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Autophagy, a lysosomal catabolic pathway for long-lived proteins and damaged organelles, is crucial for cell homeostasis, and
survival under stressful conditions. During starvation, autophagy is induced in numerous organisms ranging from yeast to
mammals, and promotes survival by supplying nutrients and energy. In the early neonatal period, when transplacental nutrients
supply is interrupted, starvation-induced autophagy is crucial for neonates’ survival. In adult animals, autophagy provides amino
acids and participates in glucose metabolism following starvation. In patients with anorexia nervosa, autophagy appears initially
protective, allowing cells to copes with nutrient deprivation. However, when starvation is critically prolonged and when body mass
index reaches 13 kg/m?” or lower, acute liver insufficiency occurs with features of autophagic cell death, which can be observed by
electron microscopy analysis of liver biopsy samples. In acetaminophen overdose, a classic cause of severe liver injury, autophagy
is induced as a protective mechanism. Pharmacological enhancement of autophagy protects against acetaminophen-induced
necrosis. Autophagy is also activated as a rescue mechanism in response to Efavirenz-induced mitochondrial dysfunction. However,
Efavirenz overdose blocks autophagy leading to liver cell death. In conclusion, in acute liver injury, autophagy appears as a protective

mechanism that can be however blocked or overwhelmed.

1. Introduction

Autophagy (literally “self-eating”) is a cellular process respon-
sible for the degradation of excess or aberrant long-lived
cytosolic proteins and organelles within lysosomes in order to
remove and eventually recycle the resulting macromolecules
[1]. It has an important role in various biological events such
as cellular remodeling during development and differentia-
tion, adaptation to stress conditions, and extension of lifespan
[2]. Depending on physiological functions and mode of cargo
delivery to the lysosome, three forms of autophagy have been
identified: chaperone-mediated autophagy, microautophagy,
and macroautophagy [3]. In this review we will focus on
macroautophagy, hereafter referred to as “autophagy”
Autophagy consists of several sequential steps by
which a portion of the cytoplasm, including organelles,
is engulfed by a phagophore to form an autophagosome.

The autophagosome subsequently fuses with a lysosome to
form an autolysosome, and the internal material is degraded
by lysosomal hydrolases and recycled to the cytoplasm
[4].

The initial studies that led to the identification of
autophagy were conducted in the liver [5]. Afterward, exten-
sive work has been carried out on this organ to dissect the
regulation and the roles of autophagy. Notably, a remarkable
work by Mortimore’s group led to the discovery that amino
acids as well as insulin and glucagon were crucial regulators
of starvation-induced autophagy [6]. Subsequently, the impli-
cation of autophagy has been highlighted in various chronic
liver diseases, including alcoholic liver disease, viral hepatitis,
alphal-antitrypsin deficiency, and hepatocellular carcinoma
[7, 8]. Recently, several works have also pointed out the
involvement of autophagy in several acute liver diseases. This
review aims to summarize current knowledge on this last
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topic, with a particular focus on acute liver injury associated
with severe anorexia nervosa.

2. Regulation of Starvation-Induced
Autophagy

Starvation or food restriction is one of the best-known
inducers of autophagy. Thus, extensive work has been carried
out under this condition to study autophagy. In this stressful
context, intracellular material is degraded and the resulting
breakdown products are released into the cytoplasm to be
used by cell metabolism [4]. In 1983, Mortimore et al.
observed that mice lose about 40% of their liver protein
content within 48 hrs of starvation [9]. Similarly, 4 to 5%
of total protein content of isolated rat hepatocytes cultured
under amino acid free conditions is degraded each hour
[10]. Schworer et al. showed in rats that starvation shifts
basal liver protein degradation from about 1.5%/hour (basal)
to 4.5%/hour (starvation induced) [11], which correlated
with autophagy kinetics determined by quantitative electron
microscopy [11], leading to the concept that autophagy medi-
ates protein degradation under nutrient deprivation [12].
Although these proteolysis rates seemed to reflect autophagic
degradation, the definitive demonstration of the implication
of this process was only confirmed more than 2 decades
later by the use of autophagy-deficient cell models. Indeed,
in isolated Atg7-deficient hepatocytes, starvation-induced
proteolysis is almost completely lost [13].

