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In recent years there has been a strong increase in publications on blood flow restriction
(BFR) training. In particular, the fact that this type of training requires only low resistance
to induce muscle strength and mass gains, makes BFR training interesting for athletes
and scientists alike. For the same reason this type of training is particularly interesting
for astronauts working out in space. Lower resistance during training would have the
advantage of reducing the risk of strain-induced injuries. Furthermore, strength training
with lower resistances would have implications for the equipment required for training
under microgravity conditions, as significantly lower resistances have to be provided
by the training machines. Even though we are only about to understand the effects
of blood flow restriction on exercise types other than low-intensity strength training, the
available data indicate that BFR of leg muscles is also able to improve the training effects
of walking or running at slow speeds. The underlying mechanisms of BFR-induced
functional and structural adaptations are still unclear. An essential aspect seems to be
the premature fatigue of Type-I muscle fibers, which requires premature recruitment of
Type-II muscle fibers to maintain a given force output. Other theories assume that cell
swelling, anabolic hormones, myokines and reactive oxygen species are involved in the
mediation of BFR training-related effects. This review article is intended to summarize
the main advantages and disadvantages, but also the potential risks of such training for
astronauts.

Keywords: human space flight, exercise countermeasure, adaptations to microgravity, BFR training, space
adaptations

INTRODUCTION

Human Spaceflight is still a technical and life science challenge. It is well known, that there
are several hazards for the human body in space due to microgravity exposure, radiation,
sensory deprivation, the disruption of circadian rhythms as well as the artificial environment
(Dayanandan, 2011). In short- and long-term space flights, microgravity has physiological effects
on the cardiovascular and musculoskeletal system, solving in compromised aerobic capacity, a
decrease of bone density and mineral content as well as muscular atrophy and loss of muscular
strength (Widrick et al., 1999; Fitts et al., 2001; Sibonga et al., 2007; Trappe et al., 2009). In order
to counteract these changes, special training equipment for use in microgravity was developed and
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used quite early in the history of manned spaceflight. During the
28- to 84-day Skylab missions in the 1970s, a cycle ergometer was
shipped to the international space station (ISS). However, even
with a daily training program on the ergometer, the astronauts’
maximum oxygen uptake, muscle mass and bone density was
decreased on their return from the Skylab missions (Sawin et al.,
1976; Vernikos and Schneider, 2010). More recent data indicate
that tendon fibers are also adversely affected by prolonged
exposure to microgravity (Galloway et al., 2013; McCrum et al.,
2018).

Much time has passed since these early Skylab missions
and the training equipment for use in microgravity has been
continuously refined since then (for review see Loerch, 2015). In
the belief that high mechanical forces are required as training
stimuli to prevent the musculoskeletal system from being de-
adapted, a special focus has been placed on the development
of exercise devices that can realize these high mechanical
forces (Loerch, 2015). As a result of these efforts, astronauts
currently have a multifunctional strength training device the
Advanced Resistive Exercise Device (ARED) available, which
can realize high resistances of up to up to 110 kg for cable
and 270 kg for bar exercises (Trappe et al., 2009). Since it is
well documented that resistance training with moderate to high
loads is effective in inducing muscle mass and strength gains
both on earth (Garber et al., 2011) and under microgravity
conditions (Loehr et al., 2011), the availability of the ARED on
the ISS is a major step forward for the maintenance of astronauts’
health.

Although, it seems obvious that unloading is best
compensated by the application of training stimuli that
primarily place mechanical stress on the musculoskeletal system,
there is a growing body of evidence, indicating that low-load
resistance training also provides a potent training stimulus,
when combined with blood flow restriction (BFR) (Kubota et al.,
2008; Hackney et al., 2012; Schoenfeld, 2013; Lixandrão et al.,
2018). The resistances used in BFR-training averages 30% of
the one repetition maximum (1RM) which is well below the
lower limits recommended for strength training (Schoenfeld,
2013). Nevertheless, muscle mass and strength gains induced by
BFR-training, are comparable to that of high-intensity training
regimen (Loenneke et al., 2012b). For use in microgravity,
lower resistances during training would have the advantage
of reducing the risk of strain-induced injuries for astronauts
(Scheuring et al., 2009; Gabbett, 2016). Furthermore, it would
have implications for the equipment required for training under
microgravity conditions, as significantly lower resistances have
to be provided by the training machines. This would comply
with challenges of future space missions as vehicle resources,
intra- and extravehicular physical constraints or access to
earth-based monitoring (Loerch, 2015). Moreover, BFR has
been shown to place a potent, gravitation-like stimulus on
the cardiovascular system which may reduce the orthostatic
intolerance upon the return to Earth (Iida et al., 2007; Nakajima
et al., 2008).

