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Abstract: With the development of imaging and space-borne satellite technology, a growing number
of multipolarized SAR imageries have been implemented for object detection. However, most of
the existing public SAR ship datasets are grayscale images under single polarization mode. To
make full use of the polarization characteristics of multipolarized SAR, a dual-polarimetric SAR
dataset specifically used for ship detection is presented in this paper (DSSDD). For construction,
50 dual-polarimetric Sentinel-1 SAR images were cropped into 1236 image slices with the size of
256 × 256 pixels. The variances and covariance of both VV and VH polarization were fused into
R,G,B channels of the pseudo-color image. Each ship was labeled with both a rotatable bounding
box (RBox) and a horizontal bounding box (BBox). Apart from 8-bit pseudo-color images, DSSDD
also provides 16-bit complex data for readers. Two prevalent object detectors R3Det and Yolo-v4
were implemented on DSSDD to establish the baselines of the detectors with the RBox and BBox
respectively. Furthermore, we proposed a weakly supervised ship detection method based on
anomaly detection via advanced memory-augmented autoencoder (MemAE), which can significantly
remove false alarms generated by the two-parameter CFAR algorithm applied upon our dual-
polarimetric dataset. The proposed advanced MemAE method has the advantages of a lower
annotation workload, high efficiency, good performance even compared with supervised methods,
making it a promising direction for ship detection in dual-polarimetric SAR images. The dataset is
available on github.

Keywords: ship detection; dual-polarimetric dataset; pseudo-color enhancement; autoencoder based
anomaly detection

1. Introduction

Accurate and realtime surveillance of marine vessels has great significance for both
border safety and navigation management in the case of increasingly complex port traf-
fic. [1,2] As an active microwave sensor, Synthetic Aperture Radar (SAR) [3] has the trait of
observation targets under all-day and all-weather situations, which makes SAR play an
important role in marine ship detection [1,2,4–7]. With the advances of imaging technology
a large number of high-quality polarimetric SAR (PolSAR) images can be provided by
global earth observation satellites [8], e.g., Sentinel-1 [9], as well as applied into auto-
matic detection fields [10]. It has been verified that multipolarization imagery containing
more object polarization features are more conducive to detection than single polarization
ones [11–13]. Therefore, studying the issue of ship detection adopting PolSAR imagery has
become a prevalent trend [7,10].

Throughout all the conventional approaches, ship detection is mainly based on manu-
ally selected characteristics, including polarization features, as well as statistical character-
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istics of background clutter [7,14–16]. The constant false alarm rate (CFAR) is commonly
used for ship target detection in PolSAR images [4,17,18]. Typical CFAR methods take
appropriate thresholds to filter target pixels [19,20]. Another kind of method is built on
the theory of polarization decomposition [12,21], which derives polarization features from
the scattering matrix or covariance matrix, [22–24] and has been applied to PolSAR ship
detection effectively. Though conventional technologies have achieved good performance
in ship detection, there exist some obvious limitations. One is that the amount of manually
selected features is limited, resulting in the insufficient representation of ships. The other is
that detection environments are limited, which may signify those methods lack generaliza-
tion and robustness for ships near land or in complex sea backgrounds [2,6]. To meet the
need for accuracy and efficiency, a new kind of algorithm based on deep learning provides
clues for the field of detection.

Beneficial for its unique end-to-end hierarchical structure, the convolutional neural
network (CNN) [25] demonstrates the powerful capability of automatic feature extraction
of images [26]. R-CNN [27] first creatively applied CNN to detection. Fast R-CNN [28] and
Faster R-CNN [29] have become classic two-stage target detection algorithms. In addition
to two-stage methods, one-stage algorithms, e.g., SSD [30] and YOLO series [31–34], have
better computing speed at the inference stage through abandoning the region proposed
network (RPN) [29]. Since the Focal Loss [35] technique solved the imbalance between
the amount of positive and negative samples, the precision and recall of the single-stage
algorithm are comparable to that of the two-stage algorithm. Other proposed network
frameworks like FPN [36], PANet [37], CSPNet [38] try to aggregate information from
different hierarchies or stages. Much work has been done by researchers in the area of
SAR imagery object detection [2,6]. Inspired by CMS-RCNN [39], Kang et al. proposed a
context-based multilayer fusion network [40] to detect small ships. Liu et al. combined
multiscale features with a rotating detection framework and proposed a single-stage
detection network named DRBox [41]. Wei et al. exploited a high-resolution feature
pyramid network (HRFPN) that connected multilayer subnetworks in parallel in HR-
SDNet [42] to refine consequent outputs. All these studies have proved the effectiveness
and robustness of deep CNN in SAR imagery detection.

The basic premise of deep learning is adequate training sets. As for the existing SAR
ship datasets that most previous studies mainly relied on, most of them consist of single
polarization images quantified to grayscale pixels. The commonly used SAR ship detection
dataset (SSDD) [43] contains an insufficient number of objects, and the intensity of pixels
ranges from 0 to 255 without the original data provided. OpenSARship [44] used for
ship classification, constructed by SJTU, has 10 unbalanced categories, and original high
precision data are included. Yet ship chips in OpenSARship have extremely small sizes,
and the lack of scattering information could lead to bad performance on generalization.
Compared to SSDD, a High-Resolution SAR Images Dataset (HRSID) [45] has an adequate
number of chips that have been processed to 8-bit JPEG format with single polarization
mode for one image, and most in co-polarization mode.

