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Abstract: Post-translational modifications (PTM) of proteins are crucial for fine-tuning a cell’s
response to both intracellular and extracellular cues. ADP-ribosylation is a PTM, which occurs in
two flavours: modification of a target with multiple ADP-ribose moieties (poly(ADP-ribosyl)ation
or PARylation) or with only one unit (MARylation), which are added by the different enzymes of
the PARP family (also known as the ARTD family). PARylation has been relatively well-studied,
particularly in the DNA damage response. This has resulted in the development of PARP inhibitors
such as olaparib, which are increasingly employed in cancer chemotherapeutic approaches. Despite
the fact that the majority of PARP enzymes catalyse MARylation, MARylation is not as well understood
as PARylation. MARylation is a dynamic process: the enzymes reversing intracellular MARylation
of acidic amino acids (MACROD1, MACROD2, and TARG1) were discovered in 2013. Since then,
however, little information has been published about their physiological function. MACROD1,
MACROD2, and TARG1 have a ‘macrodomain’ harbouring the catalytic site, but no other domains
have been identified. Despite the lack of information regarding their cellular roles, there are a number
of studies linking them to cancer. However, some of these publications oppose each other, some rely
on poorly-characterised antibodies, or on aberrant localisation of overexpressed rather than native
protein. In this review, we critically assess the available literature on a role for the hydrolases in cancer
and find that, currently, there is limited evidence for a role for MACROD1, MACROD2, or TARG1
in tumorigenesis.
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1. ADP-Ribosylation Reactions

Post-translational modifications of proteins can have a myriad of consequences: changing
interactomes, stability, localisation, or activity are just a few examples. To date, more than 200 types
of modification are known [1]. The addition of ADP-ribose moieties to a protein was first reported
in the 1960s when chains of (poly)ADP-ribose (PAR) were identified on target proteins, termed
poly(ADP-ribosyl)ation (PARylation) [2]. Since then, PARylation has been intensively studied, leading
to the identification of crucial roles in the repair of DNA damage and to the development of specific
inhibitors that are utilised in the clinic to treat diverse cancers [3]. In contrast, much less is known
about its smaller sibling, mono(ADP-ribosyl)ation (MARylation), where only single ADP-ribose units
(MAR) are conjugated into proteins. In 2008, it was first noted that PARP10/ARTD10 has MARylation
rather than PARylation activity [4] and, lately, it has become clear that only the minority of PARP
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enzymes are capable of PARylation [5]. Moreover, not only protein, but also DNA has been identified
as a target for ADP-ribosylation catalysed by PARP3 [6,7]. Following PARP1 and PARP2, PARP3 has
also been described as a potential therapeutic target in certain cancers [8–11]. The most recent addition
to the spectrum of ADP-ribosylated molecules is RNA, which can be modified in vitro by multiple
PARPs [12].

One of the best-studied but still barely understood MARylating enzymes is PARP10. PARP10 was
initially identified as an interactor of MYC [13] and, later, of ubiquitinated proliferating cell nuclear
antigen (PCNA) [14,15]. Its overexpression leads to cell death in HeLa cells through an unknown
mechanism [16]. In contrast, in non-transformed RPE-1 cells, overexpression leads to stimulation of cell
growth [17]. It has been given a role in replication and DNA damage [15,17,18] as well as mitochondrial
metabolism [19], but it is not clear what the relevant substrates of this enzyme are. Potential substrates
were identified using protein microarrays [20], which was performed for the PARylating PARP2 [21].
However, partially due to a lack of antibodies at that time, these modifications were not verified to
occur in cells. PARP10 was also reported to be a regulator of NF-kB signaling [22]. PARP14 functions
as a co-activator of STAT6 and has been described as an anti-cancer and anti-inflammatory target,
reviewed in more detail elsewhere [23,24]. PARP16 is located at the endoplasmic reticulum (ER)
and plays a role in the unfolded protein response [25,26]. The most recent function identified for
MARylation is its role in the anti-viral defence. PARP7, PARP10, and PARP12 gene expression is
induced by interferon-α and ADP-ribosylation mediated by these PARPs may function to counteract
viral proliferation [27,28]. In addition to enzymes of the PARP family, several sirtuins (SIRTs) appear to
be able to ADP-ribosylate substrates in addition to their better-studied NAD+-dependent deacylase
activity [29,30]. The first research showing that SIRTs possess MARylation activity described it as a
very weak activity [31]. Other papers, focusing on single enzymes, showed that the mitochondrial
SIRT4 MARylates glutamate dehydrogenase to downregulate insulin secretion [32]. The nuclear SIRT6
modifies PARP1 [33] and BAF10 [34] to regulate their activities and, lastly, the nucleolar SIRT7 was
reported to MARylate histones p53 and ELK4 [35]. To date, very little information is available about
the MARylating activity of the SIRTs. The functional consequences of MARylation in normal cell
physiology, thus, appear to be very diverse, reviewed extensively elsewhere [36]. Herein, we focus on
the enzymes reversing the intracellular MARylation reaction: the macrodomain-containing hydrolases.

