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Abstract

Understanding the heterogeneous drug response of cancer patients is essential to precision oncology. Pioneering genomic
analyses of individual cancer subtypes have begun to identify key determinants of resistance, including up-regulation of
multi-drug resistance (MDR) genes and mutational alterations of drug targets. However, these alterations are sufficient to
explain only a minority of the population, and additional mechanisms of drug resistance or sensitivity are required to
explain the remaining spectrum of patient responses to ultimately achieve the goal of precision oncology. We hypothesized
that a pan-cancer analysis of in vitro drug sensitivities across numerous cancer lineages will improve the detection of
statistical associations and yield more robust and, importantly, recurrent determinants of response. In this study, we
developed a statistical framework based on the meta-analysis of expression profiles to identify pan-cancer markers and
mechanisms of drug response. Using the Cancer Cell Line Encyclopaedia (CCLE), a large panel of several hundred cancer cell
lines from numerous distinct lineages, we characterized both known and novel mechanisms of response to cytotoxic drugs
including inhibitors of Topoisomerase 1 (TOP1; Topotecan, Irinotecan) and targeted therapies including inhibitors of histone
deacetylases (HDAC; Panobinostat) and MAP/ERK kinases (MEK; PD-0325901, AZD6244). Notably, our analysis implicated
reduced replication and transcriptional rates, as well as deficiency in DNA damage repair genes in resistance to TOP1
inhibitors. The constitutive activation of several signaling pathways including the interferon/STAT-1 pathway was implicated
in resistance to the pan-HDAC inhibitor. Finally, a number of dysregulations upstream of MEK were identified as
compensatory mechanisms of resistance to the MEK inhibitors. In comparison to alternative pan-cancer analysis strategies,
our approach can better elucidate relevant drug response mechanisms. Moreover, the compendium of putative markers
and mechanisms identified through our analysis can serve as a foundation for future studies into these drugs.
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Introduction

Over the past decade, cancer treatment has seen a gradual shift

towards ‘precision medicine’ and making rational therapeutic

decisions for a patient’s cancer based on their distinct molecular

profile. However, broad adoption of this strategy has been

hindered by an incomplete understanding for the determinants

that drive tumour response to different cancer drugs. Intrinsic

differences in drug sensitivity or resistance have been previously

attributed to a number of molecular aberrations. For instance, the

constitutive expression of almost four hundred multi-drug

resistance (MDR) genes, such as ATP-binding cassette transport-

ers, can confer universal drug resistance in cancer [1]. Similarly,

mutations in cancer genes (such as EGFR) that are selectively

targeted by small-molecule inhibitors can either enhance or

disrupt drug binding and thereby modulate cancer drug response

[2]. In spite of these findings, the clinical translation of MDR

inhibitors have been complicated by adverse pharmacokinetic

interactions [3]. Likewise, the presence of mutations in targeted

genes can only explain the response observed in a fraction of the

population, which also restricts their clinical utility. As an example

of the latter, lung cancers initially sensitive to EGFR inhibition

acquire resistance which can be explained by EGFR mutations in

only half of the cases. Other molecular events, such as MET proto-

oncogene amplifications, have been associated with resistance to

EGFR inhibitors in 20% of lung cancers independently of EGFR

mutations [4]. Therefore, there is still a need to uncover additional

mechanisms that can influence response to cancer treatments.

Historically, gene expression profiling of in vitro models have

played an essential role in investigating determinants underlying

drug response [5–8]. Specifically, cell line panels compiled for

individual cancer types have helped identify markers predictive of

lineage-specific drug responses, such as associating P27(KIP1) with

Trastuzumab resistance in breast cancers and linking epithelial-

mesenchymal transition genes to resistance to EGFR inhibitors in

lung cancers [9–11]. However, application of this strategy has
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been limited to a handful of cancer types (e.g. breast, lung) with

sufficient numbers of established cell line models to achieve the

statistical power needed for new discoveries.

Recent studies addressed the problem of limited sample sizes by

investigating in vitro drug sensitivity in a pan-cancer manner,

across large cell line panels that combine multiple cancer types

screened for the same drugs [7,8,12,13]. In this way, pan-cancer

analysis can improve the testing for statistical associations and help

identify dysregulated genes or oncogenic pathways that recurrently

promote growth and survival of tumours of diverse origins [14,15].

The common approach used for pan-cancer analysis directly pools

samples from diverse cancer types; however, this has two major

disadvantages. First, when samples are considered collectively,

significant gene expression-drug response associations present in

smaller sized cancer lineages can be obscured by the lack of

associations present in larger sized lineages. Second, the range of

gene expressions and drug pharmacodynamics values are often

lineage-specific and incomparable between different cancer

lineages (Figure 1A). Collectively, these issues reduce the

potential to detect meaningful associations common across

multiple cancer lineages.

To tackle the problems introduced through the direct pooling of

data, we developed a statistical framework based on meta-analysis

called ‘PC-Meta’. PC-Meta identifies pan-cancer markers and

mechanisms of drug response by testing for gene expression-drug

response associations in each cancer lineage individually and

combining the results from each lineage. Prior studies have

successfully applied meta-analyses to combine incompatible

genomic datasets for a single cancer type, and to combine datasets

from different cancers to identify common mechanisms of cancer

initiation and progression [16–18]. To our knowledge, this is the

first study to leverage meta-analysis in the identification of intrinsic

pan-cancer determinants of response to cancer therapy.

Materials and Methods

Cancer Cell Line Encyclopaedia (CCLE) Dataset
The CCLE pan-cancer dataset used in this study encompasses

1046 cancer cell lines derived from 24 cancer types and screened

for pharmacological sensitivity to 24 anti-cancer compounds [8].

The pre-processed gene expression and drug sensitivity data were

directly obtained from the CCLE project (http://www.

broadinstitute.org/ccle/home; GSE36139). Cell lines were pro-

filed prior to treatment for gene expression using the Affymetrix

U133plus2.0 array, and for mutations in 33 known cancer genes

by mass spectrometric genotyping (OncoMap). Inhibitory concen-

tration 50 (IC50) values extrapolated in the original study from

dose response data were used as the measure of drug effectiveness.

Meta-analysis Approach to Pan-Cancer Analysis
Our PC-Meta approach for the identification of pan-cancer

markers and mechanisms of drug response is illustrated in

Figure 1B. Initially, each cancer lineage in the pan-cancer

dataset was treated as a distinct dataset and independently assessed

for associations between baseline gene expression levels and drug

response values. These lineage-specific expression-response corre-

lations were calculated using the Spearman’s rank correlation test.

