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MRI Clustering Reveals Three ALS
Subtypes With Unique

Neurodegeneration Patterns
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Objective: The purpose of this study was to identify subtypes of amyotrophic lateral sclerosis (ALS) by comparing
patterns of neurodegeneration using brain magnetic resonance imaging (MRI) and explore their phenotypes.
Methods: We performed T1-weighted and diffusion tensor imaging in 488 clinically well-characterized patients with
ALS and 338 control subjects. Measurements of whole-brain cortical thickness and white matter connectome fractional
anisotropy were adjusted for disease-unrelated variation. A probabilistic network-based clustering algorithm was used
to divide patients into subgroups of similar neurodegeneration patterns. Clinical characteristics and cognitive profiles
were assessed for each subgroup. In total, 512 follow-up scans were used to validate clustering results longitudinally.
Results: The clustering algorithm divided patients with ALS into 3 subgroups of 187, 163, and 138 patients. All sub-
groups displayed involvement of the precentral gyrus and are characterized, respectively, by (1) pure motor involve-
ment (pure motor cluster [PM]), (2) orbitofrontal and temporal involvement (frontotemporal cluster [FT]), and
(3) involvement of the posterior cingulate cortex, parietal white matter, temporal operculum, and cerebellum (cingu-
late-parietal–temporal cluster [CPT]). These subgroups had significantly distinct clinical profiles regarding male-to-
female ratio, age at symptom onset, and frequency of bulbar symptom onset. FT and CPT revealed higher rates of cog-
nitive impairment on the Edinburgh cognitive and behavioral ALS screen (ECAS). Longitudinally, clustering remained
stable: at 90.4% of their follow-up visits, patients clustered in the same subgroup as their baseline visit.
Interpretation: ALS can manifest itself in 3 main patterns of cerebral neurodegeneration, each associated with distinct
clinical characteristics and cognitive profiles. Besides the pure motor and frontotemporal dementia (FTD)-like variants
of ALS, a new neuroimaging phenotype has emerged, characterized by posterior cingulate, parietal, temporal, and cer-
ebellar involvement.
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Amyotrophic lateral sclerosis (ALS) is a progressive
neurodegenerative disease in which patients are con-

fronted with speech impairment, muscle wasting and
weakness, and eventually respiratory insufficiency and
death.1 With the increase in knowledge over the years, the

remarkable heterogeneity of ALS is becoming more appar-
ent in many aspects of the disease, such as site of onset
and rate of progression, the presence of cognitive and
behavioral impairment, genetic predisposition, and patho-
physiological processes.1 Life expectancy is also highly
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variable, ranging from a few months to more than
10 years.2 This heterogeneity means that providing an
accurate prognosis is complicated for clinicians and, as a
result, leaves patients with uncertainty about their future.
To advance our understanding of ALS, it is crucial to get
to the core of this heterogeneity, in particular, because it
seems highly likely that treatments will need to be tailored
to individual patient characteristics.3 Yet, despite the
strong appeal to move toward personalized medicine, it
has proved difficult to grasp what underlies these differ-
ences in disease presentation; a unified framework to
address this heterogeneity remains elusive.

Researchers have often opted for a one-dimensional
approach in the form of subgroup stratification. Clinical
stratification became apparent when poorer prognoses
were first found in patients with a bulbar onset of symp-
toms.4 More clinical variables associated with survival have
since been discovered, leading to the development of the
European Network to Cure ALS (ENCALS) prediction
model.2 The discovery of the C9orf72 hexanucleotide
repeat expansion and its association with frontotemporal
dementia (FTD), has similarly led to genetic patient strati-
fication, showing associations with survival, cognitive and
behavioral impairment, and extra-motor brain
degeneration.5–7 Yet, it is unlikely that univariable
approaches can fully capture underlying disease processes.1

As an alternative, neuroimaging may provide an in vivo
biomarker that consistently correlates to both clinical char-
acteristics and genotypes.8 Hence, magnetic resonance
imaging (MRI) might become an effective instrument to
disentangle disease heterogeneity and provide biomarkers
that identify subgroups.9,10

Therefore, we stratified the ALS spectrum using
multimodal neuroimaging data and propose subgroups of
patients that share similar patterns of cerebral neu-
rodegeneration detected by a probabilistic, unsupervised,
network-based, clustering algorithm. We hypothesize that,
without using prior information, the algorithm can find
subgroups of patients which share similar patterns of brain
involvement and display distinct disease characteristics.

