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Abstract: Epstein-Barr virus (EBV) is an etiological agent for gastric cancer with significant worldwide
variations. Molecular characterizations of EBV have shown phylogeographical variations among
healthy populations and in EBV-associated diseases, particularly the cosegregated BamHI-I fragment
and XhoI restriction site of exon 1 of the LMP-1 gene. In the Americas, both cosegregated variants
are present in EBV carriers, which aligns with the history of Asian and European human migration
to this continent. Furthermore, novel recombinant variants have been found, reflecting the genetic
makeup of this continent. However, in the case of EBV-associated gastric cancer (EBV-associated
GC), the cosegregated European BamHI-“i” fragment and XhoI restriction site strain prevails.
Thus, we propose that a disrupted coevolution between viral phylogeographical strains and mixed
human ancestry in the Americas might explain the high prevalence of this particular gastric
cancer subtype. This cosegregated region contains two relevant transcripts for EBV-associated
GC, the BARF-1 and miR-BARTs. Thus, genome-wide association studies (GWAS) or targeted
sequencing of both transcripts may be required to clarify their role as a potential source of this
disrupted coevolution.
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1. Introduction

Since the recognition of the Epstein-Barr virus (EBV) as an etiological agent for gastric cancer
(GC) [1], an explosion of research has taken place, focused on the pathogenesis and novel therapeutic
developments for this particular subtype (for a review in this series see Reference [2]). In this
scenario, meta-analyses and aggregated individual-level studies have shown significant variations
in the worldwide rate of EBV-associated GC with a particularly high prevalence in the Americas
compared with those reported in the Asian, European, and African continents [3–7]. Furthermore,
studies in the so-called New World indicate that European (mostly Spanish) and Amerindian admixture
(i.e., Hispanic ancestry) is clearly associated with higher rates of EBV infection in GC when compared
with rates from those with White/non-Hispanic heritage in the US or Brazilians with Japanese ancestry
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(Table 1) [8–11]. Thus, the Americas provide a unique opportunity for uncovering the molecular basis
of this particular subtype of GC. Here, we propose that a disrupted EBV-human co-evolution based on
the combination of phylogeographic polymorphisms of EBV and mixed ancestries in the Americas
might explain the high prevalence of this particular disease subtype.

Table 1. Ancestry and Epstein-Barr virus-associated gastric cancer in the Americas.

Country Ancestry Sample Size Rate of EBV Infection p Value References

Brazil
Hispanics 151 11.2%

0.01 [8]
Japanese descendants 149 4.7%

US
Mexican descendants 113 15.9%

0.023 [9,10]
White/non-Hispanic 92 4.3%

2. Phylogenetic Classification of EBV

The molecular characterization of EBV has been facilitated by whole genome sequences, restriction
fragment length polymorphisms (RFLP), genome-wide association studies (GWAS) from healthy
donors, the study of benign and malignant lesions, and naturally infected GC SNU-719 cell lines [12–16]
(for a review see Reference [17]). EBV can be classified as type 1 or 2, based on the substitution of
1.8 kb in the C-terminal domain of the EBNA-2 gene. Nucleotide differences at EBNA-3A, -3B, and -3C
genes also contribute to this classification [18]. These two types of EBVs display phylogeographical
differences as the EBV type-1 is the most common strain in the Asian, European, and American
continents, whereas type-2 is frequently found in Africa [19,20]. These subtypes differ in their
capacity to transform B-lymphocytes into a proliferative state [21]. A second classification of EBV
has been elaborated by the RFLP map of the prototype EBV B95-8 genome after digestion with
the BamHI restriction enzyme (Figure 1). The BamHI-F fragment is found in the majority of the
healthy population and in EBV-associated diseases in Europe, Africa, and the Americas, including
EBV-associated GC [22,23]. The presence of an extra BamHI restriction site within this fragment is the
“f” variant. Although initially identified in nasopharyngeal carcinomas (NPC) (an undifferentiated
epithelial-like tumor originating in the pharynx) [24,25], subsequent reports have found it in a low
frequency among the healthy population and in EBV-associated diseases worldwide [23,26]. The “f”
variant is located in the promoter region of the EBNA-1 gene, however, the functional significance of
this polymorphism is currently unknown.