Lineages that exhibited minimal differential drug sensitivity value

(having fewer than three samples or an log10(IC50) range of less

than 0.5) were excluded from analysis.

Then, results from the individual lineage-specific correlation

analyses were combined using meta-analysis to determine pan-

cancer expression-response associations. We used Pearson’s

method [19], a one-tailed Fisher’s method for meta-analysis.

Fisher’s method is a standard technique that aggregates multiple p-

values into a single meta P-value where a small meta P-value

indicates significant expression-response correlation in one or

more cancer lineages. Pearson’s method can reduce false

associations resulting from conflicting directions of correlation in

different lineages. It combines individual lineage p-values for

positive and negative correlations separately and returns the more

significant of the two combined values (meta P+ and meta P-) as the

final meta P-value (meta P*). From this, a multiple-test corrected

meta P-value (meta-FDR) was calculated using the Benjamini-

Hochberg (BH) method. For each drug, genes with meta-FDR ,

0.01 were considered pan-cancer markers of response.

Next, pan-cancer mechanisms of response were revealed by

performing pathway enrichment analysis on the discovered pan-

cancer markers using the Ingenuity Pathway Analysis software

(IPA; Ingenuity Systems, Inc., Redwood City, CA). The statistical

over-representation of canonical IPA pathways was calculated

using Fischer’s exact test and BH multiple-test correction method.

A ‘pathway involvement (PI) score’ was calculated for each

pathway as the -log10(BH-corrected pathway enrichment p-value).

Pathways with PI score .1.0 were considered significantly

associated with drug response.

Finally, since pan-cancer markers may be relevant in only a

subset of cancer lineages, we defined sets of genes associated with

response in each lineage as lineage-specific markers. Lineage-

specific markers were derived as the subset of pan-cancer markers

that significantly correlated with response in a given lineage

(Spearman’s rank correlation test p-value ,0.05 and |Spearman’s

correlation coefficient| .0.3). Since pan-cancer mechanisms may

similarly be involved in only a subset of cancer lineages, their

involvement in each lineage was delineated through the pathway

enrichment analysis of lineage-specific gene markers as described

above.

Alternative Approaches to Pan-Cancer Analysis
We evaluated PC-Meta against two alternative approaches

commonly used in prior studies for identifying pan-cancer markers

and mechanisms. One of them, which we termed ‘PC-Pool’,

identifies pan-cancer markers as genes that correlate with drug

response in a pooled dataset of multiple cancer lineages [8,12].

Statistical significance was determined based on the same

statistical test of Spearman’s rank correlation with BH multiple

test correction (BH-corrected p-values ,0.01 and |Spearman’s

rho, rs|.0.3). Pan-cancer mechanisms were revealed by perform-

ing pathway enrichment analysis on these pan-cancer markers.

A second alternative approach, which we termed ‘PC-Union’,

naively identifies pan-cancer markers as the union of response-

associated genes detected in each cancer lineage [20]. Response-

associated markers in each lineage were also identified using the

Spearman’s rank correlation test with BH multiple test correction

(BH-corrected p-values ,0.01 and |rs|.0.3). Pan-cancer mech-

anisms were revealed by performing pathway enrichment analysis

on the collective set of response-associated markers identified in all

lineages.

Results and Discussion

Strategy for Pan-Cancer Analysis
We developed PC-Meta, a two stage pan-cancer analysis

strategy, to investigate the molecular determinants of drug

response (Figure 1B). Briefly, in the first stage, PC-Meta assesses

correlations between gene expression levels with drug response

values in all cancer lineages independently and combines the

results in a statistical manner. A meta-FDR value calculated for
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Figure 1. Pan-cancer analysis strategy. (A) Schematic demonstrating a major drawback of the commonly-used pooled cancer approach (PC-
Pool), namely that the gene expression and pharmacological profiles of samples from different cancer lineages are often incomparable and therefore
inadequate for pooling together into a single analysis. (B) Workflow depicting our PC-Meta approach. First, each cancer lineage in the pan-cancer
dataset is independently assessed for gene expression-drug response correlations in both positive and negative directions (Step 2). Then, a meta-
analysis method is used to aggregate lineage-specific correlation results and to determine pan-cancer expression-response correlations. The
significance of these correlations is indicated by multiple-test corrected p-values (meta-FDR; Step 3). Next, genes that significantly correlate with drug
response across multiple cancer lineages are identified as pan-cancer gene markers (meta-FDR ,0.01; Step 4). Finally, biological pathways
significantly enriched in the discovered set of pan-cancer gene markers are identified as pan-cancer mechanisms of response (PI Score .1.0; Step 5).
A subset of the pan-cancer markers correlated with drug response in individual cancer lineages are selected as lineage-specific markers. The
involvement levels of pan-cancer mechanisms in individual cancer lineages are calculated from the pathway enrichment analysis of these lineage-
specific markers.
doi:10.1371/journal.pone.0103050.g001
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each gene is used to pinpoint genes that are recurrently associated

with response in multiple cancer types and therefore are potential

pan-cancer markers. In the second stage, the pan-cancer gene

markers are mapped to cell signaling pathways to elucidate pan-

cancer mechanisms involved in drug response. To test our

approach, we applied PC-Meta to the CCLE dataset, a large

pan-cancer cell line panel that has been extensively screened for

pharmacological sensitivity to numerous cancer drugs. PC-Meta

was evaluated against two commonly used pan-cancer analysis

strategies, which we termed ‘PC-Pool’ and ‘PC-Union’. PC-Pool

identifies pan-cancer markers as genes that are associated with

drug response in a pooled dataset of cancer lineages. PC-Union, a

simplistic approach to meta-analysis (not based on statistical

measures), identifies pan-cancer markers as the union of response-

correlated genes detected in each cancer lineage. Additional details

of PC-Meta, PC-Pool, and PC-Union are provided in the Methods

section.

Selecting CCLE Compounds Suitable for Pan-Cancer
Analysis

24 compounds available from the CCLE resource were

evaluated to determine their suitability for pan-cancer analysis.

For eight compounds, none of the pan-cancer analysis methods

returned sufficient markers (more than 10 genes) for follow-up and

were therefore excluded from subsequent analysis (Table S1).