2. Macrodomains

Intimately linked to ADP-ribosylation is a protein structural module known as the macrodomain,
named for the unusually large histone macroH2A from which it was identified [37]. The macrodomain
is a protein fold formed around a central β-sheet, flanked by α-helices that forms a pocket where
ADP-ribose can bind [38,39]. These pockets are slightly different between the macrodomain-containing
proteins with the consequence that the macrodomain-containing protein family can be subdivided.
Some macrodomains bind to PAR and others bind to MAR [40–43].

Macrodomains not only serve as binding modules to mediate protein interactions depending on
ADP-ribosylation, but a number of them have catalytic activity. Poly(ADP-ribosyl)glycohydrolase
(PARG) is able to degrade PAR chains by cleaving the glycosidic bond between adjacent ADP-ribose
moieties. However, it cannot remove the final ADP-ribose attached to the protein [44]. Three other
proteins, MACROD1, MACROD2, and TARG1, are not active toward PAR but are capable of removing
the ADP-ribose moiety connected to the protein partner, presumably by cleaving an ester bond
between ADP-ribose and an acidic receptor amino acid [45–47]. They can, therefore, both reverse
any MARylation as generated by PARP enzymes, and also remove the last ADP-ribose left behind by
PARG. Of the 12 human macrodomain-containing proteins known today, 11 proteins were identified
by sequence homology [39,43]. The macrodomain of PARG was only recognised after the structure had
been solved [44], which indicates the possibility that more macrodomain-containing proteins remain to
be identified. A recent bioinformatics approach has suggested that the largely uncharacterised protein
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C12orf4 harbours a macrodomain, or at least a macro-like domain, but this remains to be confirmed
experimentally [48].

The macrodomain is an evolutionary well-conserved module [39]. For instance, recent work has
shown that certain alpha-viruses encode a protein with a macrodomain-like fold [49], which displays
catalytic activity towards MARylated proteins [50–52]. The existence of such proteins enhances the
evidence connecting existing links between MARylation and immunity [53]. In this review, we will
focus specifically on potential oncogenic functions of the mono(ADP-ribosyl)hydrolases MACROD1,
MACROD2, and TARG1. It should also be noted, however, that other macrodomain-containing
proteins such as PARG and CHD1L (ALC1) have been previously linked closely to cancer [54,55].

3. Macrodomain-Containing Hydrolases: MACROD1, MACROD2, and TARG1

MACROD1, MACROD2, and TARG1 are relatively small proteins (Table 1) without any notable
other domains beside the macrodomain. The first catalytic activity of MACROD1, MACROD2, and
TARG1 that was recognised was their deacetylation of O-acetyl-ADP-ribose (OAADPR) to generate
acetyl and ADP-ribose [56,57]. OAADPR arises as a by-product of SIRT-mediated deacetylation in
which the acetyl group is transferred onto ADP-ribose while releasing nicotinamide, and may have
important biological functions [58]. Two years later, three labs reported the activity of MACROD1,
MACROD2, and TARG1 in removing ADP-ribose from protein substrates, which was proposed to be
limited to removal of ADP-ribose from acidic amino acids [43,45–47]. Serine and arginine MARylation
were suggested to be removed by ARH3 and ARH1, respectively [59–62], which are structurally
different proteins that do not contain a macrodomain. In 2017, MACROD1, MACROD2, and TARG1
were reported as being capable of removing ADP-ribose from both modified single-stranded DNA [63]
and, in 2018, also being capable of removing ADP-ribose from MARylated single-stranded RNA [12].
Lastly, in 2019, the hydrolysis of α-NAD was added to the list of their in vitro activities [64].