Pseudo-color enhancement is a common way to realize the visualization of PolSAR
images. It can display small grayscale differences as distinct color differences, and effec-
tively embody the polarization information of the target [46–48]. PolSAR pseudo-color
enhancement is mostly used for image segmentation and classification [49–52]. As for
the ship detection field, only a few works based on the deep neural network have been
performed on pseudo-color enhanced data. Fan et al. trained the CNN framework by
using a Pauli pseudo-color dataset composed of quad-polarization SAR [53]. Zou et al.
synthesized pseudo-color images by taking three single-polarimetric SAR images obtained
at continuous azimuth angles [54]. Unfortunately, these authors did not open their dataset
to the public. As far as we know, there is still not an appropriate and accessible dual-
polarimetric dataset for SAR ship detection in deep learning. Both covariance matrix C
and coherence matrix T of multipolarization imagery contain all the polarization informa-
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tion [7]. Therefore, we utilize the specific value of the C or T matrix as different channels to
generate pseudo-color images.

Among SAR satellites, Sentinel-1 in the European Space Agency’s Copernicus pro-
gramme consists of two satellites carrying C-band radar, could provide continuous images,
and has an accessible database [9]. To meet the need of quantity and quality, we selected
dual vertical (DV) polarization images in Sentinel-1 IW mode as samples to construct
pseudo-color enhancement and finally built this dual-polarimetric SAR ship detection
dataset (DSSDD). Each pixel was obtained by taking |C11|, |C12|, |C22| elements of polari-
metric covariance matrix as red, green, and blue channels respectively. When labeling
ships, we employed both a rotatable bounding box (RBox) and horizontal bounding box
(BBox) to represent objects more precisely. For the convenience of experiment execution,
images were quantified as input for deep neural networks, but the original 16-bit data
are reserved as well. All annotations and images in DSSDD are accessible online [55] at
https://github.com/liyiniiecas/A_Dual-polarimetric_SAR_Ship_Detection_Dataset, ac-
cessed on 3 November 2021.

In addition, inspired by an anomaly detection algorithm named memory-augmented
deep autoencoder (MemAE) [56], we proposed an advanced weakly supervised ship
detection method that takes into account both computational cost and prediction accuracy.
The former advantage comes from adopting the two-parameter CFAR method [18] for
preliminary detection and the latter from MemAE for the further screening of targets. The
CFAR detection is simple and effective and tends to have false alarms. We applied anomaly
detection to eliminate abnormal targets after CFAR generated a region proposal and kept
the real ship targets. Compared with CNN-based detectors, our method does not rely
on massive networks nor high-performance equipment, which can mitigate computation
burden and decrease the memory cost. We show the validity of this method on our
dual-polarimetric dataset, as detailed below.

Our contributions are as follow:
1. A new open dual-polarimetric dataset based on dual-vertical polarization images

was constructed. Labels of RBoxes and BBoxes are provided, respectively. Computation
details and statistical analysis are described also. This could be the first dual-polarimetric
dataset applied for deep neural network ship detection, which will hopefully boost the
development of this area.

2. Two prevalent detection networks were adopted to build baselines of our dataset.
Experimental results on SOTAs show that the pseudo-color processing method fused
with multipolarization information had a better detection performance than the single
polarization processing method.

3. A ship detection algorithm based on anomaly detection is proposed achieving
superior detected results than conventional methods. Its validity is demonstrated on
our DSSDD.

This paper is organized as follows. Section 2 describes the build process and properties
of DSSDD. Then we present baselines of two typical networks in Section 3. Our weakly
supervised detection method is proposed in Section 4. Section 5 concludes this paper.

2. The Construction of the Dataset
2.1. The Original SAR Imageries

To ensure the quantity and quality of our ship-specific interpretation dataset, 50 Level-1
Sentinel-1 Interferometric Wide swath (IW) mode imageries were selected as original con-
struction data. According to the Sentinel-1 official guide provided by European Space
Agency (ESA), IW mode captures three sub-swaths using Terrain Observation with Pro-
gressive Scans SAR (TOPSAR), and each sub-swath contains a total of nine bursts, where
each burst has been processed as a separate single look complex (SLC) image [9].

VV co-polarization and VH cross-polarization products are generated under IW mode.
The cross-polarization scattering has stronger energy intensity than the co-polarization
scattering, thus, the shape and skeleton of ships are clearer. On the other side, the in-
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shore scattering and sea clutter noise of cross-polarization are stronger than that of co-
polarization [45]. Under the radar pulse emitted by the sensor, the ships appear as spindle-
shaped bright pixels at a double reflection. Other details including swath and incident
angle are depicted in Table 1. It is worth noting that the resolution in range and azimuth
were different from that of the data after preprocessing.

Table 1. Detailed information for the original Sentinel-1 imagery.

Satellite Imaging
Mode

Resolution
Rg. × Az.(m)

Swath
(km)

Polarization
Modes

Incident
Angle (◦)

Product
Type

Number of
Images

Sentinel-1 IW 2.3 × 14.0 250 VV + VH 29.1~46.0 SLC 50

We selected the regions at large ports and busy sea areas with numerous ships as well
as specific scenes to acquire typical and sufficient samples. Figure 1 presents some wide
swath coverage of our datasets, including Shanghai, the Suez Canal, the Gulf of Mexico,
Port of Houston, the Strait of Gibraltar, etc. All the original images with wide swath were
downloaded from the official website [57].
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2.2. Preprocessing for SAR Imageries

Level-1 SLC data comprising complex imagery with amplitude and phase were prepro-
cessed before we constructed the dataset. SNAP 8.0 [58] was employed in our experiment
to operate the radiometric calibration, multilooking, deburst, and matrix calculations. The
complete procedure is shown in Figure 2.
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Radiometric calibration was the crucial measure to enhance the geometric radiation
quality of spaceborne SAR by eliminating imaging errors through correcting spectral
reflectance or the spectral radiation brightness of ground objects, which was the first step
to be carried out.