The BamHI–I fragment harbors one of the greatest ranges of phylogeographical variations among
healthy donors and EBV-associated diseases [23,26,27]. This fragment predominates in Asia, while the
presence of an extra BamHI site defines the type “i”, which prevails in Europe and Africa [25,28–31].
Another relevant phylogeographical variation in the EBV chromosome is the polymorphism of the
XhoI restriction site of exon 1 of LMP-1 gene. In Asia, the predominant viral strain lacks this restriction
site (i.e., XhoI loss) [32]. However, the presence of this site (i.e., XhoI) defines the European and African
subtypes [33].

Since these two sites (the BamHI–I fragment and the XhoI restriction sites) are closely located in
the viral genome (see Figure 1), cosegregation is found in the Asian as well as the European and African
strains. In the Americas, these cosegregations are also present among EBV carriers at a population
level aligned with the waves of human migration [23,34]. In addition, novel recombinant variants
have been found in this continent [23,35]. The discovery of these strains in the Americas should be
understood as an amalgam of fragments from ancestral EBV sequences reflecting the genetic makeup
of this continent’s population [36–38].
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Figure 1. Genomic map of Epstein-Barr virus (EBV) genome with major phylogeographic variants. (A) 
Diagram shows the location of open reading frames for EBV latent proteins on the BamHI restriction 
map of the prototype EBV B95-8 genome. The BamHI fragments are named according to size and are 
indicated by capital letters, with A being the largest. Lowercase letters indicate variations in size 
within these fragments. TR refers to the terminal repeats at each end of the genome. Below is a 
schematic representation of viral miR-BARTs in sequence order with deletion indicated within the 
BamHI-A fragment of the EBV genome in the B95-8 strain. Nhet is used to indicate heterogeneity in 
this region according to the number of TRs within different virus isolates. (B) Schematic 
representation of the genomic location of BamHI-I and BamHI-A fragments with TR. Within the exon 
1 of LMP1 gene is the XhoI restriction site. The region containing the BamHI-I and XhoI restriction 
site is 21,277 nucleotides long and contains several relevant transcripts (miR-BARTS and BARF-1) for 
EBV transformation abilities. Figure is adapted from References [39] (with permission to use part of 
the figure) and [40] (localization of miR-BARTs). 

3. The Molecular Structure of the Cosegregated BamHI–I Fragment and XhoI Region of the EBV 

GWAS analysis found that latent genes were the most diverse regions of the viral genome with 
the EBNA-3A, -3B, -3C, BPLF-1 and LMP-1 genes harboring the most abundant non-synonymous 
variants [41]. Interestingly, the LMP-1 gene region which contains the XhoI polymorphisms involved 
in the phylogeographical classification of EBV, may contribute to the variations in the prevalence of 
EBV-associated GC throughout the world. Additionally, two relevant transcript regions are located 
between both cosegregated variants (the BamHI–I fragment and the XhoI restriction site) (Figure 1), 
the BamHI-A rightward transcripts (BARTs) and BamHI-A rightward frame-1 (BARF-1). BARTs 
transcripts have several distinct spliced forms [42,43], whereas BARF-1 is located downstream of 
BART and encodes 221 amino acids [43,44] which are translated into a protein of 31–33 kDa [45]. 

EBV-encoded BARF-1 is a putative viral oncogene (oncogenic initiator or oncogenic cofactor) in 
EBV-associated GC [46,47]. BARF-1 was shown to be expressed in tissues of various EBV-associated 
epithelioid malignancies, but not in those of lymphoid malignancies. Using a specialized BARF-1-
nucleic acid sequence-based amplification assay (NASBA), it has been demonstrated that BARF-1 
exists in all EBV-associated GC tissues [46,48]. Furthermore, it was shown that recombinant 
expression of BARF-1 induced tumorigenic transformation of mouse fibroblasts and tumor formation 
in newborn rats [49]. Reconstitution of an NPC-type EBV infection using NPC-derived cell lines 
demonstrated that BARF-1 contributes to the tumorigenicity of NPC cells [50]. BARF-1 enhances the 
tumorigenicity of EBV-negative B-lymphocyte-derived cell lines [51,52], inhibits apoptosis by 
activating bcl-2 [53], and induces cell cycle activation [54,55]. BARF-1 has sequence homology with 
the human colony stimulating factor-1 receptor (CSF-1), which is the gene product of the human 
proto-oncogene, c-fms [56]. It has been suggested that CSF-1 and its receptor are involved in the 
tumorigenicity of epithelial cells, as increased expression is observed in GC as well as other 
carcinomas [50,57,58]. BARF-1 is secreted by EBV-carrying B cells upon the induction of lytic infection 
and it binds to CSF-1, inhibiting the binding of CSF-1 to the CSF-1 receptor. This leads to inhibition 
of IFN-α secretion and modulates the fates of immune-related cells such as macrophages [56,59,60]. 

