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Abstract: Biosignal analysis is one of the most important topics that researchers have tried 
to develop during the last century to understand numerous human diseases. 
Electroencephalograms (EEGs) are one of the techniques which provides an electrical 
representation of biosignals that reflect changes in the activity of the human brain. 
Monitoring the levels of anesthesia is a very important subject, which has been proposed to 
avoid both patient awareness caused by inadequate dosage of anesthetic drugs and 
excessive use of anesthesia during surgery. This article reviews the bases of these 
techniques and their development within the last decades and provides a synopsis of the 
relevant methodologies and algorithms that are used to analyze EEG signals. In addition, it 
aims to present some of the physiological background of the EEG signal, developments in 
EEG signal processing, and the effective methods used to remove various types of noise. 
This review will hopefully increase efforts to develop methods that use EEG signals for 
determining and classifying the depth of anesthesia with a high data rate to produce a 
flexible and reliable detection device. 

Keywords: electroencephalogram (EEG); anesthesia; detection; signal processing; 
features; classification 

 

OPEN ACCESS



Sensors 2013, 13 6606 
 

 

1. Introduction  

Electroencephalography (EEG) is the neurophysiologic measurement of the electrical activity of the 
brain. Normally, this signal is a function of time and is described in terms of amplitude, frequency, and 
phase. The neurons communicate through electrical impulses and generate a bio-electromagnetic field 
that propagates through the brain tissues, skull, and scalp. The detectors are placed on the scalp to 
monitor signals from different locations at a time; these signals describe the brain activity. Many other 
methods are used for data acquisition, such as functional magnetic resonance imaging (FMRI) and 
positron emission tomography (PET), but EEG is the most popular method for assessing brain activity 
because of its simplicity, high temporal resolution, and low cost [1–3]. EEG recording technology is 
limited by the detection and characterization of existing nonlinearities in the surface of the scalp, 
estimation of the phase, acquisition of exact information, truncation of the noise from the signal, and 
classification of this signal.  

Anesthesia is an indispensable part of surgery. Anesthesiologists monitor the depth of anesthesia 
(DOA) of patients based on observations on the underlying changes in physiologic symptoms, such as 
blood pressure, heartbeat, breathing rates, eye movement, and their physical responses to stimulation 
from the surgical procedure [4]. The features of the EEG signal vary with the level of anesthesia. This 
variation is utilized to monitor the depth of anesthesia. DOA is the dynamic balance between loss of 
consciousness and intensity of surgical stimulation. Unconsciousness is characterized by the lack of 
movement, awareness, and recall of the surgical intervention and unresponsiveness to painful stimuli, 
whereas the intensity of surgical stimulation depends on the type and duration of surgery [5]. 
Inadequate general anesthesia caused by underdosage causes intraoperative awareness with recall 
whereas prolonged anesthesia increases the risk of postoperative complications because of overdosage. 
The most important factor that contributes to the inadequate general anesthesia is the current limited 
ability to determine the level of awareness [6–8].  

This paper provides a detailed review of the literature concerning the features and classifications 
used to recognize the stages of anesthesia from 1990 to 2012. It also briefly explains EEG signals and 
provides a short historical background of signal analysis. It highlights recent detection, decomposition, 
and processing methods related to DOA. The review aims to discuss the stages for developing an ideal 
method for monitoring DOA and provides a good background regarding the challenges and problems 
in developing appropriate solutions to the outstanding issues. 

2. History of EEG Signal Processing 

Researchers have focused on brain signals since the beginning of the last century and several 
attempts to understand and interpret those signals have been proposed. Exploring brain signals 
underwent several stages that profoundly affected the interpretation of brain signals during anesthesia. 
The purpose of reviewing these general methods for detecting and classifying brain signals is to show 
the efforts that helped to find efficient methods for monitoring the patients during surgery. 
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2.1. Emergence and Development of General EEG Signals 

In 1875 the English physician Richard Caton discovered the presence of electrical current in the 
brain [9–11]. He observed continuous and spontaneous electrical activity from the brain surfaces of 
rabbits and monkeys. In 1912, Russian physiologist Vladimir Vladimirovich Pravdich-Neminsky 
published the detection of the first brain signals and evoked potentials in mammals (dog). Fuller said 
that [12] the German neurologist Hans Berger recorded the first human brain signal in 1924. They used 
ordinary radio equipment to amplify the brain’s electrical activity and recorded it graph paper. The 
scientist named the device “EEG”. Berger also noticed that rhythmic changes in the brain waves varied 
with the state of consciousness of the subject. Franklin Offner developed EEG equipment and 
introduced concentric needle electrodes [13]. In 1935, Gibbs et al. described the characteristic form of 
spike waves, which started the field of clinical electroencephalography [14]. Subsequently, in 1936, 
Gibbs and Jasper reported the interictal spikes as the focal signature of epilepsy [15,16]. After World 
War II, the researchers tend to develop different methods of detection, purification, and classification 
of brain signals that enabled them to diagnose abnormal signals. In the 1950s, English physician 
William Grey Walter developed EEG topography, that allowed for the mapping of electrical activity 
across the surface of the brain; this topography was used in psychiatry until the 1980s. From 1990 to 2000, 
many techniques were developed to process EEG signal such as Blind Source Separations (BSS) [17–22] 
and Independent Component Analysis ICA [23–25]. The neural network detection systems, proposed 
in 1996, are used to classify EEG signals according to the feature of the recorded signal; some of these 
features will be explained in detail in subsequent sections [26,27]. 

2.2. Emergence and Development of EEG Signals during Anesthesia  

Measuring the depth of anesthesia uses most of the previous methods, which are being continuously 
improved. In 1847, John Snow described five levels of anesthesia, which Guedel later refined into four 
stages based on somatic muscle tone, ocular signs, and respiratory parameters [28]. In 1957, 
Woodbridge described four stages of anesthesia from another point of view, i.e., sensory blockade, 
motor blockade, blockade of autonomic reflexes, and loss of consciousness [29]. In 1991, van de Velde 
and Cluitmans evaluated the characteristic frequencies in the EEG data from a cat. They tried to assess 
the anesthesia levels by calculating the EEG spectra. They found that the “spectral edge frequency” is 
a promising EEG parameter for assessing the anesthetic depth [30]. In 1994, Watt et al. examined EEG 
signals as a non-linear dynamic system and classified EEG signals into three stages: light, nominal, 
and deep anesthesia. These researchers found that sufficient doses of anesthetic decrease the 
dimensionality of EEG samples with increasing anesthetic depth. This property is useful for classifying 
the activity of the brain during anesthesia [31].  