This review article summarizes the possible advantages and
disadvantages of BFR training in microgravity to counteract
muscle atrophy, discusses the underlying mechanisms, and

addresses the question of whether bones and tendons could also
benefit from BFR training.

EFFECTS OF MICROGRAVITY ON THE
MUSCULOSKELETAL SYSTEM

Prolonged mechanical unloading is well known to result in a
significant de-adaptation of the musculoskeletal system (Lloyd
et al., 2014). Muscle atrophy is thought to primarily result from
a decreased protein synthesis based on a reduced activation
of the IGF1-Akt-mTOR and the FAK-Akt-mTOR pathways
(Gao et al., 2018). While the former seems to result from
an unloading associated insulin resistance and an impaired
insulin-like growth factor (IGF-1) signaling, the latter signaling
pathway is directly affected by the elimination of mechanical
stress, as the mechanosensitive focal adhesion kinase (FAK)
is no longer activated (Graham et al., 2015). Bone loss is
mainly driven by an altered differentiation of mesenchymal
stem cells by an impaired integrin/mitogen protein kinase
pathway due to mitogen-activated protein kinase (MAPK) (Yang
et al., 2005). Beside integrins, osteocytes perceive mechanical
stress via interstitial fluid, causing a biological cascade which
results in WNt/β-catenin signaling that triggers bone remodeling
(Rochefort and Benhamou, 2013). This and the dysfunction of
osteoblasts, expressed due to reduced osteoblast proliferation
and activity as well as a reduced cell differentiation lead to an
impaired bone formation (Arfat et al., 2014). In comparison
to muscle and bone, tendons have so far received little
attention regarding adaptation to space flight. However, it
is known that tendons adapt to the load that they have
to withstand (Vanderby et al., 1990). With the lack of
mechanical stress, as it appears in microgravity, proteoglycan and
collagen synthesis get inhibited, leading to changes in structure
(loss of diameter and density) and in chemical compositions
(Johnson et al., 2005).

IN-FLIGHT EXERCISE PROTOCOLS

In-flight exercise protocols are generally designed to minimize
the loss in aerobic capacity, bone, muscle strength and endurance
and to counteract neuromuscular dysfunction. The main goal
thereby is to maintain in-flight and post-flight performance
capabilities of the astronauts (Loehr et al., 2015). Crewmembers
are commanded to adhere to their personal exercise protocols,
including resistance (ARED) and cardiovascular exercise on
a Treadmill or Veloergometer with Vibration Isolation and
Stabilization System (TVIS, CEVIS). The training devices save
personal data as well as physiological and training parameter,
which allows the Mission Control Center (based on Earth) to
adjust individual exercise schedules. Since the installation of the
ARED in the International Space Station Expedition 18, high
resistances can be applied during strength training on the ISS
and the device allows about 29 different exercises. However, the
ARED is very space-consuming and carries the potential risk of
being temporarily unavailable due to technical faults (Hanson
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et al., 2014; Loehr et al., 2015), which motivates the search for
and the exploration of smaller and technically simpler devices
(Behringer et al., 2016). In addition, high training intensities are
associated with an increased risk of injury to the musculoskeletal
system (Gabbett, 2016), a fact to be taken seriously, as training-
related injuries are the most common source of injury to
astronauts on board the ISS (Scheuring et al., 2009). Therefore,
the question arises whether BFR training can be a reasonable
alternative or supplement for in-flight training sessions. In the
following sections, the effects of primarily mechanical stimuli
on the musculature are briefly presented and compared with
those of more metabolically accentuated stimuli through BFR
training.