TOPSAR products consist of a series of bursts as well as the strip between bursts
without signal [9]. Deburst was employed for merging three sub-swaths and nine bursts
within the sub-swath to create a complete product. TOPSAR technology significantly
reduced scalloping effects compared to conventional scanning SAR.

PolSAR obtains the polarization characteristics of targets by measuring the Sinclair
scattering matrix S [21]. The Sinclair scattering matrix is the key observation to display the
relationship between the incident electromagnetic field vector and the scattering electro-
magnetic field vector [59] and is defined as (1). Under the dual-polarization mode with VV
and VH, two non-zero elements Svv and Svh in S describe the echo voltage received. The
remaining two elements Shh and Shv are equal to 0 under this circumstance.

S =

[
Shh Shv
Svh Svv

]
(1)

The Lexicographic scattering vector
→
kL is obtained by straight order expansion on a

completely orthogonal basis, which can be formulated as (2):

→
kL =

[
Svh Svv

]T (2)

The polarimetric covariance matrix is derived from the Sinclair scattering matrix by

calculating the Kronecker inner product of
→
kL. The polarization covariance matrix C2 is

formulated in (3), where H refers to the conjugate transpose operation:

C2 = 〈
→
kL·
→
kL

H
〉 =

 〈
|Svh|2

〉
〈SvhSvv

∗〉

〈SvvSvh
∗〉

〈
|Svv|2

〉  =

[
C11 C12
C21 C22

]
(3)

From the expression of C2 in (3), it is obvious that complex numbers C12 and C21 are
conjugate, while C11, C22 representing the energy of VH polarization and VV polarization
respectively are both real numbers. Accordingly, three elements C11, C12, C22 were used
to generate a pseudo-color image as they contained the entire polarization information.
In brief, the absolute value of the three elements C11, C12, C22 at each pixel were taken as
three channels R, B, and G of a pseudo-color image.

For the range direction, the resolution was much smaller than that of azimuth, the
image was stretched along the azimuth side. We adopted multilooking technology to obtain
approximately square pixels in addition to eliminating and reducing speckle noise [60]. It
is worth noting that, after multilooking processing, the range and azimuth resolution were
converted to approximately 9 m × 14 m. Finally, as the output pixel was a 16-bit value that
could not be displayed on screen directly, we compressed the data for convenience. SNAP
8.0 was adopted to automatically save the image into 8-bit format data and then complete
the quantification, as the final products shown in Figure 3. All the following experiments
were conduct using 8-bit format data.

2.3. Data Format

During the experiments, we found that the CNN input was 8-bit compressed SAR
data. While the original polarization SAR data was characterized by being distributed in a
high dynamic range, the compressing to the 0–255 range can cause information loss of SAR
imagery [61]. As is the case with Figure 4, improper compression may lead to oveexposure
or underexposure. Although researchers have proposed some dynamic range compression
algorithms that alleviate the problems caused by compression to a certain extent, there are
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still some defects such as lack of details and poor adaptive processing capabilities. For
data-driven detectors, the quality of images will directly affect the results of the detection.
Therefore, in DSSDD, we provide additional data without quantification.
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Two kinds of data formats are described in Figure 5. The 8-bit compressed slices input
to the detector were stored in PNG format. In Figure 5a, the R, G, and B channels indicate
the amplitude value of the covariance matrix elements C11, C12, and C22. For convenience,
the quantification was completed by an algorithm embedded in the SNAP 8.0.
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Figure 5b is the 16-bit original data format containing phase information. The second
and third channels indicate the imaginary part value and real part value of C12, respectively.
While the C11 and C22 are real numbers, they occupy the first and last channels, respectively.

2.4. Strategy for Labeling the Dataset

Due to the wide width of the IW image, the size of images processed in the previous
section was larger than 10,000× 10,000 pixels, which was not conducive to target annotation
and data storage. Candidate sub-images were screened out after we cropped the original
data with a 50-pixel overlap. Then, we used the label tool RoLabelImg [62] to mark rotating
boxes and horizontal boxes on candidate sub-images. Last, the sub-images were cropped
again with sliding windows to 256 × 256 ship slices and saved in PNG format. Hoping
readers can take full advantage of our data, we also provide additional single-precision
slices without quantification.

Each slice has a corresponding XML format annotation file, indicating the slice size,
slice name, and annotation type. The RBox label is tagged as “robndbox”, where “cx”,
“cy”, “w”, “h”, and “angle” indicate the center coordinates, height, width, and angle
of a box, respectively. The range of rotatable angle is 0~Π, consistent with the height
direction. Correspondingly, the BBox label is tagged as “bndbox”, where “xmin”, “xmax”,
“ymin”, “ymax” refer to the top left corner and the lower right corner coordinates of a box,
respectively; more details are shown in Figure 6 below.

2.5. Properties Analysis

Distinguished from optical images, SAR images receive part of the backward scattering
energy from targets; the quality of SAR imaging varies with sea clutter, incident angle,
and other external factors to some extent [45]. Except for targets in the calm and pelagic
background, our dataset also involves such challenging and complicated scenarios as
inshore and chaos clutter situations to achieve feature balance and add complexity.

After construction was completed, a total of 1236 image slices with 3540 ship targets
were concluded. All images were randomly split into the training set (70% of all) and the
test set (30% of all). It contained one category only for ship interpretation, whereas other
categories appearing in the SAR images did not have annotations. We analyzed statistics
by counting aspect ratio and area; both rotatable and rectangle boxes were taken into
consideration and illustrated as a histogram in Figure 7. It can be seen from the histogram
that the aspect ratio and area were approximately a Gaussian distribution within a certain
range, which was also in line with our data expectations.