Gugino et al. identified the changes in anesthesia induction using a combination of sevoflurane, 
propofol, and remifentanil. The results showed that light sedation accompanied by decreasing posterior 
alpha waves and increasing the intensity of frontal/central beta waves [32]. The fuzzy classifier is 
trained to define the anesthesia states: awake, moderate, general anesthesia, and isoelectric. The 
classification results were better than those of other methods using single features and systems that 
completely discriminate between awareness and general anesthesia state [33]. 
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The researchers reduced EEG dimensionality by utilizing algorithms. One of these methods is 
called Isomap, which is based on estimating the phase of the continuum using the data features 
calculated from EEG sequences during deep anesthesia. Using the results from a one-dimensional 
feature, this method assesses neurophysiologic changes during anesthesia and provides a potential for 
developing more advanced systems for determining the depth of anesthesia [34]. Finally, to minimize 
the time required for interpreting EEG signals, many researchers suggested a common approach for 
extracting a single invert value that represents the patient’s depth of anesthesia using the normalized 
bispectral ratio. This approach is based on the difference between the bispectral values of EEG signals 
during conscious and unconscious states in humans. The results showed a high capacity for 
distinguishing levels of consciousness with a simple numerical value rather than graphical 
presentations of levels of consciousness [10,35–37]. 

3. Background of EEG Signals 

To analyze the brain signals during anesthesia we need to understand the properties of EEG signals 
such as frequencies, amplitudes, and internal and external effects that change the shape of these signals. 

3.1. Mathematical Representation of EEG Signal 

Many devices are used to process various kinds of biosignals, such as EEG, electromyogram 
(EMG), electroneurogram (ENG), electroretinogram (ERG), electrooculography (EOG), and 
electrocardiogram (ECG) to diagnose diseases [38]. These devices use the nervous system, which 
consists of a large number of excitable connected cells called neurons that rapidly and specifically 
communicate with different parts of the body through electrical signals. The nervous system consists 
of three main parts: the brain, the spinal cord, and peripheral nerves. It functions to controls the body 
and communicates through electric signals [39]. The brain signals are acquired using electrodes 
mounted directly on the scalp. The combination of these signals is illustrated in Equation (1) [21]:  , , … ,  (1)

where X(t) is the recorded EEG signal, “T” denotes transposition and “m” is the number of channels. 
The rows of the input matrix are EEG signals recorded at different electrodes, whereas the columns 
represent the variations in the signals at different time points. Before the EEG signal is displayed or 
stored, it can be processed to eliminate low-frequency or high-frequency noise and other possible 
artifacts. The user is frequently interested in the amplitude of the signal; hence, critical points in its 
processing need careful treatment to reduce artifacts that contaminate signals, which can lead to wrong 
results and conclusions. Equation (2) shows a model that represents the recorded mixed EEG signal 
X(t) with time, varying source signal s(t), and mixing matrix A added to the external noise n(t). 
Considering only the X(t) is available, several assumptions are needed to estimate the matrix “A” and 
the signal s(t) [40,41]: 

 (2)
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3.2. Characteristics of EEG Wave Bands 

The EEG signal is traditionally divided into spectral broad frequency bands related to EEG 
generators and rhythms: delta, theta, alpha, and beta.  

1. Delta (δ): This wave is generated from the thalamus, with a frequency signal range of up to 
4 Hz and amplitudes ranging from 20 µV to 200 µV. This wave is often associated with young 
patients, certain encephalopathies, and underlying lesions. It is seen in the deep stage of sleep. 

2. Theta (θ): This band is generated from the hippocampus and neocortex, with frequencies 
ranging from 4 Hz to 7 Hz and amplitudes ranging from 20 µV to 100 µV. This band is 
associated with drowsiness, childhood, adolescence, and young adulthood.  

3. Alpha (α, Berger’s wave): This band is generated by the thalamus, with frequencies ranging 
from 8 Hz to 12 Hz and amplitudes ranging from 20 µV to 60 µV. It is a characteristic of a 
relaxed, alert state of consciousness. Alpha rhythms are detected with the eyes closed and it 
attenuates drowsiness and open eyes, which can be seen over the occipital (visual) cortex.  

4. Beta (β): This band is generated from the cortex, with frequencies ranging from 13 Hz to 30 Hz. 
This signal has a characteristically low amplitude (2 µV to 20 µV). Multiple and varying 
frequencies are often associated with active, busy, or anxious thinking and active 
concentration. Rhythmic beta waves with a dominant set of frequencies are associated with 
various pathologies and drug effects.  

5. Gamma (γ): have frequencies ranging from 30 Hz to 70 Hz and very low amplitudes (3 µV to 
5 µV). Some researchers classify this band as beta waves because they have similar 
properties [29,42,43]. The variations in the EEG signal bands during anesthesia are discussed 
in detail in Section 4.4. 

3.3. Noise and Factors Affecting to EEG Signal Bands  

The dynamic ranges of the EEG signal are usually ±100 µV before amplification. These signals 
acquire many types of noise when they travel through different tissues. The characteristics of the noise 
affect the value and shape of the EEG signals. These are classified into the following types: 

I. Inherent noise: The electronic equipment generates noise that overlaps with the recorded EEG 
signal. This noise can be eliminated by high-quality electronic components of the EEG recorder. 

II. Ambient noise: Radiation from electromagnetic devices is the main source of this noise. The 
ambient noise has greater amplitudes than the EEG signal. A shielded room should eliminate 
this type of noise. 

III. Motion artifacts: When these artifacts overlap with the EEG signal, the information signal is 
skewed and irregular. Motion artifacts have many sources: (a) Electrode interface; (b) electrode 
cable; (c) ocular artifacts; (d) swallowing; (e) sweating; and (f) breathing. Motion artifacts can 
be reduced by properly designing the electronic circuitry and using a smart program that 
separates and removes these artifacts from the EEG signal. 