Failure to identify markers for these drugs can be attributed to

either an incomplete compound screening (i.e. performed on a

small number of cancer lineages) such as with Nutlin-3, or the

cancer type specificity of compounds such as with Erlotinib, which

is most effective in EGFR-addicted non-small cell lung cancers

(Figure S1). Seven additional compounds, including L-685458

and Sorafenib, exhibited dynamic response phenotypes in only

one or two lineages and were also considered inappropriate for

pan-cancer analysis (Figure 2; Figure S1). Even though the PC-

Pool strategy identified numerous gene markers associated with

response to these seven compounds, close inspection of these

markers indicated that many of them actually corresponded to

molecular differences between lineages rather than relevant

determinants of drug response. For instance, L-685458, an

inhibitor of AbPP c-secretase activity, displayed variable sensitivity

in hematopoietic cancer cell lines and primarily resistance in all

other cancer lineages. As a result, the identified 815 gene markers

were predominantly enriched for biological functions related to

Hematopoetic System Development and Immune Response

(Table S2). This highlights the limitations of directly pooling

data from distinct cancer lineages. Out of the remaining nine

compounds, we focused on five drugs that belonged to distinct

classes of inhibitors (targeting TOP1, HDAC, and MEK) and

exhibited a broad range of responses in multiple cancer lineages

(Figure 2, Table 1).

Intrinsic Determinants of Response to TOP1 Inhibitors
(Topotecan and Irinotecan)

Topotecan and Irinotecan are cytotoxic chemotherapies that

inhibit the TOP1 enzyme. They disrupt normal replication and

transcription processes to induce DNA damage and apoptosis in

rapidly dividing cells. Resistance to TOP1 inhibition can occur as

a result of mutations in TOP1 or in cells not undergoing DNA

replication; whereas, hypersensitivity can arise due to deficiencies

in checkpoint and DNA-repair pathways [21].

In the CCLE panel, these two TOP1 inhibitors showed largely

similar pharmacological effects based on IC50 values (Figure 2).

We applied PC-Meta to each drug dataset and identified 757 and

211 pan-cancer gene markers associated with response to

Topotecan and Irinotecan respectively (Table 1; Table S5).

The discordant number of markers identified for these two drugs

may have resulted from differences in drug actions or the different

number of cell lines screened for each drug – 480 for Topotecan

and 303 for Irinotecan. Nonetheless, 134 out of the 211 (63.5%)

gene markers identified for Irinotecan still overlapped with those

identified for Topotecan and are likely associated with general

mechanisms of TOP1 inhibition (Table 1).

Out of the 134 common genes identified for the two drugs by

PC-Meta (Table S3), many are highly correlated with response

(based on meta-FDR values) and have known functions that can

affect the cytotoxicity of TOP1 inhibitors. For example, the top

gene marker Schlafen family member 11 (SLFN11) showed

increased expression in cell lines sensitive to both Topotecan

and Irinotecan across ten individual cancer lineages (Figure 3A).

This significant trend (meta-FDR = 6.4610218 for Topotecan and

1.9610210 for Irinotecan; see Methods) agrees with recent studies

delineating SLFN11’s role in sensitizing cancer cells to DNA-

damaging agents by enforcing cell cycle arrest and induction of

apoptosis [8,22]. Another top marker, high-mobility group box 2

(HMGB2), is a mediator of genotoxic stress response and showed

reduced expression in cell lines resistant to TOP1 inhibitors in

multiple lineages (Figure 3B; meta-FDR = 1.7610207 for

Topotecan and 3.7610203 for Irinotecan). This coincides with

previous findings showing that abrogated HMGB2 expression

results in resistance to chemotherapy-induced DNA damage [23].

Similarly, BCL2-Associated Transcription Factor 1 (BCLAF1), a

regulator of apoptosis and double-stranded DNA repair, was also

down-regulated in drug-resistant cell lines (meta-FDR

= 4.8610204 for Topotecan and 1.9610203 for Irinotecan), which

is concordant with its previously observed suppression in

intrinsically radioresistant cell lines [24].

To investigate pan-cancer mechanisms underlying variations in

Topotecan response, we mapped the entire set of pan-cancer gene

markers identified by PC-Meta onto corresponding cell signaling

pathways (using IPA pathway enrichment analysis). Each pathway

was assigned a ‘pathway involvement (PI) score’ defined as –log10

of the pathway enrichment p-value, and pathways with PI scores

. = 1 were considered to have significant influence on response.

On the Topotecan dataset, PC-Meta detected 15 pan-cancer

pathways relevant to drug response (PI scores = 1.3–6.6), with the

most significant pathways related to cell cycle regulation and DNA

damage repair (Figure 4A; Table 2). In contrast, the same

enrichment analysis yielded only 3 significantly enriched pathways

for PC-Pool markers and no significant pathways for PC-Union

markers. Clearly, the identification of more significant pathways

by PC-Meta can be attributed to the increased power of our

approach to pinpoint additional potentially relevant gene markers

compared to PC-Pool and PC-Union (757 vs. 474 and 61

respectively; Table 1).

The pathways detected by PC-Meta converged onto two major

mechanisms that could influence chemotherapy response: cellular

growth rate and chromosomal instability (Figure 4A–B). All genes

involved in cell cycle control, DNA transcription, RNA transla-

tion, and nucleotide synthesis processes were down-regulated in

chemotherapy-resistant cell lines, which suggested slower growth

kinetics as a mechanism of resistance. Most genes involved in

DNA damage repair and cell cycle checkpoint regulation were also

down-regulated in resistant cell lines. This may appear counter-

intuitive because repair pathways typically mitigate DNA damage-

induced cell death (as caused by TOP1 inhibitors). However, some

of their component genes (such as RAD51, BRCA2, and FANC-

family genes) are also key regulators of genomic stability and their

Characterizing Pan-Cancer Mechanisms of Drug Sensitivity
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disruption can reflect a genome instability phenotype that is

inherently resistant to genotoxic stress from chemotherapy

[25,26]. In fact, our finding agrees with a recently reported

DNA repair gene signature that was predictive of both homolo-

gous repair suppression contributing to genome instability as well

as sensitivity to chemotherapy in patient studies [27]. Enrichment

analysis performed on the Irinotecan marker set revealed similar

dysregulated pathways related to cell cycle control and DNA

damage repair (Table S6). This suggests these two mechanisms

are generally important for managing TOP1 inhibition.