Starvation-induced autophagy is regulated by several
metabolic parameters including amino acid, insulin, and
glucagon levels.

Experiments performed using isolated perfused liver in
the absence of the potent autophagy regulators present in
vivo, including insulin and glucagon, showed that amino
acids are strong inhibitors of autophagy [12]. Indeed, half nor-
mal plasma level concentration of complete amino acid mix-
tures suppresses autophagy. Further investigations identified
a group of 8 amino acids (leucine, tyrosine, phenylalanine,
glutamine, proline, histidine, tryptophan, and methionine),
including 5 essential amino acids (leucine, phenylalanine,
histidine, tryptophan, and methionine), which were as effec-
tive as complete plasma mixtures for autophagy inhibition,
in isolated perfused rat livers [14]. Similar results were
obtained on isolated rat hepatocytes in vitro wherecombi-
nation of high concentrations of leucine with either histi-
dine or glutamine inducedeffective inhibition of autophagy
[15]. Leucine is by far the most efficient autophagy inhibitor
and alanine, which does not have an inhibitory effect by
itself, displayes a coregulatory effect [16]. Although there is
evidence that most of the inhibitory effect of amino acids
on autophagy occurs at the initiation step (sequestration) [6,
17], an effect on the late step (autophagosome and lysosome
fusion) cannot be ruled out, since leucine at high concentra-
tion can modify lysosomal pH [18], and this might interfere
with the fusion between autophagosomes and lysosomes.
Furthermore, asparagine is also able to inhibit the fusion
between autophagosomes and lysosomes [19]. Autophagy
regulation by glutamine is indirect. A glutamine transporter,
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SLCIAS5, is responsible for the uptake of glutamine from
extracellular compartment into the cell. Glutamine is there-
after transported outside the cell by SLC7A5/SLC3A2 in
exchange of essential amino acids such as L-leucine that elicit
mTOR activation and subsequent autophagy inhibition [20].
The mammalian target of rapamycin (mTOR) is a central cel-
lular metabolism protein on which several signaling pathways
converge in response to changes in energy/nutritional status.
mTOR stimulates protein synthesis by inducing translation
of mRNA and inhibits protein catabolism by decreasing
autophagy [21]. How amino acids activate mTOR is not
fully understood. However, recent lines of evidence show
that these molecules, when present in sufficient amounts,
accumulate in lysosomes and elicit mTORCI recruitment
and activation through a lysosomal v-ATPase-Ragulator-Rag
GTPase complex [22, 23]. In addition to these posttransla-
tional effects, amino acids also modulate autophagy at the
transcriptional level. During starvation, the transcription
factor EB (TFEB), a master regulator of lysosomal biogenesis
and autophagy;, is activated, translocates into the nucleus, and
drives the transcription of autophagy and lipid metabolism
genes. Activity and localization of TFEB is regulated by
the extracellular signal-regulated kinase 1/2 (ERK-1/2), a
sensor of nutrients status [24, 25], and by mTORCL In
the presence of sufficient nutrients, TFEB interacts with a
complex nutrient sensing machinery at the lysosome surface,
including mTORCI that phosphorylates TFEB at Ser211 [26,
27]. Phosphorylated TFEB is sequestered in the cytosol and
is thus inactive as a transcription factor. However, during
starvation, mTOR is no longer recruited at the lysosomal sur-
face and unphosphorylated TFEB translocates to the nucleus
[27].

In addition to amino acids, liver autophagy is tightly
controlled by hormones. Plasma glucagon levels are
increased during fasting in humans [54]. Glucagon stimulates
autophagy [5]. In the presence of normal concentrations
of amino acids, activation of autophagy by glucagon is
maximal, whereas higher concentrations of amino acids
abolish this effect [55]. Schworer et al. suggested that the
stimulation of proteolysis by glucagon was a manifestation of
starvation-induced autophagy. Indeed, glucagon stimulation
elicits amino acids utilization for gluconeogenesis, leading
to a decrease in amino acids pool. This decrease may
trigger autophagy, as it mimics the effect of amino acids
deprivation [55]. Although glucagon is known to activate
AMPK which positively regulates autophagy [56], the
mechanism of autophagy activation by glucagon remains
unclear.