The aspect ratio refers to the ratio of box width and height, which has an impact on
anchor box selection in CNN. For each RBox, the longer side is considered as height and
the shorter side as width, thus its aspect ratio score was no more than 1. The aspect ratio of
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the BBox has no such limitation. The average aspect ratio of RBoxes was around 0.5 with
more than 80% of that case being less than 0.6. Up to 90% of the BBoxes were concentrated
from 0.5 to 2 in terms of the aspect ratio. As for the area, which refers to the number of
pixels a box occupied, the area of an RBox was smaller than or equal to that of the same
object’s BBox. The average area of the RBoxes was 154, less than that of the BBoxes at 251.
The maximum area of the RBoxes would not exceed 700 pixels and 1200 pixels for BBoxes.
In MS COCO [63] evaluation metrics, objects were divided into small, medium, and large
scale by area, where an object having less than a 32 × 32 pixels area corresponded to the
small object. According to this standard, our dataset had comparatively fewer large targets,
while small objects were up to 98% in the entire dataset, as high-resolution Sentinel-1
images are infrequent. Small object detection was an emphasis during construction. The
characteristic of small objects leads to the tendency of fewer features and targets omission
when detecting, and it is also the challenge faced by our research.

Compared with existing SAR ship datasets quantified to grayscale, our pseudo-color
images had the advantage of weakening the sidelobe and land noise on hulls and clarifying
the ship skeleton. We present the comparison of VV and VH images with our color slices
in Figure 8, where Figure 8a,d,g,j are enhanced data, Figure 8b,e,h,k are VV polarized
images, and Figure 8c,f,i,l are VH polarized. For the impact of the Doppler shift [64], the
coherent superposition of backscattering produced considerable cross-sidelobe, which
seriously contaminated the morphology and features of objects. High sidelobe would
notably diminish the ability to recognize corner cases and interpret easy cases accurately
as well. Sidelobe and land noise perform divergent angles and intensity under different
polarization modes. In addition, ships have nearly identical white pixels due to double
reflections from metal decks [65]. As shown in Figure 8a,d, the sidelobe is a pink or green
radial pattern, and deck scattering appears as a brightly white fusiform strip. However, the
ship and sidelobe appear almost the same brightness in Figure 8b,c,e,f. The pseudo-color
enhancement did not actually change pixels’ grayscale but rather changed the color, which
also retained the complete skeleton of the ship. In Figure 8h,i,k,l, the pixels of land and
ship had similar brightness, especially in Figure 8i the object on the right side almost
blended into the land. But in Figure 8g,j, the reflection brightness of the coarse land surface
was suppressed, and the silhouette of the hulls was more prominent. Merging different
polarization patterns can relieve detrimental interference without spoiling ship bodies.
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3. Detection Benchmarks of Supervised Approaches
3.1. Benchmark Networks

CNN-based detectors are generally divided into two categories: single-stage detectors
and two-stage detectors, which have the backbone network of feature extraction, bound-
ing box regression, and category classification branches [26]. A two-stage network has
additional RPN to propose candidate boxes for the following prediction, which greatly
increases the time cost of detection.

Recently, some tricks such as hard sample selection or Focal Loss were proposed
to prevent models from being dominated by easy cases, since the imbalance between
positive and negative samples limits the network’s ability to learn corner cases. A single-
stage detection algorithm has become mainstream. Among these, YOLOv4 [34] reached
43.5% AP on MS COCO, which was superior to other SOTA detectors in comprehensive
consideration of accuracy and speed. For the above reason, we chose YOLOv4 as the
baseline for detectors with BBox.

Remote sensing images have scenes including plenty of small and arbitrarily-oriented
objects. In such a situation, BBox has a defect that each box envelopes parts of other
targets, which results in boxes with a high overlap degree being prone to be suppressed
during Non-Maximum Suppression (NMS) [66]. RBoxes was introduced to overcome the
drawbacks of BBoxes.

As shown in Figure 9, RBox has superiority in describing densely arranged objects and
excluding background interference for having one more hyperparameter. Consequently,
the RBox detector is still the most robust choice in the field of remote sensing object
detection. R3det [67] is an accurate and fast-rotating target detector. Extensive experiments
on DOTA [68], HRSC2016 [69], and ICDAR2015 [70] datasets have shown the excellent
performance of this detector. Therefore, R3Det served as the baseline for RBox detectors.
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3.1.1. R3Det

R3Det is an end-to-end rotating target detector, using multiscale features output from
the backbone to predict proposals. Five parameters (x, y, w, h, θ) predicted by the network
represent the center coordinates, width, height, and rotation angle, respectively. To achieve
better positioning accuracy and performance, a feature refinement module (FRM) [67] was
designed and added after the preliminary prediction of RetinaNet [35], as displayed in
Figure 10. The FRM used interpolation to re-encode the current boundary box location
information into finer feature points. Then, the feature images were reconstructed and
aligned. In the refined stage, only the points with the highest score were retained in each
anchor; this measure speeds up the inference meanwhile ensuring each anchor corresponds
to only one refined box.
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Figure 10. The general architecture of Refined Rotation RetinaNet Detector (R3Det). The detection
head including a feature refinement module and prediction subnets.