Since recurrent drug response pathways may be involved in

only a subset of cancer types, we aimed to delineate the extent of

Figure 2. Drug response across different cancer lineages for a subset of CCLE compounds. Boxplots indicate the distribution of drug
sensitivity values (based on IC50) in each cancer lineage to each cancer drug. For example, most cancer lineages are resistant to L-685458 (with IC50
around 1025 M) except for haematopoietic cancers (IC50 from 1025 to 1028 M). The number of samples in a cancer lineage screened for drug
response is shown under the corresponding boxplot. Compounds denoted in blue text exhibited a broad range of responses in multiple cancer
lineages and were selected for analysis in this study, whereas compounds denoted in red text are examples of compounds excluded from analysis.
Cancer lineage abbreviations – AU: autonomic; BO: bone; BR: breast; CN: central nervous system; EN: endometrial; HE: haematopoietic/lymphoid;
KI: kidney; LA: large intestine; LI: liver; LU: lung; OE: oesophagus; OV: ovary; PA: pancreas; PL: pleura; SK: skin; SO: soft tissue; ST: stomach; TH:
thyroid; UP: upper digestive; UR: urinary
doi:10.1371/journal.pone.0103050.g002

Table 1. Number of gene markers significantly correlated with response to different drugs identified by PC-Meta, PC-Pool, and PC-
Union approaches.

Compound Target(s)
No. of PC-Meta
Markers

No. of PC-Pool Markers
(Overlap with PC-Meta)

No. of PC-Union Markers
(Overlap with PC-Meta)

Irinotecan TOP1 211 832 (105; 13%) 30 (19; 63%)

Topotecan TOP1 757 474 (256; 54%) 61 (57; 93%)

Panobinostat HDAC 542 723 (200; 28%) 58 (46; 79%)

AZD6244 MEK 10 51 (6; 12%) 7 (1; 14%)

PD-0325901 MEK 171 46 (23; 50%) 156 (29; 19%)

doi:10.1371/journal.pone.0103050.t001
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Figure 3. Top markers of response to TOP1 inhibitors: (A) SLFN11 and (B) HMGB2. Scatter plots show correlation between gene
expression and pharmacological response values across several cancer lineages, where up-regulation of SLFN11 and HMGB2 correlate with drug
sensitivity (indicated by smaller IC50 values).
doi:10.1371/journal.pone.0103050.g003
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their roles in each cancer lineage. A subset of pan-cancer markers

significantly correlated with response in each cancer type were

selected as ‘lineage-specific markers’. Then, each set of lineage-

specific markers was assessed for enrichment to calculate a PI score

for each pan-cancer pathway in each lineage. Interestingly, the

pan-cancer pathways relevant to Topotecan response exhibited

obvious lineage-specific differences (Figure 4A). Intrinsic response

in urinary, ovarian and large intestine cancers appeared promi-

nently influenced through multiple mechanisms including cell

cycle regulation, nucleotide synthesis, and DNA repair pathways

(Figure 4C), whereas response in central nervous system cancers

primarily involved EIF2 signaling. One-third of the cancer

lineages were not characterized by any pan-cancer response

mechanisms. Lineages without significant PI scores generally had

Figure 4. Pan-cancer analysis of TOP1 inhibitor Topotecan. (A) Pan-cancer pathways with significant involvement in drug response detected
by PC-Meta, PC-Pool, PC-Union approaches (on the left). These pathways can be grouped into six biological processes (distinguished by background
color), which converge on two distinct mechanisms. The involvement level of these pan-cancer pathways predicted by different approaches is
illustrated with blue horizontal bars. Pathway involvement in each cancer lineage predicted by PC-Meta is indicated by the intensity of red fills in
corresponding table (on the right). Pan-cancer and lineage-specific pathway involvement (PI) scores are derived from pathway enrichment analysis
and calculated as -log10(BH-adjusted p-values). Only the top pathways with PI scores .1.3 are shown. Cancer lineage abbreviations – AU: autonomic;
BO: bone; BR: breast; CN: central nervous system; EN: endometrial; HE: haematopoetic/lymphoid; KI: kidney; LA: large intestine; LI: liver; LU: lung; OE:
oesophagus; OV: ovary; PA: pancreas; PL: pleura; SK: skin; SO: soft tissue; ST: stomach; TH: thyroid; UP: upper digestive; UR: urinary (B) Predicted
known and novel mechanisms of intrinsic response to TOP1 inhibition. Red- and green-fill indicate increased and decreased activity in drug-resistant
cell-lines respectively. (C) Heatmap showing the expression of genes in the cell cycle, nucleotide synthesis, and DNA damage repair pathways
correlated with Topotecan response in multiple cancer lineages.
doi:10.1371/journal.pone.0103050.g004

Table 2. Component genes of top pan-cancer pathways associated with drug response.

Topotecan

Cell Cycle Control of Chromosomal Replication ORC1(9), MCM6(6), ORC2(6), CDT1(4), MCM2(4), MCM4(4), RPA3(4), MCM5(3), MCM7(3), ORC6(3), CDC7(2), MCM3(2)

Mitotic Roles of Polo-Like Kinase KIF11(6), ANAPC5(5), ANAPC7(5), CDK1(5), FBXO5(4), CDC25A(3), PLK4(3), PPP2R5D(3), RAD21(3), SMC3(3), CDC7(2),
PLK1(2), PPP2R5B(2), ESPL1(1), PPP2R2C(1)

Cleavage and Polyadenylation of Pre-mRNA CPSF2(5), NUDT21(5), PAPOLA(5), CPSF6(3), CSTF3(3)

EIF2 Signaling RPL4(7), EIF3H(6), RPL36(6), EIF2AK3(5), EIF3A(5), EIF3D(5), EIF3E(5), PPP1CC(5), RPL11(5), AGO2(4), EIF2S1(4),
EIF3L(4), RPL5(4), RPL8(4), RPLP2(4), RPS6(4)

Purine Nucleotides De Novo Biosynthesis II PAICS(6), ADSL(5), ATIC(5), GART(5), PPAT(5), PFAS(3)

Adenine and Adenosine Salvage III HPRT1(4), PNP(4), ADAT3(3)

Role of BRCA1 in DNA Damage Response MSH2(7), FANCA(6), RFC5(6), BARD1(5), BRIP1(5), FANCG(5), BRCA2(4), SMARCD2(4), FANCE(3), RAD51(3), RFC2(3),
RFC3(3), PLK1(2)