Insulin also plays a critical role in starvation-induced
autophagy [12]. Insulin is known to activate mTOR via a class
I phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway,
which inhibits autophagy [57]. During fasting, plasma insulin
level drops by 50% between 12hrs and 72 hrs of fasting in
humans [54, 58]. Mice also show a significant decrease in
plasma insulin level after 24 hrs of starvation, while their
plasma glucagon level remains relatively stable [33]. This sug-
gests that the role of insulin level in the control of starvation-
induced autophagy might be more important than that of
glucagon.
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TABLE 1: Starvation-induced autophagy in different experimental models.

Author, year Model Techniques used Time point
Electron microscopy: increase in
Takeshige et al., 1992 [28] S. cerevisiae the number of autophagosomes 1hrs-3 hrs
and delivery to the vacuole
Scott et al,, 2004 [29] Drosophila fat body Electron microscopy: increase in 3hrs

Mizushima et al., 2004 [30]

Komatsu et al., 2005 [13]

Martinet et al., 2006 [31]

Hansen et al., 2008 [32]

Ezaki et al., 2011 [33]

Uddin et al., 2011 [34]

Skop et al., 2012 [35]

GFP-LC3 transgenic mice

Atg7F/+:Mx1-Cre mice

GFP-LC3 transgenic mice

LGG-1-GFP transgenic C.
Elegans
Eat-2 mutants

C57BL/6] mice

C57BL/6 mice

Wistar rats

the number of autophagosomes
Fluorescence microscopy:
increase in the number of

LC3-GFP dots (24 h) and then
return to basal level (48 h)

Electron microscopy: increase in
the number of autophagosomes
Western blot: increase in LC31I/I
ratio
Fluorescence microscopy:
increase in the number of
LC3-GFP dots
Fluorescence microscopy:
increase in the number of
LGG-1-GFP foci
Electron microscopy: increase in
the number of autophagosomes
Western blot: increase in LC311/I
ratio
Western blot: increase in LC3II/I
ratio
Western blot: increase in LC3II/1
ratio

24 hrs-48 hrs

24 hrs

24 hrs-48 hrs

60 hrs

24 hrs
3 hrs-18 hrs

12 hrs-24 hrs-36 hrs—48 hrs

24 hrs

GFP: green fluorescent protein; LC3: microtubule-associated protein 1 light chain 3 alpha; LGG-1: LC3, GABARAP, and GATE-16 family; Mx-1: myxovirus

(influenza virus) resistance 1.

3. Physiological Significance of
Starvation-Induced Autophagy

Studies in yeast showed that autophagy is efficiently induced
following 1 hour nitrogen starvation and reaches a maximal
level at 3 hrs. Yeast autophagy is also induced by starvation
of other nutrients such as carbon sources, sulfate, or aux-
otrophic amino acids [28]. Autophagy-deficient yeast cells
have a loss of viability and most of them (more than 80%)
die within 5 days of nitrogen starvation, indicating that
starvation-induced autophagy is essential for cell viability
under this stressful condition [59]. Moreover, autophagy-
deficient yeasts were unable to maintain physiological levels
of amino acids and to synthetize important proteins for
surviving nitrogen starvation [60]. Similarly, in the eukaryote
C. Elegans, autophagy was induced in response to nutrients
shortage [32]. In the Drosophila larval fat body, a nutrient
storage organ analogous to the vertebrate liver, starvation
induced a robust autophagic response in the first 3 hrs [29].

Starvation-induced autophagy is critical during the early
neonatal period in response to the sudden arrest of the
transplacental supply and subsequent nutrient deprivation
[61]. After birth, autophagy is immediately upregulated in
various tissues, including the liver, heart, lung, diaphragm,