To date, it is not known which of these activities is relevant for their functionality in cells, either in
normal physiology nor in pathological conditions. This is predominantly due to the fact that it is not
well known how prevalent their in vitro substrates are in cells or what their cellular functions may
be. This is partially due to the fact that antibodies or modules recognising MARylation have been
developed only recently [65–67]. Before these technical developments, it was not possible to confirm
with antibodies that MARylation of proteins takes place in cells, and, hence, reversal mediated by these
macrodomain-containing proteins could also not be assessed. Currently, it is still not straightforward
to estimate endogenous MARylation levels in cells, as no inhibitors were available for MACROD1,
MACROD2, or TARG1. During experimental procedures such as cell fixation or lysis, MARylation
could possibly be removed by these enzymes and, therefore, go undetected. One study was performed
to identify MACROD1 inhibitors using an AlphaScreen assay, where inhibitors in the micromolar
range were identified. These can serve as lead compounds for further optimisation, but are likely not
specific enough yet to be used for studies in cells due to their other activities at this concentration [68].
Another study identified an allosteric inhibitor of macrodomain 2 of PARP14, which blocks its binding
to ADP-ribose. However, it was not tested whether the identified compound might inhibit one of the
macrodomains with catalytic activity [69].
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Table 1. Summary of nomenclature, expression, and localisation data of MACROD1, MACROD2, and TARG1.

Protein Name Alternative Names Gene Name MW Predicted MW Observed Intracellular Localisation Expression Regulation

MACROD1 LRP16 MACROD1 35.5 kDa 27 kDa* [70,71] Mitochondrial [40,70,71]
Ubiquitous expression,

enriched in skeletal
muscle [70,71]

mRNA expression is
induced by oestrogen

[72–74]

MACROD2 C20orf133 MACROD2 47 kDa 50 kDa [70] Diffuse nuclear,
cytoplasmic [70,75]

So far detected only in
the brain [70,76]

Phosphorylation by ATM
upon DNA damage

induces translocation to
cytoplasm [75]

TARG1 C6orf130 OARD1 17 kDa 17 kDa [14,70] Nuclear, nucleolar, stress
granular [14,45,70]

Ubiquitous expression
[70]

Leaves nucleoli upon
DNA damage [14]

* The predicted molecular weight of MACROD1 is 35 kDa. However, due to cleavage of the N-terminus upon translocation into mitochondria, the protein detected in western blotting (WB)
is smaller [70].
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The roles of MACROD1, MACROD2, and TARG1 in normal cell biological processes are not
well understood. They appear to be expressed and localised in different tissues and intracellular
locations, which clearly gives them unique roles to play despite their biochemical similarity. This also
explains why loss of TARG1 alone can lead to a neurodegenerative phenotype [45]. MACROD1
resides in mitochondria [40,70,71], but, depending on the tag used for overexpression, will reside
exclusively in the nucleus instead [70]. MACROD2 displays a more diffuse cytoplasmic/nuclear
distribution [70,75] and overexpressed TARG1 appears to be present in nucleoplasm, nucleoli, and
cytoplasmic stress granules [14,70]. TARG1 and MACROD1 are expressed throughout the different
tissues with an enrichment of MACROD1 in skeletal muscle at both the protein and RNA level [70].
MACROD2 has, thus far, only been detected in human neuroblastoma cells and in mouse cortical
neurons [70,76]. Several reports have correlated polymorphisms or deletions within the MACROD2
gene with autism-spectrum disorders [77–80]. It is not clear, however, whether the MACROD2 gene
product itself or surrounding genes are responsible for this association even though elevated protein
expression in neurons supports a potential brain-specific function of MACROD2 [76]. However, a long
non-coding RNA has been identified within an intron of the MACROD2 gene, which is more highly
expressed in most tissues investigated than the MACROD2 mRNA, and, thereby, potentially confuses
correlations of mutations in the MACROD2 gene and phenotypes [81]. In another genome-wide
association study, MACROD2 was identified as a factor influencing vascular-adhesion protein-1
(VAP-1) levels, which the authors confirmed by knockdown of MACROD2. This leads to lower
VAP-1 expression in adipocytes, presumably through the transcriptional regulation of VAP-1 [82].
MACROD2 was also reported to leave the nucleus upon DNA damage, dependent on phosphorylation
by ATM [75], whereas TARG1 localises from nucleoli to nuclear sites of damage [14], which both have
an unclear functional relevance. More data may be found on MACROD1, which is also known as
leukaemia-related protein 16 or LRP16. MACROD1 has been attributed to a number of functions
in the nucleus, such as co-activation of the androgen receptor [83], counteracting PARP7-mediated
MARylation in the nucleus [84,85], and activation of NF-kB signalling [86–88]. MACROD1 was also
reported as an enhancer of oestrogen receptor signalling [89], and is upregulated after stimulation
of cells with oestrogen [72,74,90]. No regulatory factors have been identified yet for MACROD2 and
TARG1. A BioID interaction screen, which identifies proteins in close proximity to the protein of
interest [91], identified many proteins involved in nuclear/cytoplasmic and mitochondrial nucleic acid
metabolism as interactors of TARG1 and MACROD1, respectively [70]. Whether these proteins are
MARylated and serve as a substrate of TARG1/MACROD1 remains to be determined. It is possible
that, despite spatio-temporal restrictions, MACROD1 and TARG1 in their respective compartments
are involved in similar signalling networks, converging on the regulation of cellular nucleic acids.
The physiological functions of the three enzymes remains elusive. Most puzzling perhaps is that, at the
moment, despite the mitochondrial localisation of MACROD1, the majority of reports describe nuclear
functions. Future work will need to address this apparent discrepancy.