Mismatch Repair in Eukaryotes MSH2(7), RFC5(6), POLD1(5), PCNA(4), FEN1(3), RFC2(3), RFC3(3)

ATM Signaling CDK1(5), TDP1(5), MAPK8(4), SMC2(4), CDC25A(3), CREB1(3), RAD51(3), SMC3(2)

DNA Double-Strand Break Repair by
Homologous Recombination

BRCA2(4), LIG1(4), RAD51(3)

Hereditary Breast Cancer Signaling MSH2(7), FANCA(6), POLR2D(6), POLR2F(6), RFC5(6), BARD1(5), CDK1(5), FANCG(5), HDAC11(5), SMARCD2(5),
BRCA2(4), FANCE(3), POLR2I(3), RAD51(3), RFC2(3), RFC3(3)

Role of CHK Proteins in Cell Cycle
Checkpoint Control

RFC5(6), CDK1(5), CLSPN(4), PCNA(4), CDC25A(3), PPP2R5D(3), RFC2(3), RFC3(3), PLK1(2), PPP2R5B(1)

Panobinostat

Interferon Signaling IFIT3(8), IRF1(6), IFIT1(5), IFITM1(5), IRF9(4), PSMB8(4), RELA(4), STAT2(4), TAP1(3)

Hepatic Fibrosis/Hepatic Stellate Cell
Activation

FGF2(7), TGFBR2(7), EGFR(6), IL6(6), TIMP1(6), CCL2(5), CCL5(5), IGFBP3(5), MYH9(5), SMAD3(5), VEGFA(5), IL1B(4),
RELA(4), TIMP2(4), FGF1(3), IL8(3), MMP1(3), TGFB2(3)

Glucocorticoid Receptor Signaling SMARCD2(7), TGFBR2(7), IL6(6), NR3C1(6), POU2F1(6), ADRB2(5), CCL2(5), CCL5(5), EP300(5), RRAS2(5), SMAD3(5),
HMGB1(4), IL1B(4), MAP3K14(4), PIK3C2B(4), POLR2F(4), RELA(4), TAF3(4), IL8(3), MMP1(3), SERPINE1(3), SLPI(3),
TGFB2(3), HLTF(2)

Antigen Presentation Pathway HLA-C(5), TAP2(5), PSMB8(4), PSMB9(4), TAP1(3)

NF-kB Signaling TGFBR2(7), EGFR(6), UBE2N(6), EP300(5), FGFR4(5), RRAS2(5), IL1B(4), MAP3K14(4), PIK3C2B(4), RELA(4), TNIP1(4),
EIF2AK2(3), NGF(3)

Granzyme A Signaling ANP32A(6), EP300(5), HIST1H1E(5), NME1(5)

Caveolar-mediated Endocytosis Signaling EGFR(6), FLNA(6), CAV1(5), HLA-C(5), ITGA5(5), PTRF(4)

PD-0325901

Human Embryonic Stem Cell Pluripotency BDNF(8), NGF(6), FZD2(5), MRAS(5), S1PR1(5), TGFB2(5), FGF2(3)

Neurotrophin/TRK Signaling BDNF(8), SPRY2(7), NGF(6), MRAS(5)

Note: Number in parentheses indicates the number of cancer lineages that each gene was predicted to be involved in. Genes in regular and bolded font are down- and
up-regulated in resistant cell lines respectively. For pathways with many overlapping component genes, the best representative pathway is listed. Full list of pathways is
available in Table S6.
doi:10.1371/journal.pone.0103050.t002
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fewer detected lineage-specific markers (Figure 4A), but not in all

cases – bone and endometrial cancers had a similar number of

markers to urinary and large intestine cancers, two lineages with

the most significant PI scores.

Intrinsic Determinants of Response to HDAC Inhibitor
(Panobinostat)

Panobinostat (LBH-589) is a pan-histone deacetylase (HDAC)

inhibitor, which causes the hyperacetylation of histone and non-

histone proteins. This triggers a plurality of anti-cancer mecha-

nisms through both transcriptional and post-translational process-

es, including the activation of apoptotic pathways and the

degradation of oncogenic HSP90 client proteins [28]. Resistance

to HDAC inhibition has been associated with numerous mech-

anisms including enforced expression of anti-apoptotic proteins,

activation of MAPK/PI3K/STAT3 signaling pathways, and the

activation of NFkB pathway [28].

Application of the PC-Meta analysis identified 542 pan-cancer

gene markers associated with intrinsic response to Panobinostat

(Table 1; Table S5). One of the top markers identified by PC-

Meta was the histone acetyltransferase (HAT) enzyme EP300,

which antagonizes HDACs. It had reduced expression in drug-

resistant cell lines across five cancer lineages (Figure 5A; meta-

FDR = 8.9610-3). In previous studies, lower EP300 expression has

been shown to boost HDAC influence and attenuate the effects of

HDAC inhibition [28]. Another interesting top pan-cancer gene

marker, PEA-15, has anti-apoptotic function and was up-regulated

in the resistant cell lines of seven cancer lineages (Figure 5B; meta-

FDR = 2.7610-5). Since PEA-15 overexpression can suppress

FAS/TNFa-mediated cell death, it may counteract the effects of

HDAC inhibitors on the extrinsic apoptotic pathway [28,29].

To investigate pan-cancer mechanisms of response to Panobi-

nostat, we applied pathway enrichment analysis to the set of PC-

Meta pan-cancer gene markers. This revealed 20 pathways

significantly associated with response with PI scores ranging from

1.0 to 4.0 (Figure 6A; Table 2). In contrast, enrichment analysis

based on gene markers derived from PC-Pool and PC-Union

identified only 6 and 8 pathways respectively, even though the PC-

Pool approach provided greater number of gene markers than PC-

Meta (723 vs 542). The PI scores for commonly detected pathways

(e.g. Hepatic Stellate Cell Activation) were significantly higher for

gene markers derived by PC-Meta compared to the two

alternative pan-cancer analysis methods. Similar to our conclu-

sions for the TOP1 inhibitors, PC-Meta performed better than

alternative approaches in identifying pathways potentially involved

in response to Panobinostat.