HIGH MECHANICAL TENSION AS
TRAINING STIMULUS FOR MUSCLES,
BONES, AND TENDONS

High mechanical tension is well known as a potent stimulus
to trigger muscle growth (Spurway and Wackerhage, 2006;
Schoenfeld, 2010), bone mineral accrual (Bolam et al., 2013),
and tendon stiffness (Brumitt and Cuddeford, 2015). In case
of skeletal muscles, the mechanical forces are converted
into intracellular anabolic signals by mechanosensors that
are sensitive to the magnitude and the duration of the
applied external force (Greenberg et al., 2016). Downstream
processes are thought to be regulated by Akt/mTOR pathway
(Latres et al., 2005), whereby mechanical tension stimulates
mammalian target of rapamycin (mTOR) directly (Hornberger
et al., 2006) or p70S6K is phosphorylated (independent of
mTOR) by phosphatidic acid (Lehman et al., 2007). Both
pathways increase the protein synthesis of skeletal muscle
cells. Furthermore, evidence suggests that mechanical tension
activates the mechanosensitive FAK, which upregulates mTOR
and thereby the protein synthesis (Chen et al., 1996; Bloch and
Gonzalez-Serratos, 2003). However, the fact that high-intensity
strength training is often accompanied by neuronal adjustments
but only slight increases in muscle growth. Behm (1995) suggests
that muscular tension alone cannot be responsible for muscle
growth. Beside mechanical tension, stretch, cell swelling, systemic
hormonal release, hypoxia, muscle damage, and ROS production
are discussed as further reasons, activating anabolic signaling
in skeletal muscle cells (Spurway and Wackerhage, 2006; Ozaki
et al., 2015; de Freitas et al., 2017).

High mechanical forces placed on the musculoskeletal system
result in bone matrix deformations inducing shear stress by
bone fluid perturbations and cell membrane deformations
through tethering elements of the glycocalyx (Bonewald and
Johnson, 2008). Fluid flow, as well as intramedullary pressure
are supposed to be influenced by mechanical loading, as well
as vascular blood pressure, resulting in changing anabolic
stimuli (Qin et al., 2003; Stevens et al., 2006). This mechanical
stress is sensed by osteocytes (sensor cells) that transmit the
signal to osteoblasts and osteoclasts (effector cells), ultimately
stimulating bone formation on both, trabecular and cortical
bone (Fujimura et al., 1997; Mi et al., 2005; Fritton and

Weinbaum, 2009). Evidence is given, that biomarkers of bone
formation like osteocalcin or bone-specific alkaline phosphatase
(B-ALP) are increased after resistance training. Especially
high training loads correlate with this response (Fujimura
et al., 1997; Hu et al., 2011). However, since bone cells
rapidly desensitize from mechanical stimuli intermittent loading
regimens are necessary to allow for a resensitization of
mechanoreceptors (Robling et al., 2002a,b; Saxon et al., 2005).
Recent investigations expect the wingless-type (Wnt)/β-catenin
canonical signaling pathway to be an important regulator
in this process (Rochefort and Benhamou, 2013). While in
osteoblasts, this pathway is crucial for synthesis, proliferation,
and differentiation of the bone matrix, it enables osteocytes to
transmit the sensed mechanical signals to cells on the bone
surface.

Similar to the mechanisms in muscles and bones,
mechanical tension in the tendon leads to the activation
of mechanotransduction pathways, causing anabolic tissue
responses (Arampatzis et al., 2009). Depending on the
duration, frequency and intensity of the mechanical
stimulus, the matrix protein synthesis, the expression and
arrangement of collagen fibers as well as the expression
of proteoglycans are adapted (Arampatzis et al., 2007).
According to Arampatzis et al. (2007), the applied mechanical
tension needs to exceed a certain threshold to induce
adaptations of mechanical and morphological properties.
This is supported by Kubo et al. (2006), who found that
high- but not low-load isokinetic training of the knee
extensors increased the stiffness of the vastus lateralis
tendon–aponeurosis.