4. Mono(ADP-ribosyl)ation in Cancer

The post-translational modification poly(ADP-ribosyl)ation has been intimately linked to
cancer before [92,93], as have other post-translational modifications such as phosphorylation [94].
In BRCA1/BRCA2-deficient patients, PARP1 inhibitors have been shown effective specifically
against the tumour cells applied in the clinic. However, this is one of the rare examples of a
synthetic lethal interaction [95]. Better understanding of the processes regulated by MARylation
will provide opportunities for further drug development, as is exemplified by current research
into the potential of PARP14 as a drug target [24]. Little is known about the potential role of the
mono(ADP-ribosyl)hydrolases in cancer. MACROD1, MACROD2, and OARD1 (TARG1) exhibit
mutations only in 0.9%, 2.6%, and 1% of cancer patient samples, respectively, from over 1000 samples
in the cBioPortal curated dataset [96]. The fact that MACROD2 mutation rates are twice the rates
seen for MACROD1 and OARD1 likely reflects that the MACROD2 gene is larger (Figure 1), and is
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located at a known fragile region [97]. A specific recurring deletion of exon 6 has been observed in
esophageal squamous cell carcinoma and gastric cancer [98]. For MACROD1, a RUNX-MACROD1
fusion was identified in leukaemia [99] and, for MACROD2, a PDGFRA-MACROD2 fusion in a
pleomorphic sarcoma [100]. Despite the low number of identified mutations in patient tumour samples,
several reports have correlated MACROD1 or MACROD2 expression levels with the clinical outcome,
as described in the next paragraphs.

Figure 1. Overview of the MACROD1, MACROD2, and OARD1 gene structure.

The gene structure of MACROD1, MACROD2, and OARD1 is shown schematically. More lncRNAs
are present. However, only RPS10P2-201 is displayed since it has been shown to be relevant
RPS10P2-201 [81]. CDS = coding sequence. UTR = untranslated region.