IV. Inherent signal instability: The amplitude of the EEG signal is naturally random. ECG artifacts 
affect the EEG signal especially the amplitude of the ECG signal changes during the different 
stages of anesthesia. ECG artifacts occur because of the cardiac electrical field that affects to 
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the surface potential near the scalp. Smart programs should suppress these artifacts from EEG 
signal [44,45]. 

On the other hand, many factors affect the recorded EEG signal. These factors are categorized  
as follows: 

I. Causative Factors: This factor directly affects the recorded EEG signals and are classified  
as follows:  

a. Extrinsic: This factor is due to the electrode structure and placement such as the shape of 
the electrodes, detection surface, distance between electrode detection surfaces, and 
location of electrodes with respect to the scalp volume.  

b. Intrinsic: Anatomical, physiologic, and biochemical factors caused by the number of 
active motor units, nerve type composition, blood flow, nerve diameter, depth and 
location of active nerve, and the amount of tissue between the surface of the scalp and 
the electrode. 

II. Intermediate Factors: These are physiologic and physical phenomena influenced by one or more 
causative factors. Interference from nearby nerve is an example of an intermediate factor. 

III. Deterministic Factors: These are influenced by intermediate factors. The number of active 
motor units and mechanical interaction between nerves directly affect the information in the 
EEG signal and recorded force [46].  

Depth of anaesthesia is hard to assign, as increasing the concentration of anesthetic is associated 
with the various phenomena such as loss of cognitive ability and amnesia, these phenomena are balanced 
against the intense arousal that surgical stimulation can induce. The challenges and difficulties of EEG 
acquisition during anesthesia concentrate in the quality of the data. As a matter of fact, the recorded EEG 
data are influenced by external or internal sources of electromagnetic waves as we mentioned above. 
This is the main reason for the limited value of raw EEG records to monitor the depth of anesthesia.  

4. Anesthetic Agents and Monitoring General Anesthesia 

Before discussing the anesthetic agents and their effects on the patient, as well as the stages of 
general anesthesia, awareness should be defined. Awareness during general anesthesia is defined as the 
degree of awareness, reflected by the occurrence of evident or implicit memory of intraoperative 
events [5,29]. Based on this definition, the researchers in the field of pharmacy produced many kinds 
of anesthetics that are compatible with the type of surgery and the patient. 

4.1. Anesthetic Agents 

Anesthetics agents that induce general anesthesia are classified into intravenous agents and 
inhalational agents (volatile). 

4.1.1. Intravenous Anesthetic Agents 

Intravenous Agents are administered with sedatives or narcotics. The depth of anesthesia peaks 
rapidly (causing loss of consciousness) and then decreases as the plasma concentration of the 
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anesthetic declines because of the rapid redistribution of the drug. Table 1 illustrates the advantages and 
disadvantages of widely used intravenous anesthetic agents. The use of intravenous sedative-hypnotics 
became more common with the introduction of propofol. The clinical effects of a particular anesthetic 
concentration vary among patients. Specifying the type of anesthetic agent depends on the patient 
status, age, the time required to complete the surgery, and the type of surgery [47–50].  

Table 1. Characteristics of intravenous anesthetic agents. 

Agent 
Name  

Advantage Disadvantages Remark 

Propofol 

(1) Excellent antiemetic 
properties. 
(2) It crosses the blood that 
going to the brain and 
redistributes quickly. 
(3) Excellent speed for 
inducing anesthesia and 
awakening the patient.  
(4) Great choice for short 
outpatient cases. 

(1) Reduces the systemic vascular 
resistance and cardiac contractility 
that leads to a significant drop in 
blood pressure. 
(2) Depresses respiration in doses 
used for sedation and produces 
apnea in induction doses. 
(3) Causes a warm or burning 
sensation. 

It’s a lipid emulsion 
because it is not soluble 
in water, only in fat. The 
discomfort is decreased 
by giving first a dose of a 
local anesthetic. 

Etomidate  
Lack of a big blood 
pressure drops during 
surgery. 

(1) Mostly postoperative nausea. 
(2) Can cause adrenal suppression 
with even a single dose (concern for 
patients who are on corticosteroids).

Very lipid soluble. 

Thiopental 
(1) Use for neurosurgery. 
(2) Crosses the blood-brain 
barrier quickly. 

(1) Induces a decrease in cerebral 
blood flow due to vasodilation. 
(2) The patient may temporarily 
became much more dehydrated. 

Very lipid soluble. 

Ketamine 

(1) Good bronchodilator, 
it’s useful in asthmatics. 
(2) Doesn’t cause apnea. 
(3) Good sedative for burn 
dressing change patients. 

(1) Increases blood pressure and 
heart rate. 
(2) Causes dysphoric 
hallucinations. 
(3) Cause nausea. 

It’s an older anesthetic 
but still used. Generally 
patients are premedicated 
with midazolam. 

Midazolam 

(1) Potent sedative and 
anxiolytic (anxiety-relieving) 
and amnestic (memory-
preventing) effects. 
(2) Use before going to the 
Operating Room. 

Delayed wakeup compared with 
other induction agents. 

Generally, used as 
benzodiazepines before 
the surgery. 

4.1.2. Inhalational Anesthetic Agents 

Inhalational agent (gas or volatile) causes the immobility through action at the spinal cord level and 
loss of consciousness at the supraspinal and cortical levels. Table 2 shows the most important volatile 
agents. Considering the amount of absorbed anesthetic depends on both time and body mass, the speed 
percentage of anesthetic agent (slow, fast, and very fast) depends on their solubility in the blood [51–55].  
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Table 2. Characteristic of the Most Common Inhalational Agents. 

Name of 
agent 

Advantage Disadvantages Remark 

Sevoflurane  
(1) Fast. 
(2) Popular agent used with 
spine surgery. 

(1) Smell not very good.  
(2) May cause kidney problems 
due to the high concentrations of 
Compound A (carbon dioxide 
absorbent). 
(3) Nothing’s been proven till 
now.  

To prevent 
overexposure to 
Compound A, 
anesthesiologists 
typically keep the 
fresh gas flow rate at 
2 Lpm or higher 

desflurane 
(1) Fastest. 
(2) Great choice for long 
surgeries. 