METABOLIC STRESS AS AN ANABOLIC
SIGNAL FOR THE MUSCULATURE

The mechanisms underlying the BFR-mediated muscle mass and
strength gains still remain unclear. Since the mechanical load
during this type of resistance training is low, it is assumed that
the metabolic stress is primarily responsible for the induced
adaptations. This is supported by the observation of Takada
et al. (2012) who reported that hypertrophy and strength gains
were correlated with the decrease of the intramuscular pH
(hypertrophy: r = 0.80; strength gains: r = 0.65) and the
accumulation of inorganic phosphate (hypertrophy: r = 0.88;
strength gains: r = 0.60) during low-intensity (20% 1RM) BFR-
training.

BFR-associated metabolic stress is a consequence of decreased
oxygen supply caused by reduced blood flow (Kon et al.,
2012), resulting in an impairment of the aerobic metabolism
and premature fatigue of the aerobic slow-twitch fibers (Scott
et al., 2014). Despite low external loads, the skeletal muscle is
forced under these conditions to recruit fast-twitching muscle
fibers to maintain force output, which further aggravates the
accumulation of metabolites (Loenneke et al., 2011a). The
accumulated metabolites are thought to provoke a reflex
inhibition of alpha-motoneurons via type III and IV afferents
resulting in a further increase of type II motor unit recruitment
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(Scott et al., 2014). Some authors see the recruitment of fast-
twitch fibers as one of the central mechanisms by which
BFR can trigger hypertrophy (Pope et al., 2013; Pearson
and Hussain, 2015). Others believe that the acute release
of anabolic hormones such as the human growth hormone
(Abe et al., 2012; Pope et al., 2013; Park et al., 2015) or IGF-1
(Loenneke et al., 2011a; Scott et al., 2014; Park et al., 2015; Pearson
and Hussain, 2015) contributes significantly to the BFR-mediated
effects on muscle growth. The release of growth hormone appears
to be associated with metabolic stress via the metaboreflex. This
reflex is caused by locally accumulated metabolites activating
metaboreceptors, which in turn activate the hypothalamic-
pituitary axis via type III and IV afferents (Inagaki et al., 2011).
Acute releases of catecholamines (e.g., norephrine response) have
also been discussed as a factor for the exercise induced protein
synthesis (Pope et al., 2013). However, several researchers have
questioned the role of such acute exercise-induced hormone
releases for muscle hypertrophy (Loenneke et al., 2012c; Pope
et al., 2013).

The accumulation of osmotically active metabolites as lactate
further leads to swelling of the muscle fibers as fluid shifts
from the extra- to the intracellular space to equilibrate the
osmotic gradient (Schoenfeld and Contreras, 2014). The resulting
intracellular pressure is sensed by integrin-associated, cell-
intrinsic volume sensors that activate mTOR and MAPK
pathways, by which cell swelling is thought to trigger the
muscular protein synthesis (Low et al., 1997; Abe et al., 2012;
Pearson and Hussain, 2015). Kim et al. (2017) hypothesize
that this muscle cell swelling induced pathway is one of the
key mechanisms by which low-intensity BFR-training is able to
induce anabolic effects (Loenneke et al., 2012a).

Another mechanism that could support BFR training induced
muscle growth is the effect of reactive hyperemia on the vascular
system. Two-fold increases in blood flow after BFR training over
a period of more than 1 h have been reported (Gundermann
et al., 2012). It is assumed that this long-lasting shear stimulus
is responsible for the improved dilatory capacity of resistance
vessels following BFR-Training (Hunt, 2014). In addition, BFR
training increases microvascular filtration capacity as a sign of
increased capillarization (Evans et al., 2010). Since adequate
perfusion of the muscle fibers is crucial for muscle growth
(Snijders et al., 2017), BFR-associated hyperemia with its effects
on the vascular system could be an important factor supporting
training-induced hypertrophy.