5. MACROD1 in Cancer

A number of studies have addressed a potential oncogenic function of MACROD1 and started
deciphering the molecular mechanism underlying observed effects. MACROD1 expression was shown
to be upregulated by oestrogen [73,74], which leads to several studies of the role of MACROD1
in tumours with a differential oestrogen status. MACROD1 overexpression in the oestrogen and
progesterone receptor positive Ishikawa cells, derived from an endometrial cancer, had no effect on
cell proliferation. It did, however, enhance the invasiveness of these cells as measured by transwell
assays [101]. Mechanistically, the authors propose a mechanism wherein MACROD1, dependent on
oestrogen, blocks recruitment of ERα to the E-cadherin promoter, which lowers E-cadherin expression
and, through this, enhances invasiveness. shRNA-mediated knockdown of MACROD1 achieved
the opposite effect by enhancing E-cadherin expression [101]. This implies that MACROD1 can
be an important factor in metastasis. These findings appear to contradict an earlier report where
overexpression of MACROD1 in MCF7 cells, which are oestrogen-responsive breast cancer cells,
showed an effect on cell growth. It led to enhanced proliferation [74]. A later report studying
MACROD1 in 293T cells showed that knockdown of MACROD1 sensitized cells to TNFα-induced
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apoptosis [86]. From these studies, it is, thus, not clear what effect loss or gain of MACROD1 has on cell
physiology. Recent work has demonstrated that fusing an N-terminal tag, such as GFP, to MACROD1
leads to a nuclear localisation, whereas C-terminally labelled and an endogenous protein appear
to be exclusively localised in mitochondria [70]. Mass spectrometry datasets have also detected
MACROD1 in the mitochondria [102]. This does not exclude the possibility that, under specific
circumstances, MACROD1 may re-localise to the nucleus. In pathogenic conditions, such as the
presence of a RUNX-MACROD1 fusion protein that was identified in leukaemia [99], the protein
likely also localises to the nucleus instead of the mitochondria, as the RUNX fusion will mask the
mitochondrial targeting sequence, comparable to the localisation after labelling with an N-terminal GFP
tag. Unfortunately, some of the studies investigating MACROD1 have either used N-terminally tagged
fusion constructs [84,85,88], or have not stated clearly how the fusion proteins were generated [103].
Furthermore, the majority of applied antibodies show multiple bands in the western blot and, hence,
are not suitable for immunohistochemistry (IHC) or immunofluorescence (IF) (Table 2). It will be
worthwhile to repeat some of the studies of MACROD1′s molecular function in carcinogenesis to clarify
whether unlabeled MACROD1 overexpression leads to enhanced cell growth, or whether this effect
depends on the tumour background and also to study knockdown/knockout systems more thoroughly.
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Table 2. Summary of studies studying the effect of MACROD1 and MACROD2 protein levels on cell and/or tumour growth.

Cancer Tissue Protein Expression Effect/Prognosis Antibody Used Reference

Neuroendocrine lung
tumours MACROD1 Elevated Poorer survival Monoclonal rabbit antibody against LRP16

Not further specified or validated [104]

Hepatocellular carcinoma MACROD1 Overexpressed: N- or C-
tag not specified

Lower cell and tumour
growth

Santa Cruz goat polyclonal
This antibody is not available anymore.
Whole blots are not shown. It was not

validated with siRNA

[103]

Pancreatic carcinoma MACROD1 Overexpressed: N- or C-
tag not specified

Higher cell and tumour
growth

Abcam rabbit polyclonal
This antibody recognises multiple bands in

WB and is thus not suitable for IHC/IF
[105]

Colorectal carcinoma MACROD1 Elevated Poorer survival
Polyclonal rabbit antibody generated by the

authors’ institute
Not further specified or validated

[106]

Gastric carcinoma MACROD1 Elevated Poorer survival
Polyclonal rabbit antibody generated by the

authors’ institute
Not further specified or validated

[107]

Breast cancer MACROD1
MACROD1 expression

quantified as either
positive or negative

MACROD1 expression
was higher in patients
with advanced stages

LRP16 rabbit anti-human antibody, source
not given

Not further specified or validated
[108]

Endometrial cancer MACROD1 Overexpressed No effect on proliferation
but enhanced invasion

Antiserum generated in rabbits against
amino acids 83-324 [101]

Breast cancer MACROD1 Overexpression Increased proliferation Not specified [74]

Colorectal carcinoma MACROD1
Non-tagged and

N-terminal flag-tagged
overexpression

Confers resistance to
chemotherapeutics

Antibody used for IHC and WB not specified,
recognises bands at ±35 and ±45 kDa [88]

Tumours induced in mice
by sublethal irradiation MACROD2 Knockout mice No difference between

