 
cells was first collected and the adherent colonies were 
then lifted off the plates by room temperature incubations 
in HANKS-5 mM EDTA solution for ~5–10 min with 
shaking and tapping by hand. Lifted cells were pooled 
with the collected medium/cells, centrifuged 200 xg at 
21oC for 10 mins, and the supernatant (medium-EDTA) 
discarded. Cell pellets were then suspended in fresh 
medium and plated at the desired densities. It took at 
least 12 hr to 24 hr and at times 48 hr (generally during 
recovery from −80o C storage) for the larger percentage of 
adherent cells to settle and start to grow.

Average specific growth rate and average length 
of cell cycle division 

Growth rate analyses were initiated by seeding 
24 well plates with 105 cells per well and harvesting 
quadruplicates of these wells every 24 hr through to the 
144 hr end-point. Growth curves were generated from live 
cell counts obtained with a TC10 Automatic Cell Counter 
(Bio-Rad) in the presence of Trypan Blue. Average 
specific growth rates [35]: µ, were obtained from the 
slopes of plots of ln(Nt/No) versus time, i.e., ln(Nt/No) = μt, 
where Nt is the number of cells at time ‘t’, No is the initial 
number of cells, and t is time. Consequently, the average 
length of the cell cycle was obtained from the equation: 
tc = ln2/µ [35]. The rationale for the time intervals given 
in Table 1 is: The initial number of cells: No, can only be 
obtained after the cells have had time to settle, adhere, 
and begin to grow, i.e., 1 day after seeding the cells, as 
such, day 1 in Figure 4A equals day 0 = No Figure 4B. 
Thus, the first time interval of 48 hrs in Figure 4B means 
that the number of cells: Nt = No + (the cells that grew 
between 24 and 48 hrs), i.e., each time given on the x-axis 
of Figure 4B represents an interval of growth that begins 
at day 1 of the growth curves shown in Figure 4A. Hence, 
average specific growth rates in Table 1 bracket times; 
e.g., between 24 and 72 hrs, etc (Table 1).

Motility assay 

Standard motility assays were done in 24 well 
Transwell® plates (Costar) with 8.0 mm membrane 
inserts. Cells were seeded into duplicate upper chambers 
at a density of 10,000 cells/well in 200 ml of RPMI-0.1% 
FBS medium while lower chambers contained 500 ml 
of RPMI-5% FBS medium. Cells at the bottom surface 
of membranes were counted daily using a 10× objective 

on an inverted fluorescence microscope (Nikon Eclipse 
TS100) with the inherent red fluorescence of tdT as a 
visual marker. Two separate experiments were done and 
for each experiment two fields of view were counted from 
each well. Results indicate means ± 1 standard deviation.

Optical microscopy

Phase contrast and fluorescence microscopy was 
done on a Nikon ECLIPSE TS 100 microscope (Nikon 
Instruments, Inc.) equipped with a Photometrics CoolSnap 
ES digital camera (Roper Scientific), and FITC and Texas 
Red filter cubes. The fluorescence light source was an 
X-Cite 120 Fluorescence Illumination System (Photonic 
Solutions, Inc.). Images were collected with NIS-Elements 
F3.2 software and processed with ImageJ.

Metabolomics: principle component analysis and 
heat map generation 

Metabolite data from all samples were acquired 
using Agilent 6540 Quadrupole–Time-of-Flight 
(Q-TOF) mass spectrometer with Agilent 1290 HPLC 
at the Metabolomics Facility at Johns Hopkins Medical 
Institutions. Data was analyzed using Agilent Mass 
Hunter and Agilent Mass Profiler Professional (MPP) 
version 13.1.1 and Agilent Qualitative and Quantitative 
Analysis Software packages (version 6.00) to determine 
the metabolic profile of each sample. 

Principal component analysis (PCA) was performed 
to study similarities and differences among the different 
samples. It is a linear transformation used to describe 
high dimensional data [61, 62]. Expression values of 
metabolites and lipids were analyzed on Partek Genomics 
Studio 6.6 (Partek, Inc.) and used to create PCA plots. 
Each sphere represents a sample and each axis represents 
the principal components with the largest contributors 
being displayed. The distance between samples is 
inversely related to the similarity of their expression 
profiles, thus closely clustered samples are closely 
correlated. Hierarchical clustering was used to group 
similar expression patterns into clusters, which produced 
dendrograms that display the hierarchy of clustering. We 
clustered rows (expression values) and columns (samples) 
based on Euclidean distance and used average linkage 
method.