Figure 1. Genomic map of Epstein-Barr virus (EBV) genome with major phylogeographic variants.
(A) Diagram shows the location of open reading frames for EBV latent proteins on the BamHI restriction
map of the prototype EBV B95-8 genome. The BamHI fragments are named according to size and are
indicated by capital letters, with A being the largest. Lowercase letters indicate variations in size within
these fragments. TR refers to the terminal repeats at each end of the genome. Below is a schematic
representation of viral miR-BARTs in sequence order with deletion indicated within the BamHI-A
fragment of the EBV genome in the B95-8 strain. Nhet is used to indicate heterogeneity in this region
according to the number of TRs within different virus isolates. (B) Schematic representation of the
genomic location of BamHI-I and BamHI-A fragments with TR. Within the exon 1 of LMP1 gene is the
XhoI restriction site. The region containing the BamHI-I and XhoI restriction site is 21,277 nucleotides
long and contains several relevant transcripts (miR-BARTS and BARF-1) for EBV transformation
abilities. Figure is adapted from References [39] (with permission to use part of the figure) and [40]
(localization of miR-BARTs).

3. The Molecular Structure of the Cosegregated BamHI–I Fragment and XhoI Region of the EBV

GWAS analysis found that latent genes were the most diverse regions of the viral genome with
the EBNA-3A, -3B, -3C, BPLF-1 and LMP-1 genes harboring the most abundant non-synonymous
variants [41]. Interestingly, the LMP-1 gene region which contains the XhoI polymorphisms involved
in the phylogeographical classification of EBV, may contribute to the variations in the prevalence
of EBV-associated GC throughout the world. Additionally, two relevant transcript regions are
located between both cosegregated variants (the BamHI–I fragment and the XhoI restriction site)
(Figure 1), the BamHI-A rightward transcripts (BARTs) and BamHI-A rightward frame-1 (BARF-1).
BARTs transcripts have several distinct spliced forms [42,43], whereas BARF-1 is located downstream
of BART and encodes 221 amino acids [43,44] which are translated into a protein of 31–33 kDa [45].

EBV-encoded BARF-1 is a putative viral oncogene (oncogenic initiator or oncogenic cofactor) in
EBV-associated GC [46,47]. BARF-1 was shown to be expressed in tissues of various EBV-associated
epithelioid malignancies, but not in those of lymphoid malignancies. Using a specialized
BARF-1-nucleic acid sequence-based amplification assay (NASBA), it has been demonstrated that
BARF-1 exists in all EBV-associated GC tissues [46,48]. Furthermore, it was shown that recombinant
expression of BARF-1 induced tumorigenic transformation of mouse fibroblasts and tumor formation
in newborn rats [49]. Reconstitution of an NPC-type EBV infection using NPC-derived cell lines
demonstrated that BARF-1 contributes to the tumorigenicity of NPC cells [50]. BARF-1 enhances the
tumorigenicity of EBV-negative B-lymphocyte-derived cell lines [51,52], inhibits apoptosis by activating
bcl-2 [53], and induces cell cycle activation [54,55]. BARF-1 has sequence homology with the human
colony stimulating factor-1 receptor (CSF-1), which is the gene product of the human proto-oncogene,
c-fms [56]. It has been suggested that CSF-1 and its receptor are involved in the tumorigenicity of
epithelial cells, as increased expression is observed in GC as well as other carcinomas [50,57,58]. BARF-1
is secreted by EBV-carrying B cells upon the induction of lytic infection and it binds to CSF-1, inhibiting
the binding of CSF-1 to the CSF-1 receptor. This leads to inhibition of IFN-α secretion and modulates
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the fates of immune-related cells such as macrophages [56,59,60]. Secreted BARF-1 can upregulate
nuclear factor κB (NFκB) in an autocrine and paracrine manner in GC [47]. BARF-1-expressing GC
cells displayed a high rate of proliferation, high levels of NFκB, and miR-146a, which can be reversed
by NFκB knockdown [47]. Silencing BARF-1 upregulates the expression of pro-apoptotic proteins and
downregulates the expression of anti-apoptotic proteins [61].