Furthermore, the ischemic conditions due to BFR lead to
an upregulation of endothelial NOS, mRNA, and hypoxia
inducible factor1α (HIF-1α), which influence autocrine factors
(IGF-1) and satellite cell activation and thus, lead to increased
protein synthesis (Pope et al., 2013; Pearson and Hussain,
2015). There are also some investigations that consider reactive
oxygen species, increased glycogen storage or reduced myostatin
to be influencing factors for muscle protein synthesis (Pope
et al., 2013; Pearson and Hussain, 2015). However, there is
no clear evidence for those factors. For example, it is well
known that ROS production increases when blood supply
returns (reperfusion) after sustained ischemia (Korthuis et al.,
1985; Tsutsumi et al., 2007). Based on these observations, it

could be assumed that the BFR-associated ischemia-reperfusion
sequence exacerbates the hypoxic signaling cascade (dependent
on HIF-1α). However, the data available so far often show
no increase in ROS as a result of BFR training (Goldfarb
et al., 2008; Rozales Ramis et al., 2017), so that the question
of usefulness of antioxidant administration cannot yet be
conclusively clarified.

EFFECTS OF LOW-INTENSITY
BFR-TRAINING ON BONE HEALTH

The majority of available literature on BFR training has dealt with
its effects on skeletal muscle fibers, while only a few studies have
investigated the effects on other tissues of the musculoskeletal
system. However, some evidence is available that low-intensity
BFR-training positively affects bone metabolism, formation and
resorption (Bittar et al., 2018). Increased intramedullary pressure
and interstitial fluid flow within the bone, caused by vascular
occlusion, are hypothesized to be the main mechanisms affecting
bone remodeling (Loenneke et al., 2012d). The effectiveness of
BFR as a countermeasure for the bone loss was investigated
by an increase of B-ALP, which is considered to display the
activity of osteoblasts (Beekley et al., 2005). Further, bone
resorption markers as C-terminal cross-linking telopeptide of
type I collagen (CTX/NTX) has been reported to be decreased
after BFR exercise (Bemben et al., 2007). Karabulut et al.
(2011), who compared serum concentrations of bone markers
in older man following high-intensity resistance training and
low-intensity BFR-training, found B-ALP and B-ALP to CTX
ratio improved after both training protocols. Although these
results indicate that high mechanical loads are not necessary to
prevent bone loss in microgravity, further research is needed
to develop a better understanding of the BFR-training mediated
effects.

EFFECTS OF LOW-INTENSITY
BFR-TRAINING ON TENDONS

There is some evidence that hypoxic conditions improve the
proliferation of human tendon stem cells, when compared
to normoxic conditions (Lee et al., 2012; Millar et al., 2012;
Huang et al., 2013; Zhang and Wang, 2013; Jiang et al., 2014).
Furthermore, hypoxia has been reported to be essential for the
healing of the bone-tendon junction in which HIF-1α plays a
key role (Zhao et al., 2011). Although, there are studies that
have used BFR training in the rehabilitation of tendon injuries,
the researchers’ main aim in those studies was to use BFR
training to reduce the required training intensity to improve
muscle strength (Yow et al., 2018). To the best of the authors’
knowledge, only few data are available regarding the effects of
BFR training on the structure and function of tendons. In one
study, Mohmara et al. (2014) investigated the effect of low-
intensity (30% 1RM) leg-calf-raises either with or without BFR on
the Achilles tendon thickness. The authors found no difference
in tendon thickness between both conditions immediately and
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24 h after the exercise protocol. However, this acute reaction does
not provide any information about chronic tendon adaptations
to BFR training programs. Kubo et al. (2006) reported that a
12-week resistance training (3 days/week) improved the stiffness
of tendon-aponeurosis complex in the vastus lateralis only in
the high-intensity (80% 1RM) but not in the low-intensity (20%
1RM) BFR group. Thus, according to the available literature it
seems that high-mechanical forces cannot be dispensed with,
if adaptations of the tendons are wanted. However, the data
available on this topic are still very weak, so that further studies
are required in order to be able to make reliable statements on
this issue.