Subjects/Materials and Methods
We included 488 patients with ALS and 338 controls
between 2009 and 2020. Patients and controls were rec-
ruited from a population-based cohort, provided they did
not have any contra-indications for an MRI scan (eg,
severe swallowing difficulties and respiratory insufficiency
when lying supine). Participants with structural brain
abnormalities (eg, stroke or brain tumor) were excluded.
In addition to baseline scans, a total of 512 follow-up
scans were conducted in 275 patients at a 3 to 6-month

interval and a maximum of 4 scans per patient. Cross-
sectional scans of controls were used as reference. In total,
1,338 MRI scans were used in the analyses. Demographic
and clinical data were collected from the date of diagnosis.
Patients were tested for C9orf72 repeat expansion car-
riership.6 UNC13A single nucleotide polymorphism
(SNP) data (rs12608932) from a previous study were used
for a complete case analysis.7 The revised ALS functional
rating scale (ALSFRS-R) was administered at each visit,11

as well as the Dutch version of the Edinburgh cognitive
and behavioral ALS screen (ECAS) starting from
2015.12,13 T1 and diffusion tensor imaging (DTI) MRI
scans were acquired at each visit using the previously
described methods.7 All subjects were scanned with the
same scanning protocol on 2 different 3 Tesla Achieva
Medical Scanners from Philips (Philips, Australia). More
information on acquisition protocols can be found in
Table S1. The King’s stages were derived from the
ALSFRS-R.14 This study was approved by the Medical
Ethical Committee of the UMC Utrecht and written
informed consent was obtained from all participants.

Data Pre-Processing
A schematic overview of the methodology can be found in
Figure 1. T1 images were processed using Freesurfer version 6.0.
This pre-processing software parcellates the brain into gray and
white matter structures and measures cortical thickness at around
150,000 vertices per hemisphere. All scans were resampled to a
common space, allowing vertex-wise comparisons of cortical
thickness. Values were smoothed using a full width half maxi-
mum at 10 mm.

To ensure clustering was performed only on disease-
specific brain characteristics and not on age, sex, or other non-
disease-specific predictors of cortical thickness, these variables
were regressed out in 2 steps. First, a linear model was fitted at
each vertex using scans of control subjects, with age and sex as
covariables. This model was used to calculate residuals for all
subjects. Second, a principal component analysis was performed
on these residuals within control subjects to capture disease-
unrelated brain variation in the general population. After analyz-
ing the scree plot, 2 principal components were used to fit a lin-
ear model within control subjects, using the residuals calculated
in the first model. This second model was subsequently used to
calculate new residuals for patients with ALS. Residuals were cal-
culated and Z-transformed, creating atrophy maps for each
patient independent of age, sex, or naturally occurring brain
variation.