In the BART region, a cluster of 22 miRNAs precursors have been described [62]. These miRNAs
generate 40 out of 44 mature miRNAs encoded by EBV (Figure 1) [62–64]. miR-BARTs show
higher overall expression levels in EBV-infected epithelial cancers in comparison to EBV-infected
lymphoblastoid cell lines and Burkitt’s lymphoma [65]. It is well established that these viral miRNAs
modulate the host inflammatory response and favor EBV evasion, facilitating the maintenance of the
latent infection and contributing to carcinogenesis [66,67]. These findings propose that miR-BARTs
are key players in epithelial malignancies such as EBV-associated GC [65]. A comprehensive
review of miR-BARTs and their function in EBV-associated GC has recently been published [68].
Taken together, it seems plausible that not only coding genes such as BARF-1, but also noncoding
genes (i.e., miR-BARTs), may act as a potential source of variability in EBV-associated GC. Therefore,
GWAS studies of the EBV genome, as well as targeted sequencing of the BARF-1 and BARTs transcripts
in EBV-associated GC and the healthy population, will be essential for expanding our understanding
of viral diversity.

4. Human Ancestry in the Americas and EBV-Associated Gastric Carcinoma

The complex demographic diversity of the Americas stems from many different waves of
migration. In this regard, three major ethnicities contributed to the genetic makeup of this population:
Amerindians, Europeans, and Africans [34,69,70]. A variety of approaches have been used to estimate
the complexity of genetic ancestry in the Americas tracing back 15,000 years to the first waves of
Asian-derived Amerindian migrations across Beringia [34,71,72]. This was followed by European
migration during the mid-sixteenth century, initiating the genetic mixing of these populations [73].
The African component was primarily introduced through the slave trade during the seventeenth
century, adding more complexity to the demographic diversity of the Americas [34].

Thus, the so-called New World provides a unique opportunity for uncovering the genetic basis
of diseases [37,70]. In particular, differences in the incidences and mortality rates of GC according to
ancestry have shown a disproportionate burden within the Amerindian populations [74,75]. Specific
examples are the indigenous Inuit and Mapuche populations [76] who inhabit the Northern Arctic
regions and Patagonia, respectively. In the case of the Inuit, the incidence of GC has increased
significantly in recent decades despite a decline in the global mortality rate during the same time
period [77–81]. Mapuche ancestry appears to be a major risk factor for GC in Chile, a country with one
of the highest age-standardized incidence rates of the disease worldwide (23/100,000 inhabitants) [82].
Other examples include Peru and Colombia, where a positive association between Amerindian ancestry
and GC has also been described [34,83,84]. In Brazil, da Silva and colleagues [85] reported the
occurrence of GC in the Amazon region, which features an admixed population. Using a case-control
design and multiple logistic regression analysis, these authors found that for every 10% increase in
European ancestry, there is a 20% decrease in the probability of developing GC (p = 0.01; OR = 0.81;
95% CI 0.54–0.88), suggesting that European ancestry may be a protective factor for this disease.
This information correlates with the fact that European countries tend to report lower incidence rates
of GC than Asia or the Americas [82]. Thus, these examples highlight the major role of Amerindian
ancestry in the occurrence of GC.

In the case of EBV-associated GC, the combination of phylogeographic polymorphisms of EBV
and mixed ancestries in the Americas requires further exploration. As shown in Figure 2, in a
healthy population, the human admixed heritage in Chile reflects European (48.5%) and Asian-derived
Amerindian (49.9%) with a minor African component (1.6%) [37].
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Figure 2. Human heritage and EBV strains in the healthy population and EBV-associated GC in
Chile and Peru. (A) Human ancestries and Asian, European and recombinant viral strains identified
in the healthy population of Chile and Peru. (B) Distribution and geographical origin of viral
strains among EBV-associated GC patients in Chile and Peru, showing the predominance of the
European BamHI-”i” fragment and XhoI restriction site strain. In the case of the healthy population,
EBV strains were examined from throat washing specimens, and in the case of gastric cancer patients,
from paraffin-embedded tumor specimens.