The pan-cancer pathways predicted by PC-Meta to be most

associated with response were Interferon Signaling, Glucocorticoid

Receptor (GR) Signaling, and Hepatic Stellate Cell (HSC)

Activation (Figure 6A). Transient overexpression of the Interfer-

on signalling pathway has been shown to trigger anti-viral/anti-

pathogen immune responses as well as inhibit cell proliferation and

induce apoptosis. However, recent studies showed that the

constitutive overexpression of Interferon signaling confers resis-

tance to genotoxic stress/damage possibly due to inability of a cell

Figure 5. Top gene markers of response to HDAC inhibitor Panobinostat: (A) EP300 and (B) PEA15. Scatter plots show correlation
between gene expression and pharmacological response values across several cancer lineages, where down-regulation of EP300 and up-regulation of
PEA15 correlate with drug resistance (indicated by greater IC50 values).
doi:10.1371/journal.pone.0103050.g005
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Figure 6. Pan-cancer analysis of HDAC inhibitor Panobinostat. (A) Pan-cancer pathways with significant involvement in drug response
detected by PC-Meta, PC-Pool, PC-Union approaches (on the left). The predicted involvement level of these pan-cancer pathways by different
approaches is illustrated with blue horizontal bars (in the middle). The involvement of these pan-cancer pathways in each cancer lineage predicted by
PC-Meta is indicated by the intensity of red fills in corresponding table (on the right). Pan-cancer and lineage-specific pathway involvement (PI) scores
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to transmit cytotoxic response signals [30,31]. The latter was in

line with our observations that genes in this pathway, such as

interferon-stimulated genes (ISG), were overexpressed in drug-

resistant cell lines across seven cancer lineages (Figure 6B–C).

Interestingly, we also observed that the caveolar-mediated

endocytosis signaling pathway had significant involvement in

response specifically in lung cancers. Caveolar trafficking pathways

can internalize various membrane receptors such as EGFR, and

thereby strengthen EGFR signaling [32] and downstream

activation of Interferon/STAT-1 signaling. Therefore, we specu-

late that the collective overexpression of caveolar-mediated

endocytosis, EGFR, and Interferon/STAT-1 signaling pathway

genes can coordinate stronger inherent resistance to Panobinostat

in a subset of lung cancers.

GR signaling pathway, the second most enriched pathway in

our analysis, is a regulator of immune responses as well as cellular

apoptosis and proliferation. It comprises a number of genes that

were overexpressed in the drug-resistant cell lines across several

cancer lineages (Table 2), such as the nuclear hormone receptor

GR/NR3C1 and RELA component of NF-kB complex. The

expression of nuclear hormone receptor GR/NR3C1 normally

drives the induction of anti-apoptotic proteins through the

downstream activation of NF-kB signaling; however, this function

can be compromised in absence of HDAC6 [33]. Therefore, we

speculate that the observed up-regulations of GR/NR3C1 and

NF-kB can oppose loss GR function resulting from HDAC

inhibition [34]. Several genes with anti-apoptotic functions

comprising the HSC Activation pathway, the third most enriched

pathway, also had up-regulated expression in drug-resistant cell

lines. These included members of the tissue inhibitor of

metalloproteinase family (TIMP1 and TIMP2) that mediate cell

survival [35], members of the fibroblast growth factor family

(FGF1, FGF2) that up-regulate anti-apoptosis proteins and have

broad cytoprotective effects across cancer types, and member of

the vascular endothelial growth factor (VEGF1) that has also

demonstrated pro-survival effects [36]. Collectively, these findings

suggest that the up-regulation of cell survival through a complex

diversity of molecular regulators is likely to be a primary

modulator of response to Panobinostat across diverse cancer

lineages.

Intrinsic Determinants of Response to MEK Inhibitors
(PD-0325901 and AZD6244/Selumetinib)

MEK inhibitors have shown promise in treating cancers

addicted to oncogenic mutations that dysregulate the RAF/

MEK/ERK signaling pathway. For example, activating BRAF

mutations occur in roughly 7% of all cancers, including up to 70%

of melanomas, 22% of colorectal cancers, and 30% of serous

ovarian cancers, and can confer sensitivity to MEK inhibition

[37]. Resistance to MEK inhibition can occur as a result of

molecular alterations upstream in the RAF/MEK/ERK pathway

(e.g. KRAS amplifications or EGFR mutations) as well as

activating mutations in the PI3K/AKT/MTOR pathway, which

regulates similar mechanisms in apoptosis and cell growth [38].

We investigated two experimental MEK inhibitors currently

undergoing clinical trials: PD-0325901 and AZD6244 (Selumeti-

nib). Both drugs showed similar patterns of pharmacological

sensitivity across the panel of cancer lineages (Figure 2).

However, these drugs and their response data are characterized

by important differences: PD-0325901 is 10-times more potent

than AZD6244 as a MEK inhibitor [39] and these drugs were

screened on different numbers of cell lines (PD-0325901 on 366

and AZD6244 on 247). Our PC-Meta analysis yielded 171

response markers for the more potent PD-0325901 and only 10

response markers for AZD6244 (Table S5). Although this high

discrepancy was unexpected, we believe it can be partly attributed

to the aforementioned differences. Nevertheless, 8/10 (80%) of the

AZD6244 gene markers were shared with PD-0325901 and may

represent promising markers of resistance to the family of MEK

inhibitors (Table S4). In particular, three of the identified genes

were previously published as a part of the MEK-response gene

signature [12]. These included SPRY2 that was down-regulated in

resistant cell lines (meta-FDR = 1.461023 for PD-0325901 and

4.061023 for AZD6244), FZD2 that was up-regulated

(Figure 7A; meta-FDR = 1.561024 for PD-0325901 and

6.061023 for AZD6244) and CRIM1 (meta-FDR = 1.661025

for PD-0325901 and 5.061023 for AZD6244) that was also up-

regulated in resistant cells, consistent with previous findings

(Figure 8). The observed decrease in expression of other common

genes such as SPATA13 (Figure 7B), LYZ, and MGST2, to our

knowledge, have not yet been implicated in resistance to MEK

inhibitors and thus invites further investigation.

We selected the more potent and broadly screened PD-0325901

to further characterize mechanisms of intrinsic response to MEK

inhibition. Pathway enrichment analysis of the PC-Meta pan-

cancer gene markers resulted in only two significant pathways

(Figure 8A; Table 2). Strikingly, no significant pathways were

detected from PC-Pool or PC-Union gene markers. This result

may be partially attributed to the limited number of markers for

PC-Pool (46), but not for PC-Union (156), which detected a

comparable number of genes as PC-Meta (Table 1).