wildtype and MacroD2-/-

Thermofisher PA5-45950
This antibody recognises bands at ±38 kDa

and ±22 kDa
[109]
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Despite these technical challenges, multiple studies have correlated tumour growth with
MACROD1 expression in either xenograft models or in patient cohorts. Overexpression of MACROD1
in the hepatocellular carcinoma lines HepG2 and MHCC-97L leads to a decrease in cell growth and
metastatic potential, as measured by transwell assays [103]. Furthermore, when delivered into nude
mice, cells overexpressing MACROD1 lead to a decreased tumour volume and have a lower metastatic
potential compared to cells without overexpressed MACROD1 [103]. With the information available,
it cannot be distinguished whether this is a genuine effect or an artefact due to forced nuclear localisation
of the overexpression construct [103]. In a similar set of experiments in the pancreatic carcinoma cell
lines, Panc1, CFPAC1, Bxpc3, SW1990, AsPC1, and HPDE6-C7, opposite results were achieved [105].
Knockdown of MACROD1 leads to enhanced apoptosis and decreased cell growth. However, only one
shRNA construct was used, so any effects seen could be potentially off-target. Cells overexpressing
the same MACROD1 construct as in the study described before [103] grew faster and were more
resistant to apoptosis. Xenograft experiments show the same trend. Cells lacking MACROD1 had
a lower tumour-forming potential and higher survival rate. Cells overexpressing MACROD1 had a
higher tumour volume and a lower survival rate [105]. The authors do not comment on the opposing
effects in these two tumour types, but agree that larger-scale studies are required to verify these
findings. A third study shows IHC of lung tumour samples with an antibody of an unknown source
and specificity [104]. High MACROD1 expression, as measured by IHC, was reported to correlate
with a negative outcome in colorectal carcinoma and in gastric carcinoma. However, the antibody
used was generated by the authors and not validated by a western blot [106,107]. CRISPR-mediated
MACROD1 knockout rhabdomyosarcoma cells [70] and MACROD1 knockout mice appear viable [71],
which makes it unlikely that loss of MACROD1 has a drastic growth inhibitory or developmental effect.

In conclusion, most of the data available on an oncogenic function of MACROD1 rely on poorly
characterised antibodies, unclear overexpression constructs or a single shRNA construct. The majority
of these studies would need to be reproduced with a more thorough characterisation and description
of the materials used to be able to draw deeper conclusions. Several studies agree that MACROD1
expression can be induced by oestrogen [73,74,89,90,101], but it remains unclear what the effect of
this overexpression is on cells. The RUNX-MACROD1 fusion identified in leukaemia may provide an
important hint at a potential pathologic function. It is possible that the physiological mitochondrial
localisation of MACROD1 can turn into a pathogenic nuclear one, where it aberrantly acts as a
transcriptional activator. It will be interesting to see whether more instances can be identified
where such fusions are present. Alternatively, other masking events may occur in cells, such as
binding by interaction partners or PTMs, which, thereby, redirects the protein to the nucleus for a
physiological function.

6. MACROD2 in Cancer

A number of analyses suggest MACROD2 may play a potential role in cancer. MACROD2 copy
number is increased in three different tamoxifen-resistant MCF7 breast cancer cell lines, prompting the
authors to analyse MACROD2 expression in patient samples. In oestrogen receptor-positive tissues
of breast cancer patients with a recorded tamoxifen-resistance, however, three patients displayed a
decreased copy number, whereas the other two patients showed an increase. Using IHC with a custom
antibody, varying levels of MACROD2 were detected in primary and secondary tumour tissues of
these patients, collectively showing that MACROD2 may be overexpressed in cancer tissues. MCF7
and T47D cells with exogenously overexpressed MACROD2 grow faster than control cells in media
containing tamoxifen, which implies that MACROD2 confers tamoxifen-resistance to the cells and
appear to be stimulated by tamoxifen, as demonstrated by faster growth in medium with tamoxifen
than without [110]. Conversely, tamoxifen-resistant MCF7 clones with shRNA-mediated knockdown
of MACROD2 become more sensitive even though it does not completely reverse resistance [110].
This may be mediated by the activation of oestrogen-regulated genes in response to tamoxifen in
cells overexpressing MACROD2. Lastly, cells stably expressing shRNA to knockdown MACROD2
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grow markedly slower in nude mice [110]. The authors argue that, as a cancer specific fragile site,
the MACROD2 gene can be lost, but this fragility also allows for amplification in the specific case of
ER-positive breast cancers treated with tamoxifen to incur resistance. A more recent study showed
that, in approximately one-third of colorectal carcinomas investigated, heterozygous or homozygous
losses were mapped within the MACROD2 gene in which the majority are intragenic microdeletions
mapping to a region in exons 4 to 5 [111]. To test whether MACROD2 deficiency can promote
tumourigenesis, MACROD2 knockout was introduced into an adenomatous polyposis coli protein
(Apc) mouse model. Mutations in the APC tumour suppressor are a major driver of sporadic colorectal
cancers, where it could be shown that even haploinsufficiency of MACROD2 leads to more and
larger adenoma formation [111]. Furthermore, human cells transplanted into nude mice displayed
increased tumour growth when lacking MACROD2, but a reduced tumour growth when MACROD2
was overexpressed [111]. The underlying mechanism was suggested to be impaired PARP1 activity in
the MACROD2-/- cells, which leads to increased sensitivity of DNA damage and, ultimately, causes
enhanced chromosomal instability [111,112].