3.1.2. YOLOv4

The author of YOLOv4 introduced the concepts of “Bag of Freebies” (BoF) and “Bag of
Specials” (BoS), which refer to strategies or modules and other training tricks that increase
slightly the inference cost but can greatly improve the accuracy of object detection [34].
YOLOv4 adopts those optimization strategies associated with original YOLO architec-
ture in various aspects. In terms of network frameworks which is shown in Figure 11,
CSPDarknet53 [34] was chosen as a backbone, the SPP module [33] was added to expand
the receptive field, and PANet acted as the measure of aggregation parameters. Other
BoF and BoS such as Weighted-Residual-Connections (WRC) [71], Cross-Stage-Partial-
connections (CSP) [38], Self-adversarial-training(SAT) [34], Mish Activation [72], Mosaic
data Augmentation [34], CIoU Loss [73] were added to YOLOv4.
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3.2. Implementation Details

All the Detectors were trained on an Ubuntu 16.04 operating system and one NVIDIA
GTX 1080Ti GPU with 10 GB memory. As for hyperparameter choice, the momentum
and weight decay were set to 0.9 and 0.0001; the batch size was set to 32 and finished in
50 epochs; the Intersection of Union (IoU) threshold was set to 0.7 when training, and
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valued in the range of 0.5 to 0.95 at 0.05 steps when testing; the NMS threshold was set
to 0.3, and the remaining hyperparameters kept the default values during the practical
implementation. The training samples were flipped up–down, left–right, and rotated
180◦ for data augmentation merely in R3Det, as YOLOv4 has built-in augmentation tricks.
Evaluation metrics including IoU, precision rate, recall rate, and average precision (AP)
were employed as indicators to evaluate the performance of the detector quantitatively
and comprehensively. IoU was formulated in (4) representing the ratio of the intersection
area and union area between the predicted boundary box Boxpd and ground truth (GT)
boundary box Boxgt. The higher the IoU was, the better performance the detector achieved.

IoU =
Boxpd ∩ Boxgt

Boxpd ∪ Boxgt
(4)

Precision rate and recall rate were defined as (5) and (6), where TP (True Positives), FP
(False Positives), and FN (False Negatives) denote the number of correctly detected targets,
wrong targets, and omitted targets, respectively. The precision rate represents how many
predictions out of all detected targets were correct; the recall rate represents how many
objects out of all real objects were detected. We denote precision rate and recall rate as P
and R in the following. Considering the RBox is more difficult than BBox in regression, we
took different evaluation criteria as a tradeoff. To be specific, we gave P and R the results
of R3Det and YOLOv4 with IoU thresholds of 0.3 and 0.5, respectively. By giving different
confidence thresholds, we could depict a precision–recall (PR) curve corresponding to a
set of confidence thresholds, and compute the area under the PR curve, as known as AP.
The larger the AP was, the higher the average accuracy of the detector. Following the
evaluation metrics in MS COCO, we calculated the value of AP0.5 and AP0.5:0.95 when
testing. The former was the AP on the condition that the IoU threshold was 0.5, and the
latter was the mean value of ten AP, whose IoU thresholds ranged from 0.5 to 0.95 with the
step of 0.05.

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

3.3. Experimental Results

In this section, detection results of the two networks on DSSDD are presented. In
order to confirm the effectiveness of pseudo-color enhancement, a comparison was made
with the images comprised of only a single polarization channel.

VV and VH polarized images were treated as control groups, their contents were in full
accord except for pixel values. For R3Det, two basic networks ResNet50 and ResNet101 [74]
concatenated with FPN were chosen as the backbone. In consideration of the difficulty in
RBox regression, only positive samples whose IoU rate with groundtruth over 0.3 were
regarded as true objects. Table 2 indicates that the network using the pseudo-color images
had better P and R than that with only VV or VH polarized data. We observed that the
accuracy of the ResNet50 model trained with different algorithms was slightly lower than
that of the ResNet101. We speculate that a possible reason is that a deeper network can
better fit object characteristics, which has been shown by studies in other papers. Despite
this, the pseudo-color enhancement showed significant promotion properties. Specifically,
AP0.5:0.95 for the VV and VH modes was elevated by about 10.1% and 6.1% under the
ResNet50 framework, and correspondingly under ResNet101 framework, 3.5% and 2.9%.



Sensors 2021, 21, 8478 13 of 24

Table 2. R3Det detection results on pseudo-color enhanced and corresponding VV and VH polarized
test set of DSSDD.

Method/Dataset Backbone Precision Recall AP0.5 AP0.5:0.95

R
3 D

et

VV
ResNet-50 + FPN

0.936 0.893 0.888 0.304
VH 0.942 0.877 0.887 0.334

Pseudo-color 0.957 0.921 0.902 0.405
VV

ResNet-101 + FPN
0.943 0.913 0.899 0.440

VH 0.946 0.903 0.896 0.446
Pseudo-color 0.962 0.915 0.902 0.475

As a deep detector for BBox, YOLOv4 has forceful capability in feature extraction. We
used the CSPDarknet53 classifier as the backbone which proved in [34] to be an adequate
backbone in YOLOv4. We set the IoU threshold to 0.5 when testing. Unsurprisingly, our
dataset achieved the numerically optimal results in terms of P and R rate and AP compared
to those of the VV or VH data; the specific numbers are shown in Table 3.

Table 3. YOLOv4 detection results on pseudo-color enhanced and the corresponding VV and VH
polarized test set of DSSDD.