The two pathways discovered by PC-Meta, Neutrophin/TRK

signaling and Human Embryonic Stem Cell Pluripotency com-

prise numerous genes located upstream of the MEK target whose

dysregulations can activate the PI3K signaling pathway and drive

resistance to MEK inhibition. (Figure 8B). The neutrophin

growth factors NGF and BDNF and the fibroblast growth factor

FGF2 can trigger PI3K signaling through RAS and adaptor

protein GRB2 [40]. These growth factors were overexpressed in

PD-0325901-resistant cell lines. Additionally, the relevance of

FGF2 regulated signaling appears to be reinforced through the

suppressed expression of FGF antagonists SPRY1/2 in drug-

resistant cell lines [36]. Interestingly, M-RAS, a close relative of

classical RAS proteins (e.g. K-RAS, N-RAS), can also activate

downstream PI3K/AKT effectors [41], and had elevated expres-

sion in resistant cell lines. Finally, in resistant cell lines, we

observed up-regulation of gamma-protein coupled receptor S1PR,

which can also stimulate the PI3K/AKT pathways [42] as well as

the up-regulation of transforming growth factor beta TGFBII,

which has been recently implicated in resistance to MEK-inhibitor

AZD6244 [43]. Altogether, our findings support existing knowl-

edge of PI3K pathway involvement as a principal mechanism of

are derived from pathway enrichment analysis and calculated as -log10(BH-adjusted p-values). Only the top pathways with PI scores .1.3 are shown.
Cancer lineage abbreviations – AU: autonomic; BO: bone; BR: breast; CN: central nervous system; EN: endometrial; HE: haematopoetic/lymphoid; KI:
kidney; LA: large intestine; LI: liver; LU: lung; OE: oesophagus; OV: ovary; PA: pancreas; PL: pleura; SK: skin; SO: soft tissue; ST: stomach; TH: thyroid; UP:
upper digestive; UR: urinary (B) The predicted role of STAT/Interferon signaling pathway in Panobinostat inhibition. Red- and green-fills indicates
increased and decreased gene expression in drug-resistant cell-lines respectively. (C) Heatmap showing the expression of genes in the STAT/
Interferon pathway correlated with Panobinostat response in multiple cancer lineages.
doi:10.1371/journal.pone.0103050.g006
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resistance to MEK inhibitors. Additionally, the seven genes

identified through our analysis may serve as a useful gene

signature of such resistance.

Since mutations in the RAS/MEK/ERK or PI3K/AKT/

MTOR pathways have been linked to the response to MEK

inhibitors, we evaluated these mutations against our seven-gene

signature in predicting drug response (Figure 8C). The mean

expression of the seven-gene resistance signature was significantly

correlated with response values in three cancer lineages: kidney

cancers (Spearman’s rho = 0.85, p-value = 0.017), large intestine/

colorectal cancers (Spearman’s rho = 0.61, p-value = 0.002), and

soft tissue cancers (Spearman’s rho = 0.61, p-value = 0.031). In

contrast, individual mutation events were significantly associated

with response in fewer cancer lineages. For instance, BRAF

mutations were associated with drug response values in only large

intestinal/colorectal cancers (Student’s t-test, p-value = 0.024). Of

the multiple RAS proteins (KRAS, NRAS, HRAS) whose

mutation are known to drive oncogenic MEK pathway activation

[44,45], only NRAS mutations were associated with drug response

values in soft tissue cancers (Student’s t-test, p-value = 0.003).

Finally, PIK3CA mutations, which can confer inappropriate

activation of the PI3K signaling pathway, were weakly associated

with drug-resistance in cancers of the large intestine and upper

aerodigestive tract (Student’s t-test, p-value = 0.003 in both).

Altogether, these findings underscore the fact that known

mutations cannot fully explain the response in entire cancer

population. Importantly, it illustrates the advantages of our PC-

Figure 7. Top gene markers of response to MEK inhibitors PD-0325901 and AZD6244: (A) FZD2 and (B) SPATA13. Scatter plots show
correlation between gene expression and pharmacological response values across several cancer lineages, where up-regulation of FZD2 and down-
regulation of SPATA13 correlate with drug resistance (indicated by greater IC50 values).
doi:10.1371/journal.pone.0103050.g007
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Figure 8. Pan-cancer analysis of MEK Inhibitor PD-0325901. (A) Pan-cancer pathways with significant involvement in drug response detected
by PC-Meta, PC-Pool, PC-Union approaches (on the left). The predicted involvement level of these pan-cancer pathways by different approaches is
illustrated with blue horizontal bars (in the middle). The involvement of these pan-cancer pathways in each cancer lineage predicted by PC-Meta is
indicated by the intensity of red fills in corresponding table (on the right). Pan-cancer and lineage-specific pathway involvement (PI) scores are
derived from pathway enrichment analysis and calculated as -log10(BH-adjusted p-values). Cancer lineage abbreviations – AU: autonomic; BO: bone;
BR: breast; CN: central nervous system; EN: endometrial; HE: haematopoetic/lymphoid; KI: kidney; LA: large intestine; LI: liver; LU: lung; OE:
oesophagus; OV: ovary; PA: pancreas; PL: pleura; SK: skin; SO: soft tissue; ST: stomach; TH: thyroid; UP: upper digestive; UR: urinary (B) The predicted
role of PC-Meta identified compensatory mechanisms in MEK inhibition. Red- and green-fills indicates increased and decreased gene expression or
activity in drug-resistant cell-lines respectively. Downstream RAF/MEK/ERK and PI3K/AKT/MTOR pathways are indicated in orange boxes and inhibitor
is indicated in blue box. (C) Heatmap showing the expression of genes in the PC-Meta detected compensatory pathways correlated with PD-0325901
resistance in multiple cancer lineages.
doi:10.1371/journal.pone.0103050.g008
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Meta approach to identify potentially important compensatory

mechanisms by which cancers resist targeted therapies.