These findings appear paradoxical with the previous report, where loss of MACROD2 impairs
cell growth from a loss of resistance to tamoxifen. MacroD2 knockout mice do not show altered
survival rates after sub-lethal irradiation compared to wildtype mice, which indicates that loss of
MACROD2 alone is not sufficient to drive tumourigenesis triggered by DNA damage [109]. It is not
clear whether loss or overexpression of MACROD2 contributes to tumourigenesis, or whether both can
drive tumour growth dependent on conditions, such as the functionality of the DNA damage repair
systems or the oestrogen receptor status. In an investigation of stage-III colon cancer, MACROD2
expression determined by immunohistochemistry was found to correlate with poor survival [113].
A human protein atlas antibody (HPA049076) was used for this work, which has been retracted by the
company in the meantime and did not appear to be validated in any way, such as western blotting or
siRNA-mediated knockdown. It is, thus, not clear whether this antibody recognises MACROD2 at
all, or whether it recognises additional proteins, which may be upregulated in the samples analysed.
Altogether, it appears that loss of MACROD2 as such is not sufficient to drive tumourigenesis, but may
have an additive effect in models prone to tumour formation such as loss of APC in colorectal cells.
More studies are urgently needed to clarify the exact role of MACROD2 in both the onset of cancer as
well as in the response of existing tumours to therapies.

7. TARG1 in Cancer

The only phenotype associated with TARG1 expression is neurodegeneration, occurring due
to a mutation that leads to a truncated protein with a disrupted macrodomain, and, thereby, loss of
catalytic activity [45]. It is not clear whether this neurodegeneration is a result of a potentially toxic
truncated or unfolded protein or from loss of hydrolase activity. Knockdown of TARG1 leads to a
decrease in 293T cell proliferation and a slight increase in senescence in U2OS cells, which are derived
from an osteosarcoma [45]. CRISPR-mediated knockdown of TARG1 does not influence HeLa or
U2OS proliferation [14,70], which leaves it unclear in which setting TARG1 is required for cell growth.
Overexpression does not lead to changes in cell proliferation [14,70]. We could not identify any data
linking TARG1 to cancer, nor see elevated expression or mutation in databases such as COSMIC. Based
on expression levels in databases and these experimental results, at this stage, it does appear unlikely
that TARG1 is involved in cancer even though further experimentation is required.

8. Conclusions

Despite the presence of several publications reporting a correlation between MACROD1 or
MACROD2 levels and cancer development or progression, it is not clear at the moment that they have
a causative role. MACROD2 is potentially relevant in ER-positive, tamoxifen resistant breast cancers
where it may confer resistance to treatment. However, larger cohorts of patient samples need to be
analysed to further substantiate these initial findings. Loss of MACROD2 in an APC null background
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potentially stimulates tumour formation. However, loss of MacroD2 alone does not have any effect in a
knockout mouse model. Detailed studies are required to determine how loss of MACROD2 might
cooperate with loss of APC to drive cancer. MACROD1 levels are upregulated by oestrogen with
unclear consequences for cells. Yet, it may down-regulate E-cadherin and, thereby, promote metastasis.
If confirmed, this may be an attractive therapeutic target intending to keep the cancer dormant and
prevent metastasis.

Conflicting data show that overexpression and knockdown of MACROD1 have no effect,
no stimulus, and no inhibition of cell growth, which implies that, perhaps, inhibiting MACROD1
may not have detrimental effects for the whole organism but rather may be dependent on the
tumour background and, thus, may represent a valid drug target. The effects observed may, however,
be dependent on the constructs used as well as on the specific cell-types and have to be studied
in more detail. Future work will have to dissect in which context loss or gain of MACROD1 may
be driving aspects of cancer growth. The recent development and characterisation of more specific
antibodies, the ongoing improvements of mass spectrometric measurements of MARylation, and also
the attempts at making specific inhibitors for both transferases and hydrolases should allow a more
detailed analysis of their (patho-)physiological function in the near future. The partially paradoxical
findings described will undoubtedly be clarified with better validated tools to determine the extent to
which MACROD1, MACROD2, and TARG1 are relevant for tumourigenesis in order to establish their
potential as drug candidates.
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