(1) May cause airway  
hyper-reactivity.  
(2) Cannot be used for mask 
induction to kids. 

Not given to 
asthmatics or 
smokers. 

Isoflurane 

(1) Slow, great for patients 
who will remain intubated at 
the end of the intervention. 
(2) Used for heart surgeries 
and certain neurosurgical 
work.  
(3) Less expensive than other 
agents. 

(1) Smell not very good.  
(2) Turns off early.  
(3) The monitoring catheter 
cannot be placed prior to and used 
during induction of anaesthesia.  

Dilates the 
coronaries and 
cerebral vessels 
more than the other 
agents. 

Nitrous 
oxide 

(1) Very fast agent. 
(2) Odorless agent; its use 
for mask inductions in 
children or started with FiO2 

before adding sevoflurane to 
avoid the bad smell.  

(1) If the ratio is not balanced; 
FiO2 can enter to the lungs and 
cause hypoxia in the patient.  
(2) Poor choice for abdominal 
surgery and any area where air has 
been trapped (therefore dangerous 
in cases of pneumo-cephalus or 
pneumothorax). 

Nitrous oxide: 
oxygen mixing ratio 
is 2:1 to avoid 
hypoxia; high-flow 
rate of oxygen given 
to the patient at the 
end of the 
intervention. 

4.2. Monitoring the Depth of Anesthesia.  

Accurate assessing the depth of general anesthesia induced by intravenous agents is very difficult. 
The concept of minimum infusion rate (MIR) proposed by Sear et al. was used to compare the 
anesthetic requirements of intravenous agents during total intravenous anesthesia factor (TIVA). The 
researchers calculated the dose at which the agent was 50% effective (ED50) and 95% effective (ED95) 
and compared them with the analogous inhalational unit called minimum alveolar concentration 
(MAC). The MIR is greatly affected by the properties of the drug, and the age and physical status of 
the patient [37]. 

Many indices are used as references for monitoring the depth of anesthesia. Most of these indices 
are based on the changes in EEG signal with intravenous agents, whereas others depend on measuring 
the MAC with the inhalational agents. These indices are shown in Table 3. We will discuss the details 
of the three most commonly used devices; the other indexes are slightly different in terms of 
construction and algorithms [10,56–62].  
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Table 3. The most common indexes used to monitor the depth of Anesthesia. 

 Index Company 
Index 
Range 

Works with Agents 
Not Work with 
Agents/Disadv. 

1 
Bispectrum 
Index (BIS) 

Aspect Medical 
Systems; Now 

Covidien, USA, 
1992 

0–100 
Propofol, midazolam and 

isoflurane. Outperformed all. 
Nitrous Oxide and ketamine. 

problems with EMG  

2 
Narcotrend 
Index NCT 

MonitorTechnik, 
Germany, 2000 

0–100 

Children, sevoflurane 
propofol/remifentanil. 

EMG susceptibility  
Good artifact removal 

Neuromuscular blocking agents
Complex algorithm. 

Slowest response to a change in 
sedation. 

3 Entropy Index 
Datex-Ohmeda 

Company in 2003 
0–100 
1–91 

Desflurane, sevoflurane propofol 
and thiopental 

Ketamine 

4 
Patient State 

Index (PSI) or 
(PSA) 

Physiomatrix, USA, 
2001 

Now SED Line 
Systems 

0–100 
Propofol, alfentanil, nitrous oxide

EMG susceptibility  
- 

5 
AEP-Monitor 

(AAI) 
Danmeter, Denmark, 

2001 
0–100 OR

1–60 
Propofol, midazolam and 

isoflurane 
No effects of nitrous oxide and 

ketamine. 

6 Snap Index 
Everest Biomedical 
Instruments, USA, 

2002 
0–100 

Sevoflurane and 
sevoflurane/nitrous Oxide 

Sensitive to unintentional 
awareness 

7 
Cerebral State 
Index (CSI) 

Danmeter A/S, 
Denmark, 2004 

0–100 Propofol Nitrous oxide 

4.2.1. Bispectral Index (BIS) 

The BIS index was first introduced in 1992 by Aspect Medical Systems. BIS is a statistical index 
based on a combination of time, frequency domain, and high-order spectral subparameters. Large 
volumes of clinical data are utilized to generate a single variable based on the disparity of EEG signal; 
this disparity correlates the behavior of sedation and hypnosis. BIS ranges from 100 (when the patient 
awake) to zero [10,63,64]. Generally, the bispectral index is computed in two steps: 

1. Finding the discrete Fourier transform (DFT) coefficients.  
2. Computing the bispectrum using the following equation [65]: ,  (3)

where ,  is the complex bispectrum and  is the complex Fourier transform at frequency f of 
the EEG signal . The bicoherence is utilized to find the relationship between the power at two 
frequencies f1 and f2 in one EEG signal; bicoherence can be computed separately for each electrode.  

Loss of consciousness occurs at values between 70 and 80. The values that reflect adequate 
hypnotic effect are from 40 to 60, which correspond to the general anesthesia. BIS indices less than  
30 represent deep anesthesia (patient at risk). Hence, the anesthesiologist must adjust accordingly to 
increase this value. BIS is useful for adjusting the dosage of anesthetics; this adjustment prevents any 
disturbances in the patient’s situation (awareness or suppress EEG signal).  
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Figure 2. Frontal view of the Narcotrend Monitoring Device.  

 

Table 4. The Algorithm Stages of Narcotrend Monitoring Device. 

Letter State 
A Awake  
B Sedated 
C Light anaesthesia  
D General anaesthesia  
E General anaesthesia with deep hypnosis  
F General anaesthesia with increasing burst suppression 

4.2.3. Entropy 

The Entropy system was introduced by the Datex-Ohmeda Company in 2003. The Entropy 
monitoring algorithm was designed to acquire and process raw EEG data and the frequency of EMG 
signals. Intensive studies by several researchers have led to the adoption of the system for monitoring  
DOA [74,75]. The numerical scale of entropy is similar to that of BIS and NCT, ranging from 0 
(awareness) to100 (deep anesthesia). This system calculates the entropy in two numerical values: the 
first is the response entropy (RE), which has a maximum of 100 and includes information from EEG; 
the second is state entropy (SE), which has a maximum of 91 and includes the EMG activity. Figure 3 
shows the Entropy module, with a partial screen that includes RE and SE. 