Method/Dataset Backbone Precision Recall AP0.5 AP0.5:0.95

Y
O

LO
v4 VV

CSPDarknet53
0.944 0.923 0.924 0.579

VH 0.948 0.922 0.922 0.551
Pseudo-color 0.958 0.933 0.938 0.585

To further demonstrate the superiority of pseudo-color enhancement in preprocessing
the SAR imagery, we plotted some representative results and compared them with single
polarization data results in Figure 12. Red boxes represented false positive targets, yellow
boxes were for missed targets, and green indicated true positive targets.
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Pixels in single-polarized SAR images that corresponded to reflection intensity only
differed in brightness, which would cause a noticeable drawback, ambiguity. Coastal land
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generally has sophisticated environments such as rugged surfaces and metal roofs. Such
locations may reflect intense echo in certain radar incident angles and polarization mode,
and appear as white speckles on land. Ship-shaped bright spots are confused with real ships,
therefore causing false alarms. For instance, the strong reflection areas in Figure 12a,b were
mistaken for a ship. The problems mentioned above were mitigated through polarization
information fusion. White speckles near the shore depicted in Figure 12a,b had more
complete details in Figure 12e,f; hence, the shapes were no longer similar to the real ships.
Consequently, the amounts of false alarms were reduced.

There exists another situation where inshore vessels merged into the surrounding
backgrounds, which made the outlines of ships indecipherable. Difficulties arise when
recognizing the ship shapes whose silhouettes are disturbed by the reflections from the
shore. As in Figure 12c,d, ships were ignored for having approximately the same brightness
as the land or port. The inability of the network to distinguish between ships and back-
ground was one of the main causes of missing detection. Meanwhile, in Figure 12g,h, the
background was noticeably darker, and the vague texture of terrain and harbors became
clearer. The ships that were previously confused with land in Figure 12c,d were remarkably
separated and were detected within green boxes. Different from the detection results on
single-polarized images, the identification results of DSSDD were more accurate.

In sum, pseudo-color enhancement can overcome the limitations of the SAR mech-
anism to a certain extent and improve the detection accuracy. Essentially, pseudo-color
images fuse different polarization characteristics. In this way, they can effectively enhance
the target shape, widen the gap between ships and land, and restrain inshore false alarms
and missing targets accordingly.

4. A Weakly Supervised Method
4.1. Motivation

Although the current deep learning approaches have achieved great success, one ma-
jor drawback is that the cost of data annotation is heavy; thus, it is difficult for many tasks
to obtain massive and thorough hand-labeled supervision information [75]. Furthermore,
extremely deep hierarchy and complex structure constitute powerful networks that require
up to millions of hyperparameters. As a result, such networks rely on high-performance
GPU equipment and many hours of training, which exacerbate its time cost and computa-
tional complexity. In practical projects, CNN-based detectors sometimes might not be the
best choice.

To overcome the shortages mentioned, we propose a weakly supervised anomaly
detection method. In contrast to end-to-end networks that predict objects directly, we use
reconstruction-based anomaly detection to filter false alarms after CFAR. Anomaly detec-
tion aims to find anomalies that have different patterns from the training set, i.e., outliers.
In this paper, the anomaly refers to the false alarm, it could be land, sea, noise, etc. False
alarms have too many kinds to enumerate; simple dichotomies are unsuitable for this
situation. By contrast, fitting and recording the characteristics of positive samples are more
intuitive. That is why we do not care about the feature extraction of anomalies but positive
samples instead. So only normal samples are available as training data [76]. Autoencoder
(AE) only fits and records the characteristics of ships. From doing so, the labeling workload
would be quite reduced.

4.2. Overall Scheme of Proposed Method

The whole detection procedure is diagrammed in Figure 13 with three stages included:
CFAR binarization, candidate region extraction, and anomaly discrimination. In the first
stage, two-parameter CFAR [18] was adopted to binarize the input original image, and
then obtain preliminary target region proposals containing false alarms. Each pixel was
identified as signal (target) and noise (background) under a constant false alarm rate. In the
second stage, white speckles in the binary mask were considered as where the candidate
targets were located and were cropped as 28 × 28 size chips for the next stage input. In the
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last phase, the MemAE [56] was ameliorated and introduced to detect the anomalies. With
inference, the autoencoder tends to reconstruct normal results. Theoretically, anomalies
produce higher reconstruction errors than normal inputs. In other words, the similarity of
the anomaly and its reconstruction result is lower. Therefore, cosine similarity between
reconstruction and input was applied as an indicator of false alarm, and an adaptive
threshold was selected through the Otsu method [77]. Chips with a similarity less than the
threshold were classified as false alarms, while those whose similarity was greater than the
threshold were categorized as targets and reserved.
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We refer to this method as a weakly supervised approach for the following factors: In
the third stage, the chips input to AE were obtained by the traditional image processing
method in the first and second stages. When training AE, only false alarm chips needed
to be manually removed. When screening out anomalies, the labeling workload was
greatly reduced owing to most chips of the CFAR detection results being correctly classified
as ships. As for the object detection tasks, we skipped the labeling of location prior
information, i.e., the BBox. Thus, we defined this method as weakly supervised learning.

4.3. Two-Parameter Constant False Alarm Rate

The constant false alarm detection technology refers to the technology that distin-
guishes between signal and noise and determines targets based on the statistical character-
istics of background clutter while keeping the false alarm probability constant. The core
idea was to estimate the power of the background clutter by modeling the sampled data in
the background window.