Conclusions

In this study, we investigated the inherent determinants of

cancer drug response across multiple cancer lineages. For this

purpose, we developed a pan-cancer analysis strategy based on

meta-analysis, PC-Meta, and comprehensively characterized

known and novel mechanisms of response to both cytotoxic

chemotherapies and targeted therapies in the publically available

CCLE resource. Since many CCLE compounds were not

amenable to comprehensive analysis due to highly biased

pharmacological profiles or lack of reasonable sample sizes, we

focused on a subset of five drugs that exhibited a broad range of in
vitro sensitivity values across numerous cancer lineages. Impor-

tantly, compared to alternative approaches, our PC-Meta

approach consistently demonstrated higher power in identifying

potentially relevant markers and ability to infer the mechanisms of

response.

For TOP1 inhibitors that are dependent on DNA replication

and transcription rates, our analysis predicted cell lines with slower

growth kinetics as inherently more drug-resistant irrespective of

cancer lineage. Although this was not unexpected, our predictions

suggested that the cellular growth rates in different cancer types

can be suppressed through down-regulation of several processes

including cell cycle control, nucleotide synthesis, and RNA

translation. The degree of involvement of specific pathways in

each cancer lineage can guide selection of proper combination

therapy to circumvent resistance. We further observed that the

overexpression of DNA repair genes may be indicative of a

genome instability phenotype that may confer intrinsic resistance

to TOP1 inhibition.

For Panobinostat, a pan-HDAC inhibitor that has been

hypothesized to act on cancer cells through a number of diverse

mechanisms, we identified the up-regulation of STAT-1/interfer-

on signaling as a principal factor of inherent resistance across

multiple cancer lineages. The basal overexpression of this pathway

has been previously implicated in resistance to both radiotherapy

and chemotherapy in lung and breast cancers, where it was

suggested to confer resistance to genotoxic stress and damage as a

result of failing to transmit cytotoxic signals. Our results expand its

importance for additional cancer types such as those arising from

ovarian and oesophageal tissue. Interestingly, our approach also

identified a set of lung-specific markers involved in the caveolar-

mediated endocytosis signaling, suggesting an important role of

this pathway in the resistance of lung cancers to Panobinostat.

For MEK inhibitors, our PC-Meta analysis identified multiple

determinants of inherent resistance that are upstream of the

targeted MEK. These determinants include up-regulation of

alternative oncogenic growth factor signaling pathways (e.g. FGF,

NGF/BDNF, TGF) in resistant cell lines. In particular, we

speculate that the up-regulation of the neutrophin-TRK signaling

pathway can induce resistance to MEK-inhibition through the

compensatory PI3K/AKT pathway and may serve as a promising

new marker. We also identified the overexpression of MRAS, a

less studied member of the RAS family, as a new indicator of drug-

resistance. Importantly, our analysis demonstrated that gene

expression markers identified by PC-Meta provides greater power

in predicting in vitro pharmacological sensitivity than known

mutations (such as in BRAF and RAS-family proteins) that are

known to influence response. This emphasizes the importance of

continuing efforts to develop gene expression based markers and

warrants their further evaluation on multiple independent

datasets.

In conclusion, we have developed a meta-analysis approach for

identifying inherent determinants of response to chemotherapy.

Our approach avoids the significant loss of signal that can

potentially result from using the standard pan-cancer analysis

approach of directly pooling incomparable pharmacological and

molecular profiling data from different cancer types. Application

of this approach to three distinct classes of inhibitors (TOP1,

HDAC, and MEK inhibitors) available from the public CCLE

resource revealed recurrent markers and mechanisms of response,

which were supported by findings in the literature. This study

provides compelling leads that may serve as a useful foundation for

future studies into resistance to commonly-used and novel cancer

drugs and the development of strategies to overcome it. We make

the compendium of markers identified in this study available to the

research community.

Supporting Information

Figure S1 Drug response across different lineages for
24 CCLE compounds. Boxplots indicate the distribution of

drug sensitivity values (based on IC50) in each cancer lineage for

each cancer drug. For example, most cancer lineages are resistant

to L-685458 (IC50 around 1025 M) except for haematopoietic

cancers (IC50 from 1025 to 1028 M). The number of samples in a

cancer lineage screened for drug response is indicated under its

boxplot. Cancer lineage abbreviations – AU: autonomic; BO:

bone; BR: breast; CN: central nervous system; EN: endometrial;

HE: haematopoetic/lymphoid; KI: kidney; LA: large intestine; LI:

liver; LU: lung; OE: oesophagus; OV: ovary; PA: pancreas; PL:

pleura; SK: skin; SO: soft tissue; ST: stomach; TH: thyroid; UP:

upper digestive; UR: urinary.

(TIF)

Table S1 Summary of PC-Meta, PC-Pool, and PC-Union
markers identified for all CCLE drugs (meta-FDR
,0.01).

(XLSX)

Table S2 Functions significantly enriched in the PC-
Pool gene markers associated with sensitivity to L-
685458.

(XLS)

Table S3 Overlap of PC-Meta markers between TOP1
inhibitors, Topotecan and Irinotecan.

(XLSX)

Table S4 Overlap of PC-Meta markers between MEK
inhibitors, PD-0325901 and AZD6244, and reported
signature in [12].

(XLSX)

Table S5 List of significant PC-Meta pan-cancer mark-
ers identified for each of 20 drugs.

(XLSX)

Table S6 Pan-cancer pathways with predicted involve-
ment in response to TOP1, HDAC, and MEK inhibitors.

(XLSX)

Acknowledgments

Phuong Dao, Robert Bell, Fan Mo provided valuable discussions regarding

the methodology.

Characterizing Pan-Cancer Mechanisms of Drug Sensitivity

PLOS ONE | www.plosone.org 14 July 2014 | Volume 9 | Issue 7 | e103050



Author Contributions

Conceived and designed the experiments: KW AL. Performed the

experiments: KW RS. Analyzed the data: KW AWW AL. Contributed

reagents/materials/analysis tools: KW AR JL. Contributed to the writing

of the manuscript: KW AL AWW CCC. Algorithm development: KW AR

JL. Critical review of manuscript: AWW YW.

References

1. Gillet J, Gottesman MM (2010) Multi-Drug Resistance in Cancer. 596.

Available: http://www.springerlink.com/index/10.1007/978-1-60761-416-6.

Accessed 25 May 2013.

2. Bianco R, Troiani T, Tortora G, Ciardiello F (2005) Intrinsic and acquired

resistance to EGFR inhibitors in human cancer therapy. Endocr Relat Cancer

12 Suppl 1: S159–71. Available: http://www.ncbi.nlm.nih.gov/pubmed/

16113092. Accessed 13 June 2013.
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