pancreas, and the gastrocnemius muscle, and is maintained at
high levels for 3-12 hrs before returning to basal levels within
1-2 days. Mice deficient for Atg5, an essential autophagy gene,
die within the first day of delivery, although they appear
normal at birth. Forced milk feeding of Atg5 knockout mice
delayed neonates’ death. This shows that autophagy is critical
for survival during neonatal starvation in mammals.
Identification of key proteins regulating the autophagy
machinery and the development of molecular tools to mon-
itor autophagy in vivo led to a better understanding of the
response of organisms to starvation. In rats as well as in
mice, 24 hrs starvation increases both liver LC3II/I ratio
and the number of autophagosomes assessed using electron
microscopy [13, 33-35] (Table 1). Studies using GFP-LC3
transgenic mice in which the number of LC3 puncta reflects
the number of autophagosomes gave similar results [30, 31]
(Table 1). This model also provided evidence for differential
induction patterns in several other tissues. Indeed, starva-
tion induces autophagosome formation in the liver, skeletal
muscle, heart, pancreatic acinar cells, seminal gland cells, and
kidney podocytes. In most tissues, the autophagic activity
reaches maximal levels within 24 hrs and then progressively
decreases, whereas it further increases after 48 hrs in the
heart and the soleus muscle [30]. In contrast, induction of
autophagy in the brain was not observed even after 48 hrs of



TABLE 2: Studies assessing liver blood tests in patients with anorexia
nervosa.

Percentage of patients

Author, year . Body ma552 with increased serum
index (kg/m”) .
transaminases levels
Cravario et al., 1974 14.4 4% (N =27)
[36]
Kanis et al., 1974 [37] 15 0% (N =24)
Milner et al., 1985 [38] — 45% (N = 42)
Mira et al., 1987 [39] 15.9 9% (N =22)
Palla and Litt, 1988 [40] — 33% (N = 24)
Umeki, 1988 [41] — 59% (N = 27)
Hall et al., 1989 [42] - 32% (N = 31)
Waldholtz and
_ 9 -
Andersen, 1990 [43] 0% (N =13)
Sherman et al., 1994 0 _
[44] — 26% (N =19)
Mickley et al., 1996 [45] — 7% (N = 282)
Ozawa et al., 1998 [46] 13.2 29% (N =101)
Miller et al., 2005 [47] 16.8 12% (N = 214)
Montagnese et al., 2007 15.6 149% (N = 97)
[48]
Rautou et al., 2008 [49] 11.3 66.6% (N =12)
Fong et al., 2008 [50] 18 26% (N =53)
Tsukamoto et al., 2008 15.2 520% (N = 25)
(51]
Gaudiani et al., 2012 131 76% (N = 25)
(52]
Hanachi et al., 2013 [53] 12 56% (N =126)
Cumulated (mean) 14.6 24% (278/1158)

starvation. This might be explained by the fact that the brain
is a metabolically privileged site that is supplied with glucose
and ketone bodies from the liver and other tissues [62], even
though brain cells are autophagy competent [63-65].

Moreover, the use of liver specific knockout models
for autophagy genes unraveled a pivotal role of basal and
stress-induced autophagy in the maintenance of liver cell
homeostasis. Whereas starvation transiently elevates amino
acid levels in the liver and the blood for 24 hrs in wild type
animals, mice with liver Atg7 deficiency exhibit an impaired
response to fasting, including an absence of decrease in liver
protein levels and of increase in blood amino acid levels [13].
Fasting blood glucose level is also decreased in these Atg7-
deficient mice [33]; this may be due to the lack of amino acids
supply by autophagy for gluconeogenesis, further supporting
a role of autophagy in the maintenance of blood glucose
level upon starvation. In humans, although liver autophagy
kinetics following starvation has not been assessed, one could
speculate that autophagy is rapidly increased during fasting as
in mice or rats, since plasma levels of insulin start to decrease,
and those of glucagon start to increase in the first hours of
fasting [54, 58].
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4. Liver Autophagy and Anorexia Nervosa

Anorexia nervosa (AN) is characterized by a distorted per-
spective of body image with an intense fear of gaining weight
manifesting through self-induced starvation. AN has the
highest rate of mortality among eating disorders [66]. Two
main subtypes of AN are recognized: restricting type and
binge-eating/purging type. Average prevalence of AN is of
0.3% in young women [67] and might be up to 4% with
a broader definition, close to DSM-5 criteria [68]. AN can
be associated with several medical complications, including
cardiovascular complications (bradycardia and hypotension),
gastrointestinal problems (lack of food intake induces reflex
hypofunctioning of the colon and subsequent constipation),
endocrine and electrolytes abnormalities, amenorrhea in
women [69, 70], and liver blood tests abnormalities [36-
53] (Table 2). Mild increase in serum transaminases levels
(<2001U/L) is observed in up to 75% of AN patients [52].
Marked increases (>200 IU/L) are less common (Table 2) [46,
71-78]. Interestingly, several independent groups observed
that serum transaminases levels inversely correlate with body
mass index (BMI) [46, 51, 53], suggesting a role of nutri-
tional status in the liver changes of these patients. However,
understanding of the mechanisms of these abnormalities is
hampered by the absence of available description of liver
histological or ultrastructural changes.