Accordingly, the EBV recombinant strains prevail (41.3% and 28.6%) and the cosegregated ancestral
strains are found at a lower frequency (17.5% Asian and 12.7% European) [23]. However, in Peru,
a country with a predominantly Amerindian population (75% Amerindian vs. ~25% European) [34],
the Asian strain predominates (79.0%) with a small proportion of European and recombinants variants
(8.6%, 7.6% and 4.8%, respectively) [35]. In the case of EBV-associated GC, the cosegregated European
BamHI-”i” fragment and XhoI restriction site strain prevails in Chile and Peru (100% and 54.5%,
respectively) [23,35]. The predominance of the European strain could be likely due to particular
recombinations of genes located within the BamHI fragment and XhoI region–as is the case of BARF-1
and BARTs in an Amerindian ancestry host. The lack of ancestral coadaptation supports the proposal of
a disrupted co-evolution in the case of EBV-associated GC.

5. Other Examples of “Disrupted Co-Evolution” in Cancer-Related Infectious Agents

The interaction between the phylogeography of EBV and human ancestry is not a unique feature
of this virus. A disrupted co-evolution has been previously proposed for H. pylori and human
papillomavirus (HPV) and their associated tumors (GC and cervical cancer, respectively) (for a review
see [86]). H. pylori, a bacterium that chronically colonizes the gastric mucosa, coevolved with human
migration patterns [87]. In the Americas, genomic data has revealed the rapid evolution of H. pylori over
the last 500 years. Phylogenetic studies based on genomic strain data have shown that most of the strains
cluster according to their country of origin, suggesting that subpopulations of H. pylori have evolved
at an accelerated rate, in order to adapt to particular human ancestries [88,89]. This rapid adaptation
has been associated with three genes encoding outer membrane proteins which are important for the
attachment of the bacterium to the gastric mucosa [88]. This scenario might account for the regional
variability of GC [88,89]. This observation was originally assessed by de Sablet et al. [90]. These authors
analyzed the phylogeographic origin of H. pylori isolates from two locations in Colombia with strikingly
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different incidences of GC: Tuquerres, in the Andes mountains (150/100,000 inhabitants) and Tumaco,
on the coast (6/100,000 inhabitants). Using Multi-Locus Sequence Typing (MLST), these authors found
that 100% of the isolates from Tuquerres but only 34% from Tumaco were classified as hpEurope.
In the latter location, the remaining 66% isolates were hpAfrica1. This finding mirrored the ethnic
composition of the host in both locations, being admixture European-Amerindian ancestry in Tuquerres
and African-European ancestry in Tumaco. Functional studies have shown that differential expression
between the European and African strains is observed in virulence factors, such as cagA, vacA, and babB
and were associated with increased gastric histologic lesions in human gastric samples [90].

HPV is a naked circular double-stranded DNA virus with more than 200 genotypes based on
the genome sequence of L1 gene [91]. High-risk (HR) strains, HPV-16 and -18 are the most frequent
HPV detected in cervical, anogenital, and some head and neck cancers. Subtypes and variants of
HPV-16 cluster into five major branches of a phylogenetic tree: European (E), Asian/American (AA),
East Asian (As), and two African (Af1 and Af2) [92,93]. In the case of HPV-18, subtypes and variants
cluster into three major branches: African (Af), European (E), as well as Asian and American Indian
(As + AI) [93]. A study of HR-HPV in an Italian cohort demonstrated that non-European variants
of HPV-16, Af1 and AA, were found at an increased frequency in invasive lesions [94]. A separate
study of female university students in the US showed that those infected with non-European HPV-16
variants were 6.5 times more likely to develop high-grade cervical intraepithelial neoplasia than those
with European variants [95]. Based on the aforementioned observations found in H. pylori and HPV,
Kodaman et al., [86] proposed the concept of “disrupted co-evolution” between the pathogen and its
host as a contributor to the phylogeographic origin of disease. Here, we propose that this may also be
the case for EBV-associated GC.