Figure 3. Entropy monitoring device and partial screen. 
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The concept of entropy assumes that increasing DOA corresponds to increasing regularity of the 
EEG. The power spectra of certain epochs of EEG signals are used to calculate the spectral entropy. 
The second step is calculating the spectral entropy from the power spectrum of the EEG signal within a 
particular frequency band. A difference of 0 to 3 between RE and SE indicates adequate anesthesia. An 
increase in the difference between these two values provides a good indication for increasing the 
activity of frontal muscle (increased activity of EMG signal), which is a sign of inadequate anesthesia. 
As the anesthesia wears off, the effect of the drugs on the nervous system diminishes, which can be 
observed as activation of the frontal muscle. This monitoring has been validated for desflurane, 
sevoflurane, propofol, and thiopental. Entropy has not tested with ketamine [61,76,77]. 

4.2.4. Minimum Alveolar Concentration (MAC) 

In 1965, Eger et al. defined MAC as the minimum alveolar concentration of inhaled agents required 
to prevent 50% of subjects from responding to standard painful stimuli with gross purposeful 
movements [78]. After 10 years, this indicator has been expanded to the following: 

(1) MAC-Intubation: prevent movement and coughing during intubation.  
(2) MAC-Incision: inhibit movement during initial surgical incision.  
(3) MAC-bar: inhibit adrenergic response to skin incision.  
(4) MAC-awake or ED50: prevent response to verbal commands [79,80].  

The MAC curves represent the relationship between the concentration of the agents and the 
probability of response. Hemodynamics responds to harmful stimulation and do not correlate well with 
decreasing drug concentrations. Consequently, the relationship between movement (somatic) and 
hemodynamic (autonomic) responses is poor during inhalational anesthesia. MAC provides the best 
method for monitoring the concentration of inhalation anesthetics to prevent movement (1.3 times the 
ED50) and to provide equilibrium among the alveoli, blood, and effect site. MAC increases because of 
alcoholism, hyperthyroidism, and hyperthermia, and decreases with increasing age, pregnancy, 
hypothermia, hypoxia and acidosis, severe hypotension, and sedative drugs including a2-agonists, 
ketamine, and intravenous local anesthetics [37].  

4.3. Evoked Potentials (EPs)  

Another method for monitoring the DOA is EP. This method is based on stimulating specific areas 
and recording the responses in the brainstem, midbrain, and cerebral cortex. EPs represent the relationship 
between time and voltage, which is quantified by measuring the amplitude of the waveform during 
post-stimulus latency and interpeak. Three types of EPs were investigated for monitoring DOA [81]. 

• Somatosensory EP (SEP): records the response to stimulation over the somatosensory cortex 
(peroneal, tibial, or median nerve). 

• Visual EP (VEP): records the response to photic stimulation (using flashing lights to the eyes) 
over the occipital cortex. This technique has been used to monitor functions during surgery for 
lesions involving the optic nerve, pituitary gland, and the optic chiasma. 

• Auditory EP (AEP): records the response to auditory cortex stimulation (audible clicks) to the 
auditory canal.  
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Jeleazcov et al. [82] combined two kinds of simultaneous monitoring methods—AEP and SEP—and 
compared the result with EEG signals. He defined four levels of general anesthesia: awake, light 
anesthesia, surgical anesthesia and deep surgical anesthesia. The results showed that the discriminant 
power of EEG variables is more significant than AEP and SEP variables to define the four levels of 
anesthesia. In same context, the researcher found that EEG and AEP give a higher representation for 
general anesthesia than the information acquired from EEG alone. AEP is most commonly used for 
assessing DOA and is divided into three main parts (brainstem, middle latency, and long latency), 
which depends on the time and the site of origin [83,84]. Most of the inhalational and intravenous 
agents increase brain stem latency, which is directly proportional to increasing DOA. Using EP to 
monitor DOA requires additional techniques to record the EPs. Many types of artifacts can distort the 
EP, such as stimulus characteristics (duration and intensity), anesthetic drugs, electrode placement, 
age, and gender [85]. 

Recently, there have been vigorous attempts by researchers to find a new index to be able to 
determine the level of sedation with the drug concentration change. Li et al. constructed a new index 
(SI) using the entropy of the eigenvalues of the cortical coherence for each pair of channels as a feature 
to find the effect of sevoflurane, desflurane, isoflurane, and enflurane during general anesthesia in 
sheep. They found a significant correlation between the increase in spatial and anesthetic-induced 
cortical depression as well as SI succeed to measure cortical synchrony during general anesthesia [86]. 
Liang et al. explored the dynamical features of brain activity during anesthesia using permutation  
auto-mutual information PAMI method. Information coupling in EEG series can be applied to indicate 
the effect of the anesthetic drug sevoflurane on the brain activity, as well as other indices. This method 
was proposed to measure the information coupling of EEG time series under sevoflurane anesthesia. 
The PAMI of the EEG signals is suggested as a new index to track drug concentration change. This 
model is assessed by pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction 
probability. Pharmacokinetic are the actions of drugs within the body, as their distribution, absorption, 
elimination, and metabolism where pharmacodynamic are the relating to drug action at the receptor 
level. The researcher found that the PAMI index correlates closely with the sevoflurane anesthetic 
agent [87]. 

4.4. The patient Under Anesthesia  

General anesthesia consists of four components, namely: 

(1) Amnesia (lack of memory). 
(2) Analgesia (lack of pain). 
(3) Hypnosis (lack of response). 
(4) Muscle relaxation. 

All these components occur at once depending on the concentration of the agent. Then, the patient 
goes through different stages of anesthesia. Guedel was the first to identify the four stages of general 
anesthesia [88]: 
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Stage 1: Analgesia and amnesia:  

(A) The patient is wheeled to the recovery room.  
(B) Memory is slow to return.  
(C) Breathing is regular but slow. 
(D) Patients can converse, but have no memory of what you say. 