Although much less common, severe liver insufficiency
associated with AN has been better investigated [49]. A series
of 12 patients with acute liver insufficiency (prothrombin
index <50% and/or an international normalized ratio >1.7)
and AN as the only cause for acute liver injury has been
analyzed. All patients had severe AN attested by a BMI
systematically equal to or less than 13kg/m” and by severe
hypoglycemia and coma at admission in half of them. Serum
transaminases levels were highly increased in all patients
(average 2000IU/L) suggesting severe liver injury. Liver
biopsies were available in all patients. Surprisingly, liver
histological analysis as well as TUNEL staining disclosed
no or rare features of necrosis or apoptosis. On electron
microscopy, hepatocytes showed numerous autophagosomes,
as well as a low density of organelles and of glycogen.
Moreover, some hepatocytes presented morphological char-
acteristics of autophagic cell death (also called type II cell
death). This aspect was not observed in patients with other
causes of acute liver insufficiency. These results support
the view that hepatocytes autophagic death was the leading
pathway of acute liver injury in patients with severe AN.
This may explain the increase in aminotransferases levels
in the absence of hepatocytes necrosis on histology, since
autophagic cell death is associated with cytoplasmic mem-
brane permeability, allowing the release of transaminases
in the blood [49]. Patients management with controlled
enteral supplementation, plasma glucose, and electrolytes
correction led to rapid improvement in liver function. None
of them developed hepatic encephalopathy, and all patients
with initial cardiac dysfunction recovered within one month.
This beneficial effect of refeeding further supports the role
of severe starvation and subsequent autophagic cell death in
acute liver injury in these patients.
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Altogether, we can speculate that starvation-induced
autophagy in AN plays a dual role. During the first phase
of weight loss, liver blood tests abnormalities are moderate
suggesting that autophagy can cope with nutrient depri-
vation. During that period, autophagy is protective and
prevents cell death. When starvation continues and BMI
reaches a critical level equal or less than 13 kg/m?, excessive
activation of autophagy leads to hepatocyte cell death and
liver insufficiency (Figure 1).

5. Autophagy in Acute Liver Injury

Recent studies highlighted the involvement of autophagy
in drug-induced hepatotoxicity. Overdose of acetaminophen
(APAP), a widely used antipyretic and analgesic drug, is
the first cause of acute liver failure in humans [79]. The
mechanisms leading to APAP-induced liver injury are well
documented. In the liver, therapeutic doses of APAP are
mainly excreted into the bile or the blood after glucuronic
acid and sulfate conjugation. A small amount of the drug
is metabolized to N-acetyl-p-benzoquinone imine (NAPQI)
by cytochrome P450 enzymes, mainly via CYP2EI isoform.
NAPQIL which is highly electrophilic, reacts with glutathione
(GSH) to form a GSH adduct. In case of APAP overdose, GSH
stores are exhausted and NAPQI binds to cellular, including
mitochondrial, proteins leading to mitochondrial damages
and necrotic cell death [80]. As a defense mechanism against
necrosis, APAP induces autophagy to remove damaged
mitochondria [81]. Interestingly, mitochondria are frequently
seen within APAP-induced autophagosomes, and expression
level of mitochondrial proteins is decreased, supporting the
role of mitophagy in the removal of damaged mitochon-
dria. Moreover, autophagy inhibition by chloroquine or 3-
methyladenine exacerbates APAP-induced necrosis, whereas
induction of autophagy with rapamycin completely blocks it,
further supporting a protective role of autophagy in APAP-
induced liver injury [81] (Figure 2). Consistent with these
data, studies performed by Igusa et al. using inducible liver
Atg7-deficient mice indicated that loss of autophagy pro-
moted APAP-induced reactive oxygen species, mitochondrial
damage, and subsequent liver injury [82]. However, mice with
a constitutive hepatocyte specific deletion in Atg5 displayed
resistance to APAP overdose [83]. In these constitutive
Atg5 deficient mice, compensatory increase in hepatocytes
proliferation and in basal GSH levels as well as faster recovery
of GSH content after APAP insult mediated by persistent acti-
vation of Nrf2 could account for this apparent discrepancy.
Indeed, prolonged loss of autophagy increases levels of p62
leading to stabilization of Nrf2 and in turn to transcriptional
activation of Nrf2 target genes, including antioxidant proteins
and detoxifying enzymes [84]. These discrepancies between
inducible and constitutive genetic deletions indicate that
caution should be taken when working with genetic models
of autophagy deficiency, as discussed elsewhere [85, 86].
There is to date no data on autophagy level in the liver of
patients with APAP overdose. Electron microscopy analysis
of liver samples from patients could be useful to confirm
what has been observed in mice [81]. Chronic exposure to