Two-parameter CFAR, which can generally adapt to the change of background clutter,
is one of the commonly used classic detection algorithms. Compared with the deep neural
network, this method can sensitively detect changes of a small target signal not limited
by the receptive field, which is especially useful for our data set. For each pixel in a
two-dimensional image, the dual-parameter CFAR established three pixel-centered local
sliding windows with customizable sizes, namely, target window T, protection window G,
and background window B. Three windows are shown in Figure 14. In the target window
were the pixels to be detected; the pixels in the background window were used to calculate
Gaussian statistics of sea clutter; the function of the protection window was to ensure that
ships would not be included in the background window. In this paper, the sizes of T, G
and B were set as 3 × 3, 16 × 16, 32 × 32 respectively.
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The criteria for judging ship signals in the two-parameter CFAR is given in (7):

Pixel =

{
1, µT−µB

σB
≥ thr

0, µT−µB
σB

< thr
(7)

where µT denotes the mean value of pixels in the target window, µB and σB denote the
average and standard deviation of pixels in the background window, and thr is the false
alarm threshold, also known as the normalization factor. During the process, sliding
windows with a certain step traverse the whole image and return an input-sized binary
mask in element-wise comparison.

Figure 15a,d are two examples of input and Figure 15b,e illustrate their binarization
results. It can be seen that the results were contaminated by the interference of land.
Considering the existence of irregular noise, morphological transforms such as erosion
and dilatation were taken after binarization to eliminate the false alarms caused by noise.
Figure 15c,f are masks after morphological transforms.
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4.4. Memory-Augmented Deep Autoencoder

Deep autoencoder is a data-specific, lossy, sparse representation method that automatically
learns from samples, which has been prevalently used in the anomaly detection field. It consists
of an encoder that compresses input data into low-dimensional hidden variables, and a decoder
that restores the image from the hidden variable of the hidden layer. Figure 16 explains how
the AE discriminates anomalies. AE learns patterns of positive samples and restores input
images. It mainly relies on an assumption that anomalies cannot be reconstructed well; the
reconstruction error of anomalies is much larger than that of a normal target. Cosine similarity
measures the difference in pixels between input and output; hence, it was used to classify input
slices into ship category and false alarm category.
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However, the AE has too strong an ability of generalization in that sometimes anoma-
lies can be represented after restoration, resulting in the inability to recognize anomalies
properly [56]. We applied the MemAE proposed by Gong et al. to alleviate the disadvan-
tage of strong generalization. The key point is that, given an input, MemAE does not feed
the encoded variable directly into the decoder but takes it as a query to retrieve the most
relevant items in its memory, which are later delivered to the decoder after a combination
of weighting.

When screening anomalies, Gong et al. failed to take into account the effect of target
size on the reconstruction error. The L2-norm-based mean square error (MSE) formulated
in (8) is an absolute error. It adds up every Euclidean distance between pixels of input x
and reconstruction x̂, which means the reconstruction error is closely related to the number
of object pixels with high intensity.

MSE(x, x̂) =
∣∣∣∣∣∣x− x̂||22 (8)

During the experiments, we found that even if a large target was well reconstructed,
still a high MSE was produced as each ship pixel introduced some errors. In contrast, some
anomalies that consisted of a few high-brightness pixels tended to have a small MSE even if
the restoration results were not similar. Considering this situation, we abandoned MSE and
adopted cosine similarity as an indicator to discriminate anomalies. The cosine similarity
is defined as d(, ) in (9). It estimates the relative differences of vectors by measuring the
cosine of the angle between them. The output score ranges from 0 to 1. The closer the
cosine value is to 1, the more similar the two vectors are.

d(x, x̂) =
x·x̂T∣∣∣∣x∣∣∣∣·∣∣∣∣x̂T∣∣∣∣ (9)

Figure 17 is the schematic diagram of the restoration procedure. The encoder denoted
as fe(·) is enacted by three convolutional layers, and the decoder denoted as fd(·) is
corresponding to three deconvolution layers. Given a certain size input x, the encoder
maps it to encoding z. The memory module is a matrix denoted as M to specifically store
the representative normal patterns. It contains N storage units, and the i-th storage unit is
denoted as mi. An addressing scheme was introduced after the encoder so as to find related
stored items in M. In detail, a non-negative soft addressing weights w was constructed in
(10), where wi denotes the i-th entry of w:

wi =
exp(d(z, mi))

∑N
j=0 exp

(
d
(
z, mj

)) (10)

To ensure the sparsity, w is activated, which means wi only worked if greater than the
threshold λ, otherwise 0:

ŵi =

{
wi, i f wi > λ

0, otherwise
(11)
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In addition, the latent representation ẑ is derived according to (12) and delivered into
the decoder to reconstruct the x̂.

ẑ = ŵM = ∑N
i=1 ŵimi (12)
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4.5. Implementation Details
4.5.1. Slicing

Before we conducted training, we first prepared the training set sliced from our pseudo-
color images. After the CFAR processing, we calculated the contours and center coordinates
of white speckles on binary maps and then executed the slice operation. According to the
statistics in Section 2.5, most BBoxes of ships contained less than 800 pixels. For the sake of
convenience, we cut 28 × 28 size chips centered on targets. As for the targets whose pixels
exceeded this size range, we cropped this target along its minimum bounding rectangle
and then resized it to 28 × 28.

4.5.2. Training

The encoder and decoder are simple convolutional neural networks with their param-
eters shown in Table 4. The MemAE input was fixed 28 × 28 RGB chips, and the memory
size N was set to 100. Conv_i represented the i-th convolution layer, Dconv_i represented
the i-th deconvolution layer. Except for the last Dconv, each layer was followed by batch
normalization [78] and a ReLU activation layer.

Table 4. Convolutional structure and parameters of the encoder and decoder in MemAE.