Stage 2: Delirium and unconsciousness:  

(A) The patients are at highest risk for laryngospasm.  
(B) Patients breathe unassisted, but are not able to defend their airways.  
(C) Breathing is irregular. At this stage, the patient seems to be breathing and ready for 

extubation, but we must wait until patients are able to respond to commands: The 
patient has to prove they are in stage 1 before they can be extubated.  

Stage 3: Surgical anesthesia:  

(A) The goal before starting surgery.  
(B) Patients breathe on their own if no muscle relaxants are given. 

Stage 4: Overdose (stops breathing):  

(A) If more anesthetic is given. 
(B) Blood pressure continues to fall until circulatory collapse occurs. This result is due to 

inhibition of the cardiorespiratory centers in the medulla. 

All patients undergo these four stages; however, some patients require more anesthetic than others 
to achieve a given response. 

4.5. Characteristics of EEG Signal during General Anesthesia 

Increasing the drug concentration directly affects the amplitude and frequency of EEG signals. This 
variation depends on the type of anesthetic and the age of patients. At the beginning, lower doses of 
anesthetic essentially increase the amplitude of the beta band in the frontal regions (frequencies 
exceeding 20 Hz) and decrease the amplitude of the alpha band. The eye movement artifact appears 
clearly during this stage. When the anesthetic concentration is increased to the surgical level, the 
frequency of theta and delta bands decrease, whereas their amplitudes increase. Further increases in the 
anesthetic concentration generate a special EEG pattern known as burst suppression (BS). Alternating 
periods of high amplitude and low voltage is the main feature of this pattern. Any further increases in 
the anesthetic dose cause suppression and electrical silence. Finally, the induction of anesthesia 
associated with the frontal portion of the brain with increased beta activity and delta activity appeared 
in the posterior regions and migrates toward the frontal regions [3,32,89]. 

5. EEG Signal Processing  

General signal processing methods are used to process EEG signals during anesthesia with some 
modification. EEG signal analysis undergoes four stages as follows: recording stage, dancing stage, 
feature extraction stage, and classification stage. These processes are summarized in Figure 4, where 
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each stage is discussed in detail. The implementation of these stages must be sequential, starting from 
the recording stage to the classification stage. At each stage, several operations should be carried out 
before sending the signal to the next stage.  

Figure 4. The main stages that use to process EEG signal.  

 

5.1. EEG Signal Recording and Detection 

Precise recording and detection of discrete events in the EEG signal is an important issue in EEG 
data analysis. Figure 5 shows the recording stage, which consist of many channels (electrodes) that 
collect EEG at different locations.  

Figure 5. The multi-channel recording stage. 

 

Several methods have been proposed to record and collect EEG signals according to electrode type, 
number of electrodes (number of channels), position of these electrodes, and purpose of the recording 
signal. Before placing the electrodes, the skin should be prepared with alcohol and wiped with a 
special gel that helps increase the electrical conductivity of the electrodes (acceptable impedance 
below 5 kΩ) [90]. The number of channels depends on the number of electrodes affixed onto the scalp, 
varying from 1 to 20. The international 10–20 system depends on the size of the head, which is divided 
into several areas, as shown in Figure 6(a). Some researchers use two to four electrodes in the frontal 
region to record the EEG signals to detect the DOA. Zoubek et al. used the 10–20 EEG system with 
four channels to record the EEG signals at the following locations: C3–A2, P3–A2, C4–A1, and  
P4–A1, as shown in Figure 6(b), with additional transversal EOG, one chin EMG signal, and a 128 Hz 
sampling frequency [91].  
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coefficients of the wavelet decomposition. The scaling function is very similar to the wavelet function, but 
is determined by the low-pass filter, which is associated with the approximation coefficients of the wavelet 
decomposition. The results show that this approach is suitable for eliminating artifacts caused by eye 
movements and has the advantages of easy implementation, stability, and low computational cost [96]. 

Inuso et al. [97] and Walters-Williams and Li [98] used a new technique to remove the artifact from 
EEG signals; these researchers combined WT and independent component analysis (WICA), as shown 
in Figure 9. The proposed technique exhibited the best artifact separation performance for every kind 
of artifact and allowed minimal information loss. Another method used to remove ocular artifacts 
(EOG) and muscle artifacts (EMG) embedded with the recorded EEG signals is automatic artifact 
removal. SOBI was used to remove EOG artifacts, whereas canonical correlation analysis was used to 
remove muscle artifacts [99].  

Figure 9. The combination structure between Wavelet transform and Independent 
Component Analysis. 

 

5.3. Feature Extraction of EEG Signal Stage 

To detect and monitor EEG variations during anesthesia, many features of EEG signal were 
identified to provide an automatic system that would support physicians during diagnosis. The 
classification stage cannot accept the recorded signal directly because of the huge amount of data that 
should be processed at one time, which slows down the classification system. The feature of each 
channel varies according to the location of the electrode on the scalp. The feature extraction stage is 
illustrated in Figure 10, where these features are arranged as an array. The array is subjected to many 
functions to generate a new array that represents the future of each channel. 

Figure 10. Multi-channel feature extraction stage.  
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Many researchers use the facility of the wavelet technique in analyzing the frequencies of brain 
signals and extracting multiple features. Zoughi and Boostani used WT to represent the basic content 
of EEG signals. The EEG signal is decomposed into different subbands according to the 
decomposition level, and then the energy of samples is calculated through each level. This method was 
proposed to extract the useful features from the recorded EEG signals during anesthesia. The WT 
decomposes an EEG signal into many frequencies in bands (mentioned in Section 3.2); thus, it is an 
effective tool for characterizing these signals. The EEG power and frequencies change constantly at 
each level of anesthesia within specific bands; the relationship between these variations in frequency 
band can be used to describe the DOA (mentioned in Section 4.4) [100]. Two types of features are 
used to detect the variation in EEG signal during anesthesia: the first one depends on variations in the 
power spectrum and the second depends on variations in the signal in the time-frequency domain. 
Recently, Li D. et al. used WT bicoherence to investigate the cross-frequencies coupling in the EEG 
signal with the concentration of the anesthetic agent isoflurane. Isoflurane caused two peaks; the first 
in the α range and the second in the δ range. Isoflurane caused cross-frequency coupling between α and 
slow δ waves. Increasing the concentration of isoflurane from 0.3% to 1.5% will shift the α peak 
frequency (11.3 Hz) to lower frequencies (7.1 Hz). In the same context, regarding the significant α 
peak that was phase-coupled to the slow δ waves, higher concentrations of isoflurane shifted this peak 
(10.8 Hz) to lower frequencies (7.7 Hz) [101]. 