Raman spectroscopy

The custom-built Raman microscope 
(Supplementary Figure 2) used in this work was 
previously reported [21]. A 785 nm Ti: Sapphire laser 
(3900S, Spectra-Physics), pumped by a frequency-doubled 
solid-state laser (Millennia 5sJ, Spectra-Physics), was 
used as the excitation source for the inverted microscope. 
The laser was focused onto the specimen using a 1.2 NA 
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water immersion objective lens (UPLSAPO60XWIR 60X, 
Olympus) that also functioned to collect the backscattered 
signal. The collected signal was then recorded using a 
TE-cooled, deep depletion CCD (1340/400-EB, Princeton 
Instruments) following dispersion through an imaging 
spectrograph (HoloSpec f/1.8i, Kaiser Optical Systems). 
Additionally, bright field and phase contrast microscopy 
was performed for visualization and registration with the 
Raman measurements. Instead of interrogating single 
cells at the subcellular level, the ultimate goal of the 
current study is to characterize biochemical variances at 
the ensemble cellular level, and thus a collection of cells 
in pellets were investigated using point spectroscopic 
measurements. After replacing culture medium with PBS, 
cell pellets were formed by centrifugation and placed 
on top of the quartz coverslip for Raman measurement. 
Spectra (100: 10 × 10) were collected from 90µm × 90µm 
areas in each pellet with axial resolution of 25 µm. Raman 
spectra were recorded by vertical binning before averaging 
of 10 successive frames, each with an acquisition time of 
0.3 sec, for a total collection time of 3 sec. Wavelength 
calibration was performed prior to spectral acquisition 
by acquiring spectra from 4-acetamidophenol, a Raman 
scatterer with well-characterized peak positions. The 
600–1800 cm−1 fingerprint region was used for the 
ensuing analysis (spectral resolution of 8 cm−1). Cosmic 
ray removal was also implemented before the spectra were 
subjected to multivariate statistical analysis in MATLAB 
(Mathworks Inc.). 

Multivariate statistical analysis

While Raman spectroscopy provides a promising 
tool, in principle, to non-invasively probe biological 
specimen with high specificity, its intrinsic weak signals 
(especially in relation to conventional fluorescence 
imaging) and spectral complexity provides a substantive 
challenge in univariate or ratiometric quantitation of 
the sample constituents. Hence, to arrive at biochemical 
variances in isogenic cellular sublines, multivariate 
statistical analysis was performed on the acquired Raman 
spectra. By exploiting the full spectral information, 
as opposed to focusing on a single peak, multivariate 
techniques provide a robust route in extracting information 
both amenable and hidden from human examination. 

In this study, the Raman spectra were background 
corrected, normalized for intensity variations, and 
subsequently subjected to principal component analysis 
(PCA). PCA is a widely used exploratory data analysis 
technique and employs dimension reduction to amplify 
the subtle differences in the recorded spectral profiles [51]. 
Operating without any a priori knowledge of the samples, 
PCA seeks to determine an alternate set of linearly 
uncorrelated coordinates, i.e., principal components (PC), 
such that the maximum variance in the spectral data can 

be explained by using only a few PCs. In particular, we 
employed PC scores to reveal the clustering behavior – 
or the lack thereof – between the metastatic breast cancer 
cell sublines, and the coefficient loadings to uncover 
the critical diagnostic variables/regions in the spectra 
associated with the underlying differences in the spectral 
data. 

Additionally, to develop decision algorithms for 
predicting the cell type (class membership) of the spectra, 
partial least squares-discriminant analysis (PLS-DA) and 
support vector machines (SVM) were used. The former 
employs PLS analysis for noise reduction and variable 
selection and determines the maximal separation between 
each class by fitting a unique global model to the entire 
dataset. The number of loading vectors incorporated in 
the decision algorithm is determined by the leave-one-out 
cross validation procedure (LOOCV) [63]. 

The number of loading vectors (LV) used in the 
PLS-DA model was determined based on the minimal 
misclassification rate in a LOOCV protocol while ensuring 
that the spectra to LV ratio was greater than 5 to avoid 
problems of data sparseness. Subsequently, the dataset 
was split into training (70% of the spectra) and test (30%) 
sets to estimate the classification accuracy. This entire 
operation: re-splitting, training of the decision algorithm, 
and prediction, was performed 1000 times to obtain 
outcomes with well-defined statistical confidence.

Similar to PLS-DA in its supervised nature, SVM 
is rooted in statistical learning theory and structural 
risk minimization concepts and designs separating 
boundaries between classes by solving a constrained 
quadratic optimization problem. We used a radial basis 
function (RBF) with a Gaussian envelope to enable the 
separation of classes in a higher dimensional space and 
the optimization and kernel parameters were determined 
based on an automated grid search algorithm. Two 
different classification methods were used to confirm 
the validity of the results and to minimize the possibility 
of spurious correlations that may plague an “overfitted” 
decision algorithm. The output of the PLS-DA and SVM-
derived decision algorithms was validated against the 
known class labels, i.e., the specific line of the metastatic 
breast cancer cellular model system. The performance 
of the algorithms was evaluated by determining the 
sensitivity and specificity using a LOOCV protocol. 
Similar approaches to classification of Raman 
spectroscopic data have been described elsewhere in the 
literature [22, 64].
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