Layer Name Output Size Kernel Size Stride

Input 28 × 28 - -
Conv_1 14 × 14 3 × 3, 16 2
Conv_2 7 × 7 3 × 3, 32 2
Conv_3 4 × 4 3 × 3, 64 2

Dconv_1 7 × 7 3 × 3, 32 2
Dconv_2 14 × 14 3 × 3, 16 2
Dconv_3 28 × 28 3 × 3, 3 2

4.5.3. Threshold Selecting

The reconstruction similarity of normal targets was concentrated around 0.9, signifi-
cantly larger than that of abnormal reconstruction similarity, which was about 0.7. There
was an obvious valley point between their intersection. As a classical segmentation tech-
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nique, the Otsu method could select the threshold near the valley point. This method
obtains a global adaptive threshold totsu by maximizing the between-class variance:

totsu = ArgMax
0<t<1

{
σ2

B(t)
}

(13)

σ2
B(t) = ω1(t)ω2(t)(µ1(t)− µ2(t))

2 (14)

Class 1 and class 2 denote negative and positive, respectively, in terms of Formula 14.
Samples whose cosine similarity was less than the threshold t were categorized as negatives,
and those samples with cosine similarity greater than t were categorized as positives. σ2

B
was the between-class variance of the two categories at threshold t, ωi(t) was the occurrence
probability of i-th category at threshold t, and µi(t) was the average cosine similarity of the
i-th category at threshold t. By traversing all t, we can find the threshold totsu when the
variance between classes was maximum. Chips whose cosine similarities were less than
totsu were considered as false alarms and thereby abandoned.

4.6. Results Analysis

The experiments were conducted on our DSSDD. We used three evaluation indexes P,
R, and AP to verify the effectiveness of our method. The cosine similarities of the testing
set are visualized in a histogram, Figure 18; ships and false alarms are represented by blue
and orange bins respectively. The totsu was around 0.8 in the test set, with which most of
the testing chips could be classified properly.
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Figure 18. The distribution of cosine similarity between input and restored chips. Ship chips and
false alarms are indicated in blue and orange respectively.

Some representative chips restored from MemAE were visualized as below and
compared with the original inputs. On the left side of Figure 19a–c are real ship objects, and
reconstructed images on the right side. Figure 19d–f are inputs and outputs of false alarms.
The visualization results further confirmed positive samples could be restored well, while
anomalies’ reconstruction errors were large, which was consistent with our expectation.
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Figure 19. Visualization of reconstruction results. (a–c) are comparison of real ship chips on the left
and images restored from MemAE on the right. On the left of (d–f) are false alarms and on the right
are the corresponding reconstructions.

Table 5 displays the testing results of using only two-parameter CFAR as well as that
of our method. The comparison of these two results is revealed in Figure 20, where red
boxes represent false alarms, yellow boxes are for missed ships, and green ones indicate
true positive targets. It can be seen from the table that CFAR detection would introduce a
large number of false alarms while achieving a high recall rate; the precision was only 0.773.
Beneficial from the filtering of MemAE, the nearshore false alarms were suppressed to a
large extent, and the precision was increased by 15.3% meanwhile, reaching a 0.923 recall
rate. It is commonly a tradeoff between precision and recall.

Table 5. Detection precision and recall rate of both two-parameter CFAR and our method. Compared
with the former approach, ours removed more false alarms.

Method Precision Recall

CFAR 0.773 0.966
Ours 0.926 0.923
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To further argue for the performance of proposed method, three additional pytorch
version of CNN detectors, i.e., EfficientDet-D0, YOLOv4-tiny, and MobileNetV3 with SSD
heads were conducted on DSSDD. We evaluated comparative detectors from six aspects:
AP under 0.5 IoU threshold; P, R under F1 point; Parameters; FLOPs; and speed of once
inference on Intel Xeon CPU. Comparative experiments are displayed in Table 6, where M
and B refer to million and billion respectively.

Table 6. Results of different detectors on DSSDD. Our method has a lightweight detector and can
achieve comparable performance with CNN-based detectors.

Method P R AP Params FLOPs Speed

EfficientDet-D0 0.918 0.887 0.911 3.9 M 2.5 B 366 ms
YOLOv4-tiny 0.933 0.924 0.926 5.9 M 3.4 B 176 ms

MobileNetV3 + SSD 0.874 0.843 0.837 2.7 M 420 M 64 ms
Ours 0.926 0.923 0.925 1.5 M 1.4 M 82 ms

The results demonstrate that our proposed detection method can achieve an equivalent
effect to the deep neural network, while the parameters and FLOPs are the lowest of all. We
found that MobileNetV3 had the fastest speed but had poor performance on our dataset
as well.

In general, the proposed method combines the advantages of conventional algorithms
and CNN-based detectors. This method occupies little memory and is easy to train, which
makes it a lightweight model. It does not require large-scale datasets or high-performance
hardware devices and can be transplanted to different devices and generalized to various
practical engineering projects. We hope that the proposed method can provide some
inspiration and help to other scholars and fields of research.

5. Conclusions

In this study, a dual-polarimetric SAR ship detection dataset DSSDD containing
1236 ship slices was constructed. The baselines of DSSDD were established on two SOTA
models. The experimental results show our pseudo-color enhanced images are superior to
single-polarized data in emphasizing objects, avoiding ambiguity, and fusing characteristic
information. Our preprocessing method can effectively improve detection precision and
recall rate. In addition, a weakly supervised method combining two-parameter CFAR with
autoencoder was proposed. To eliminate false alarms generated by the CFAR method,
we introduced an advanced memory-augmented deep autoencoder. By calculating the
reconstruction similarity, we can effectively identify false alarms detected from CFAR.
Experiments were carried out on DSSDD. With acceptable cost, this method has shown
performance comparable to supervised learning, making it a promising direction for
weakly supervised ship detection. In future work, we will focus on further improvement
of the model structure as well as the detecting performance, aiming at promoting the
development in the SAR ship detection field.
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