The classic criteria for evaluating the various features are by calculating the mean squared error 
(Equation (7)) and the signal-to-noise ratio (Equation (9)). These values are calculated from the 
original EEG x(n) signal and the denoised EEG signal  [97,102]: 1

 (7)

10 log ∑∑  (8)

These values can be calculated at certain frequencies during anesthesia and compared with those 
during awareness to show the variations in values according to the DOA. The absolute power spectrum 
(power entropy) at specific frequencies (delta, theta, alpha, and beta) was used to find the maximum 
and minimum power values of the samples as well as the ratio of frequencies (delta/alpha and 
delta/beta) to monitor the variations in the EEG signals [103]. Srinivasan et al. used normalized 
spectral entropy to characterize the anesthesia levels. This spectral entropy was calculated for each 
EEG epoch within the efficient frequency range of brain signals. They used a short section (only 1 s) to 
monitor accurately the changes in EEG signal [104]. Approximate entropy (AE) and permutation 
entropy (PE) are proposed to measure the effect of anesthetic drugs using a stream of EEG data. These 
features reveal the effects of sevoflurane on brain activity. AE is based on the compatibility of events 
in phase space and is an appropriate method for defining the randomness of the system. AE depends on 
three parameters: N, the number of samples; r, the noise threshold; and m, the embedding dimension. 
PE is based on the Shannon entropy and is calculated using Equation (9) [105]: 

ln  (9)
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where P is the probability distribution of the distinct symbols, which are defined as p1,..., pj; m is the 
permutation; and J should be less than m. Both PE and AE recognize the two statuses (awake and 
anesthetized) with high correlation to each other. The prediction probabilities show that PE has a 
stronger capability for differentiating between the two statuses. The results show that PE estimates the 
effects of sevoflurane more effectively than AE. This method can be applied to design a new EEG 
monitoring system for estimating the effects of sevoflurane [106].  

5.4. Classification of EEG Signal Stage 

The final stage in the processing and analysis of EEG signals is the classification stage. The features 
of EEG signals are extracted during the raw signal “feature extraction stage” and the redundant 
information has been reduced through “dimensionality reduction” in the previous stage. Distinguishing 
different categories among the process is necessary by applying a classifier. Figure 11 clarifies the 
classification stage for multiple channels, which can be used as a controller or indicator for DOA. 
Several techniques are used to classify EEG signals, such as neural networks (NN) classifier, linear 
discriminator analysis classifier, and support vector machine. These classifiers have different 
algorithms and accuracy rates. The algorithms depend on the methods used to teach the classifier, 
where accuracy depends on the clarity of the data, amount of the data, and the type of features that 
used in the classifier. Most of the classifiers need to be studied many times before they are used as 
such, however, the learning methods differ among classifiers. The data should be divided in three 
parts: the first dataset is for training the network and generating the hidden layer; the second dataset is 
for testing the performance of the classifier; and the third dataset is for finding and recognizing the 
results. The most popular method for detecting the DOA is the NN classifier because of its efficiency, 
accuracy, and applicability, with many groups of researchers recognizing the accuracy of the DOA 
system based on an artificial NN [107,108]. 

Figure 11. The classification stage for multiple channels. 

 

Artificial NNs are classifying systems that consist of a large number of simple high-interconnected 
processing elements called nodes or artificial neurons. This classifier is constructed similar to the 
structure and operation of the biological nervous system. The NN classifier learns through a special 
algorithm called “training.” Many types and architectures of NNs are fundamentally different from one 
another, depending on the network training method. Additional intermediate (hidden) processing layers 
should be used to solve the problems of nonlinearity and complexity. Figure 12 shows the typical 
structure and general stages of NN algorithms [109,110]. 
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Figure 12. The interconnections of neural network with the group of nodes. 

 

Many researchers introduced fundamental approaches for designing multilayer NN (MLNN) 
classifier models. The architecture of this classifier contains two or more layers. These two layers 
consist of an input layer containing the input variables, which represent the features extracted from 
EEG signals and the output layer containing the solution of the problem [111,112]. The cost function 
of MLNN is defined as follows: 12  (10)

 (11)

where di(n) and yi(n) are the desired and actual output of the ith output node of a network, respectively. 
Backpropagation algorithms are used to calculate the node weights. To normalize the input to NN, the 
mean value is subtracted from the input EEG signal and divided by the standard deviation (all inputs 
for training/testing set).  

NNs can be used to analyze EEG signals to measure the DOA index, which is as informative as the 
BIS. Experiments confirm that when analyzing EEG data using NN achieves good discrimination 
between anesthetized and awake patients with good rejection of artificial signals is achieved. The flexibility 
and non-linearity of the NN approach are important factors for reliably monitoring the DOA [101]. 
Recurrent NN (RNN) is a powerful tool for classifying and modeling EEG. RNN consists of numerous 
simple computational units with weighted interconnections and delayed feedback connections. In this 
algorithm, all neurons in one layer are connected to all neurons in the next layer. These feedback 
connections provide RNN an intrinsic state and the ability to learn tasks that require memory [113,114]. 
The Elman RNN (ERNN) is also used to assess the DOA, which provides non-linear models for 
complex systems such as EEG signals, where the informative signals are too complex to be extracted 
by classic algorithms. This algorithm successfully estimates the amount of anesthetic gas that 
corresponds to the level of anesthesia [115]. Many researchers use the facility of the fuzzy technique in 
classifying the frequencies of brain during anesthesia. These researchers combined fuzzy logic and 
neural network to create an adaptive neuro-fuzzy diagnostic module. The proposed technique exhibited 
a substantial relationship between hypovolaemia and anesthesia during surgery [33,116].  
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6. Discussion  

Physiologists have become accustomed to using the signal output of the brain as an index of brain 
health, as EEG signals provide a great deal of information about brain function. This review provides 
an overview of the EEG systems used to measure the DOA and the important stages that give clear 
signals that can be used by anesthesiologists to make correct decisions.  