6. Are Phylogeographic Variations of Epstein–Barr Virus Relevant to Other EBV-Associated
Diseases?

Disparities in the incidence of EBV-associated diseases, besides GC, vary greatly in different parts
of the world [96]. EBV-associated epithelial cancers represent 80% of all EBV-associated malignancies;
among these is NPC with an incidence of >120,000 new cases and >70,000 deaths [82]. NPC has a
characterized geographical distribution, with a higher incidence in Southern China, Southeast Asia,
and to a lesser extent, the Maghrebi Arabic regions of North Africa and the Northern Arctic [97].
Differences in the prevalence of different EBV type-1 and -2 strains, as well as BamHI-F region,
have been observed in NPC [17]. Studies in Portugal, Hong Kong, and China reported that EBV type-1
and prototype F were the most prevalent [98–100]. Of note, the study from Portugal showed that type-2
and variant “f” were significantly associated with NPC (p = 0.019; RR = 8.90). The XhoI loss variant was
present in most of the NPC cases [17]. It proved particularly high in countries such as China, Malaysia,
and Taiwan with more than 80% of the cases presenting this variant [17,101–103]. On the contrary,
the presence of the XhoI site is found in NPCs from North Africa [104], confirming the phylogeographic
distribution of this polymorphism. Another variant of the LMP-1 gene is the 30 bp-deletion (del-LMP-1)
which seems to be more prevalent in NPC patients than healthy individuals in China, Malaysia,
Hong-Kong, Taiwan, Tunisia, and Morocco [17,99,102,104–107]. However, in Portugal, 100% of NPC
patients exhibited the wt-LPM1 variant [17]. A recent meta-analysis by da Costa et al. [105] confirmed
the association between the 30-bp del-LMP-1 and XhoI loss with NPC susceptibility, although they
found no association when analyzing the cosegregation of these variants in NPC patients.

Hodgkin lymphoma (HL) is a disease that can also exhibit the presence of EBV. It presents
two distinct disease entities, the commonly diagnosed classical Hodgkin lymphoma (CHL) and the
uncommon nodular lymphocyte-predominant Hodgkin lymphoma [108,109]. EBV is found in only a
proportion of CHL cases, but in tropical regions, up to 100% of the population is EBV-positive [108].
HL accounts for ~80,000 new cases and >26,000 deaths, according to a recent global report [82].
The prevalence of EBV in CHL differs according to age, sex, region, histologic subtype, and clinical
stage, as confirmed by a meta-analysis [110]. According to this study, the reported prevalence of EBV
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infection in CHL was 47.9%, with a significantly higher rate in Africa, Central America, and South
America. EBV-positive CHL showed a higher incidence in children than in adults and was also
significantly related to male gender (OR = 1.8, 95% CI: 1.510–2.038; p < 0.001) [110]. Regarding
the common EBV variants distribution for HL among populations, it appears that EBV type-1 is
the most prevalent, which is similar to what was described for NPC [17]. Studies in China, Korea,
Spain, Denmark, and Australia showed that EBV type-1 was the most prevalent type among HL
patients [17,111–115]. Moreover, type-1 was also the predominant strain in EBV variants in South
American CHL, accounting for 78% Argentine and 86% Brazilian cases [116]. In the case of the XhoI
loss, this variant was found to be predominant in EBV-associated Hodgkin’s disease cases and in the
healthy Chinese population [111] confirming the phylogeographic distribution of this polymorphism.
For del-LMP-1 variant distribution among populations, these are similar between China and Korea
with more than 80% of the cases harboring the variant [17,111,113]. Similarly, in the case of South
America, a higher frequency of the del-LMP-1 variant was observed in lymphomas (65%) than in
non-neoplastic controls (27%) (OR 4.97, CI 95% 1.53–16.79; p = 0.005) [116]. Although phylogeographic
variants of EBV seems to be relevant also in other EBV-associated diseases, such as NPC and HL,
the del-LMP-1 variant has shown no differences in the case of EBV-associated GC [117].

7. Conclusions

Ancestral and recombinant strains of EBV in the Americas mirror the human genetic ancestry
among the healthy population. However, there is a predominance of the European origin strain,
based on the cosegregation of BamHI- I fragment and XhoI restriction site strain, in the case of
EBV-associated GC. This observation proposes that a “disrupted co-evolution” might explain the high
prevalence of EBV-associated GC in the Americas. Variations of two relevant transcripts, the BARF-1
and the miR-BARTs in this region might be associated with this high prevalence. Further studies are
essential to expand our understanding of the phylogeographical diversity of EBV.
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