alcohol decreases autophagic flux by inhibiting the fusion
of autophagosomes with lysosomes [87]. This may explain
why chronic consumption to alcohol favors APAP hepato-
toxicity [88, 89]. Besides induction of autophagy, APAP also
induces the formation of mitochondrial spheroids in vivo
[90], which are ring-like spherical structures with lumen
surrounded by mitochondrial membranes that can contain
cytoplasmic material. Formation of mitochondrial spheroids
in response to oxidative stress is inversely correlated with
Parkin expression and requires mitofusins [90]. However, the
exact mechanisms by which APAP induces mitochondrial
spheroids remain to be elucidated. Ni et al. suggested that
posttranslational modifications of Parkin due to increased
nitric oxide (NO) and reactive nitrogen species by APAP may
promote mitofusin-mediated formation of mitochondrial
spheroids [91]. Although the physiological significance of
mitochondrial spheroids formation in response to APAP
is not clear, this mechanism may represent an alternative
defense route against APAP-induced liver injury. Further
work is needed to address this issue.

Efavirenz, a nonnucleoside reverse transcriptase inhibitor
widely used to treat HIV infections can be hepatotoxic
in some patients [92]. The molecular pathogenesis of this
effect involves mitochondrial dysfunction and subsequent
decrease in ATP production and mitochondrial membrane
potential and increase in reactive oxygen species generation
[93]. At clinically relevant concentrations, Efavirenz induces
mitochondrial damage and triggers mitophagy as a rescue
mechanism. The beneficial effect of mitophagy is supported
by the fact that pharmacological inhibition of autophagy
enhances Efavirenz-induced cell death [94]. At higher con-
centrations, corresponding to those observed in slow metab-
olizing patients [95], Efavirenz blocks autophagic flux, lead-
ing to an increase in mitochondrial damage and eventually
to cell death [94] (Figure 3). This complex concentration-
dependent dual effect of Efavirenz on hepatocytes autophagy
may be involved in other hepatotoxic drugs mechanisms that
interfere with mitochondrial function.

The role of autophagy has been investigated in two other
models of acute liver injury, namely, the concanavalin A
(Con-A) and the lipopolysaccharide/D-galactosamine mod-
els. Con-A induces hepatitis by T cell-dependent and T cell-
independent mechanisms. The former mechanism induces
hepatocyte apoptosis whereas the latter leads to hepatocyte
autophagic cell death [96]. Indeed, intravenous injection of
Con-A in SCID/NOD mice, that is, mice with a defect in
lymphocytes function, induced an acute hepatitis associ-
ated with an increased autophagy as demonstrated by the
increased LC3I conversion to LC3II [96]. Con-A also induces
cell death in hepatoma cell line by a mechanism involving
mitochondrial membrane permeability, BNIP3 induction,
and LC3-II generation. Concanavalin A-induced cell death
could be partially inhibited by either 3-methyladenine or
knockdown of BNIP3 and LC3 by siRNA, suggesting that
autophagy is involved in its effect [97]. Not only hepatocytes,
but also liver endothelial cells can undergo autophagic cell
death following Con-A exposure in vitro and in mice [98].
Altogether, these data highlight a deleterious effect of Con-A-
induced autophagy on hepatic cells. By contrast, induction of
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FIGURE 1: Electron microscopy pictures of hepatocytes from patients with severe anorexia nervosa. Hepatocytes show low density of organelles
in the cytoplasm, glycogen depletion (), and autophagosomes sequestering cytoplasmic material (arrows), N: nucleus; m: mitochondria; L:

mature lysosomes.
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FIGURE 2: Protective role of autophagy in APAP-induced hepato-
toxicity. APAP is metabolized in hepatocytes to generate NAPQ],
which depletes GSH stores and induces mitochondrial dam-
age by generating protein adducts, leading to hepatic necrosis.
Autophagy is induced as a defense mechanism and promotes
cell survival by removing damaged mitochondria and decreasing
oxidative stress. Pharmacological activation of autophagy pro-
motes cell survival while its inhibition favors cell death, APAP:
acetaminophen; NAPQI: N-acetyl-p-benzoquinone imine; GSH:
glutathione; mMTOR: mammalian target of rapamycin.

liver autophagy in the lipopolysaccharide/D-galactosamine
model seems to be hepatoprotective. Indeed, autophagy
was rapidly induced in both wild type and pregnane X
receptor (PXR) knockout mice after lipopolysaccharide/D-
galactosamine insult. However, this increase was only tran-
sient in the latter group, and autophagy level rapidly dropped.
This significant reduction of autophagy in PXR knockout
mice was associated with a greater liver injury, characterized
by increased alanine aminotransferase, hepatocyte apoptosis,
necrosis, and hemorrhagic liver injury [99].

6. Conclusion

Increasing evidence demonstrates that autophagy plays a
critical role in acute liver injury related to severe anorexia

nervosa and to drug overdose. Increased liver autophagy
level is a common feature of these diseases. Autophagy is
mainly hepatoprotective. In anorexia nervosa, autophagic cell
death occurs only when body mass index reaches a critically
low level. After APAP or Efavirenz exposure, autophagy
removes damaged mitochondria, and liver injury appears
only when this process is either blocked by other factors
or overwhelmed. Whether molecules stimulating autophagic
flux are beneficial in acute liver injury remains to be deter-
mined.

Abbreviations and Acronyms

Akt: Protein kinase B

AN: Anorexia nervosa
APAP:  Acetaminophen

Atg: Autophagy-related gene
BMI: Body mass index

BNIP3:  BCL2/adenovirus E1B 19 kDa
protein-interacting protein 3

Con-A:  Concanavalin A

CYP2EL:  Cytochrome P450 2E1

DSM: Diagnostic and statistical manual of
mental disorders

ERK 1/2:  Extracellular signal-regulated kinases 1/2

GFP: Green fluorescent protein

GSH: Glutathione

LC3: Microtubule-associated protein 1 light
chain 3 alpha

LGG-1:  LC3, GABARAP, and GATE-16 family

mTOR:  Mammalian target of rapamycin

mTORCI: Mammalian target of rapamycin complex 1

Mx-1: Myxovirus (influenza virus) resistance 1

NAPQIL: N-acetyl-p-benzoquinone imine

Nrf-2:  Nuclear factor erythroid 2-related factor 2

PI3K: Phosphatidylinositol-4,5-bisphosphate
3-kinase

PXR: Pregnane X receptor

SCL1A5:  Solute carrier family 1 (neutral amino acid

transporter), member 5
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FIGURE 3: Role of autophagy in Efavirenz-induced hepatotoxicity. Clinically relevant concentration of Efavirenz induces mitochondrial
dysfunction, which in turn induces autophagy, thereby promoting cell survival. However, higher concentration of Efavirenz is associated
with inhibition of autophagic flux, which seriously compromises cell survival, ATP: adenosine triphosphate; Aym: mitochondrial membrane

potential; ROS: reactive oxygen species.

SCL3A2: Solute carrier family 3 (amino acid trans-

porter heavy chain), member 2

SCL7A5:  Solute carrier family 7 (amino acid trans-
porter light chain, L system), member 5

TFEB: Transcription factor EB

v-ATPase: Vacuolar—type H+—ATPase.

Data Sources and Searches

The authors searched PUBMED (1960-2014) for studies on
autophagy and liver physiology and pathology by using com-
binations of the terms: autophagy, autophagosome, liver, star-
vation, acute liver injury, anorexia nervosa, acetaminophen,
and Efavirenz. Relevant papers were acquired as abstracts or
tull text. The authors also reviewed publications in personal
reference lists and citation sections of the recovered articles.
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