The design of EEG systems comprises four stages, namely, data acquisition, denoising, feature 
extraction, and classification. Different methods are used to clean EEG signals by removing artifacts. 
Some of these methods are suitable for removing artifacts such as HOS, ICA, WT, and linear filtering. 
A summary of the major methods is illustrated in Table 5. This table shows the advantages and 
disadvantages of each method in removing artifact noise. The researchers used two ways to monitor 
the DOA. The first method explains the brain waves recorded directly from the scalp. This method 
depends on the raw EEG signal by calculating EEG derivatives such as signal amplitude, power and 
frequency distribution, spectral entropy, and the correlations between recorded signals. These 
derivatives are used as features that are sent directly to the classification system.  

Table 5. The advantages and disadvantages of artifact removal methods.  

Method Advantage/Disadvantage 

Higher-order  
Statistics HOS 

• HOS methods may be used for analyzing the EMG signal due to its unique 
properties applied to random time series. 

• The bispectrum or third order spectrum has the advantage of suppressing 
Gaussian noise. 

• Carries the magnitude and phase information, which can be used to recover 
the system impulse function and input impulse sequence from the linear 
time-invariant LTI system output signal. 

• HOS is blind to any kind of Gaussian process; a non-zero HOS provides a 
test of the extent of non-Gaussianity in a signal. 

Independent  
Component Analysis ICA 

• Used when a large number of noises need to be distinguished. 
• It’s not suitable for on-line real time applications like BCI. 

Wavelet Transforms WT 
• Linear method 
• Represents a multi-resolution (frequency level) method. 
• An alternative to other time frequency representations. 

Linear filtering 

• Removes the artifacts located in certain frequency bands.  
• LPF used to remove EMG artifacts and HPF used to remove EOG artifacts. 
• Simple in design.  
• The disadvantage is that it’s not good when the frequencies of noises 

interfere or overlap with each other. 

The second method is EP, which stimulates the sensory organs of a patient and records the 
corresponding EEG signal. EPs include several ways of monitoring the DOA such as SEP, VEP, and 
AEP. EPs demonstrate the response of more localized areas of the midbrain, brainstem, and cerebral 
cortex to specific stimuli. EP represents the relationship between voltage and time, which can be 
quantified by measuring the inter-peak amplitudes and post-stimulus latency in the EEG signal. The 
comparison between three types of evoked responses is shown in detail in Table 6. AEP is widely used 
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to estimate the DOA, which is divided into three main parts: the process of stimulus in the brainstem, 
the early cortical response, and the late cortical response. The first method is faster and easier than the 
second one because it does not need additional equipments and algorithms to monitor the DOA. 

Table 6. Various Evoked potential methods that used to monitor DOA. 

Method 
Method of 

Stimulation 
Location of 

Stimuli 
Location of 

Recorded Signal 
Advantage 

Somatosensory 
evoked potential 

(SEP) 
Electrical clicks 

Somatosensory 
cortex 

Somatosensory 
cortex 

Monitor the response of 
tibial, peroneal or median 

nerve to stimulation 

Visual evoked 
potentials (VEP) 

Photic 
stimulation (using 

flashing lights) 
Eyes Occipital cortex. 

Monitor function during 
surgery for  

lesions involving the 
optic nerve, pituitary 
gland and chiasma 

Auditory evoked 
potential (AEP)  

Audible clicks Acoustic nerve 
Primary auditory 

cortex 
response to  

auditory canal stimulation 

EEG signals are acquired from the frontal electrodes, those signals converted into several 
classifiable features. Thus far, no unified standard to the EEG features during anesthesia; these features 
depend on the variation of the amplitude, power, spectrum, bispectrum, entropy, approximate entropy 
and permutation entropy, etc. However, the features currently being used for monitoring the DOA 
achieve the desired purpose, but are insufficient for accurate, rapid, and definitive decision-making. 
Therefore, researchers are still currently attempting to find new EEG features that correspond to all 
cases, ages, and anesthetic agents.  

Most researchers use NNs to classify the features of EEG signals because of their efficiency, 
accuracy, and applicability. Many types and architectures of NNs are fundamentally different from one 
another, depending on the network training method, number of hidden layers and type of outputs. Most 
monitoring devices currently use NN classifier, which refers to the number of training hours, number 
of layers, and estimated processing time. 

Finally, many devices are used to describe the DOA during surgery. The BIS device represents the 
coupling of EEG frequencies and provides a range values from 0 to 100, which indicates deep 
anesthesia to consciousness. Another device is Narcotrend, which estimates and monitors the depth of 
unconsciousness using Kugler’s classifier to classify EEG waves into different levels. The last one is 
Entropy, which is derived from non-linear dynamics and spectral entropy. Spectral entropy depends on 
the measure of information called Shannon entropy. This device calculates the response entropy within 
the frequency range (0 Hz to 47 Hz) with EEG and EMG activity. This device also calculates the state 
entropy for EEG activity within the frequency range from 0 Hz to 32 Hz. These algorithms are still 
unclear and have not been fully published. Numerous arguments support or reject these algorithms. 
Thus, no gold standard exists for estimating the level of unconsciousness after administering  
the anesthetic.  
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7. Conclusions  

EEG signals carry valuable information regarding the brain system. This review aims to provide 
concise information about EEG signals during anesthesia and to reveal various methodologies for 
analyzing these signals. Techniques for EEG signal detection, decomposition, process, and 
classification were discussed, along with their advantages and disadvantages. Thus far, no monitoring 
systems are capable of measuring DOA and are compatible with all patients and all anesthetic agents, 
but the available monitors sufficiently provide good indication for doctors regarding the patient's 
condition in the surgical room. This study explains the various types of EEG signal analysis techniques 
during anesthesia. The right methods can be applied to the EEG signal to increase clarity, purity, and 
classification percentage for clinical diagnosis, biomedical research, hardware implementation, and 
end-user applications. The dynamic growth of microcomputer technology provides a greater scope for 
explaining observations of the anesthetic state in the future. If monitoring DOA becomes safe, simple, 
and economical, all anesthesia cases can be monitored easily.  
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