POTENTIAL RISK FACTORS OF BFR IN
SPACE

The risk of negative side effects of BFR-training has already been
reviewed by others, whereby bruising under the cuffs (13.1%) due
to the applied cuff pressure was most common (see, Loenneke
et al., 2011b). In this regard, there is some disunity about the
required cuff pressure and width for an optimal training response
with as little vascular stress as possible. However, due to the
potential side effects, there is broad agreement that individual
cuff pressures should be preferred over fixed cuff pressures
(Cook et al., 2007; Clark et al., 2011). Furthermore, there is
some evidence that low cuff pressures (∼50% of the individual
occlusion pressure) are sufficient to provoke the desired BFR-
mediated effects on the musculoskeletal system and reduces the
risk for negative side effects associated with higher pressures
near arterial occlusion decrease (Loenneke et al., 2014a). Based
on these arguments, it becomes clear that the measurement
of the individual occlusion pressure of the astronauts is
necessary to standardize the pressure of the cuff. Given the
fact that blood pressure behaves differently under microgravity
conditions (Norsk, 2014), pre-flight measurements are unsuitable
for determining the individual occlusion pressure for training
in space. Fortunately, BFR equipment is now available that
automatically measures the individual closing pressure and
adjusts the cuff pressure for the training accordingly. It is also
conceivable that BFR training damages the muscles distal to the
cuff. However, the small increase in muscle damage markers after
BFR training speaks against this assumption (Loenneke et al.,
2014b). One reason for the low level of damage is certainly
the use of low resistance in this training method. Apparently,
however, the induced ischemia is also not strong enough to have
a direct or indirect (via. reperfusion injury) damaging effect on
the muscle tissue (Thiebaud et al., 2013; Loenneke et al., 2014b).
Reperfusion injury is caused by completely occluded blood flow
to a limb, whereas the intensity and duration are pivotal role.
In muscle tissue, irreversible damage can be seen after 4–6 h of
occlusion (Blaisdell, 2002) and therefore the injury risk during
BFR training is considered to be low. Nevertheless, there are
also a few contradictory findings. Some authors reported that
BFR increased the perceived muscle soreness as well as the
sarcolemma permeability (Wernbom et al., 2012) and reduced the

endothelial function (Renzi et al., 2010). In summary, however,
the majority of the data indicate that the risk of muscle damage
from BFR training is low.

Another common concern is the coagulation of blood and
formation of thrombi by the BFR-induced disturbance of the
laminar blood flow. Surprisingly, however, fibrinolytic activity
has been reported to be increased after BFR training and the
incidence of thrombosis to be lower compared to the general
population (Nakajima et al., 2006). Other cardiovascular risk
factors of BFR training are related to the decreased venous blood
return to the heart. As a consequence, the heart rate and blood
pressure increase to maintain cardiac output (Takano et al.,
2005). This might be an important risk factor for people with
an increased predisposition to cardiovascular disease. However,
since astronauts are under strict medical supervision and are only
allowed to fly into space if pre-flight medical examinations have
been passed, this risk appears to be low for astronauts.

CONCLUSION

Microgravity exposure has degenerative effects on the
musculoskeletal system. Regarding further long duration flights
like future Mars Expeditions, there is a need to tweak existing
exercise protocols, to gain maximum training effects by using
minimal equipment. Low load BFR-training allows for muscle
mass and strength gains without the risk of injury associated with
high resistances. Additionally, some evidence is available that
bone mass and density can be increased by BFR exercise.

Despite the numerous positive findings on low-intensity
strength training with BFR, it should be noted that these data
were collected under normobaric and normoxic conditions.
Therefore, future studies should clarify whether a hypobaric
hypoxia (as may occur on board of future Mars Expeditions) or
blood redistribution caused by weightlessness has an influence
on BFR training results. It seems plausible that under these
conditions lower cuff pressures are sufficient to trigger the effects
of BFR training.

The low resistances required to achieve these goals also
have an advantage regarding the equipment. Exercise devices
would have to provide lower resistances, which facilitates their
construction and preserves the vehicle capacity. Unfortunately,
to date very little data are available whether low-intensity BFR-
training is able to avoid the unloading associated deterioration of
tendons. Nevertheless, the results of the review clearly show that
BFR training is a useful supplement to training in microgravity.

Future studies are needed to investigate whether the blood
redistribution caused by weightlessness has an influence on BFR
training results. Therefore, long-term, 6◦ head down tilt bed rest
studies investigating BFR-training should be sought to evaluate
physiological adaptations of the musculoskeletal system.
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