DTI images were acquired using methods described in ear-
lier work.7 Connectomes were created by reconstructing white
matter tracts between 68 cortical regions (Desikan-Killiany
atlas)15 and 15 subcortical structures, using fiber assignment for
continuous tracking (FACT).16 Detailed methods can be found
in previous publications.17 Average weighted fractional anisot-
ropy was calculated for each white matter tract. During the
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reconstruction of individual patient connectomes using FACT, con-
nections that are not present in the brain may erroneously be
reconstructed, whereas reconstruction of true connections may be
unsuccessful. Due to intersubject brain heterogeneity, this pattern
may vary from person to person. To balance the inclusion of false
positive and false negative connections for analysis, we selected con-
nections for analysis based on a recommended threshold of 70%
missing data in control subjects.18 This process of connectome
reconstruction inherently leads to missing data for every subject,
which may be problematic when performing interpatient compari-
sons (eg, Pearson’s ⍴ for one pair of patients may be based on
150 connections, but on 500+ connections for another pair of
patients). To keep interpatient comparisons as consistent as possible,
we performed multiple imputations on the missing fractional anisot-
ropy using predictive mean matching from the “mice” package
in R, resulting in 100 imputed DTI datasets.19 For each

connection, age, sex, and patient/control status were included as
predictors for imputation, along with fractional anisotropy values of
multiple other connections, provided the connections correlated
with a minimal Pearson’s ⍴ of 0.25, and had a minimum propor-
tion of usable cases of 0.90. Similar to T1 data, pooled linear
models for age and sex were fitted for each white matter tract using
the reconstructed connectomes of control subjects. In each imputed
dataset, the residuals from these linear models were used to fit
2 principal components in control subjects to capture and regress
out normal brain variation. The residuals were Z-transformed and
used to create disease-specific white matter degeneration maps over
the 100 imputed datasets.

Clustering Algorithm
For each modality (ie, both T1 and DTI data), the similarity
between Z-transformed brain maps of each possible pair of

FIGURE 1: Overview of methodology. T1-weighted brain images are parcellated for each subject and resampled to a common
space. Diffusion tensor imaging (DTI) brain images are used to reconstruct white matter tracts connecting the 68 regions of the
Desikan–Killiany atlas and 15 subcortical structures and brainstem (“connectome”). Cortical thickness and fractional anisotropy
are calculated and corrected for age, sex, and 2 principal components (reflecting disease-unrelated brain variation) using a linear
model in healthy controls. This model is applied to patients and residuals are calculated and Z-transformed. Between each
possible pair of patients with ALS, the resulting Z-score maps are compared using Pearson’s ⍴ for both T1 and DTI data
separately. The comparisons between all patients can be captured in a multilayer network representation in which Pearson’s ⍴

represents the connectivity between patients. Subsequently, a Louvain-like algorithm is performed for 10,000 resolutions, after
which hierarchical consensus clustering identifies subgroups of patients that display higher degrees of similarity in terms of
neurodegeneration patterns. ALS = amyotrophic lateral sclerosis; ALSFRS-R = revised amyotrophic lateral sclerosis functional
rating scale; DTI = diffusion tensor imaging; ECAS = Edinburgh cognitive and behavioral ALS screen.
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patients was calculated using Pearson’s ⍴ for T1 data and pooled
Pearson’s ⍴ (using Rubin’s rules) for DTI. The clustering algo-
rithm used does not incorporate negative values. Therefore, nega-
tive values for ⍴ were set to zero, meaning that brain similarity
was considered, but not dissimilarity. The resulting values for ⍴
were gathered in two (one for T1 and one for DTI data) 488 by
488 similarity matrices, which were fused in a multilayer net-
work by creating an intrapatient connection (ie, connecting T1
and DTI matrices with a weight of one for each individual) to
ensure that a single individual would not be assigned to 2 differ-
ent clusters (more information is given in Table S2).

To identify clusters of distinct brain phenotypes, we used
the method described by Jeub et al.20 A Louvain-like algorithm
was applied to identify modules within the network, which com-
prise patients who share similar patterns of brain degeneration.
The process is repeated for 10,000 samples of the resolution
parameter, collecting information over different clustering sizes
in a probabilistic manner. The resulting 10,000 subdivisions are
fused into one 488 by 488 consensus matrix, each value rep-
resenting the frequency with which 2 patients are clustered in
the same module. A hierarchical consensus clustering procedure
is used to find significant partitions within the consensus matrix
using a permutation model. This algorithm is iteratively repeated
for each subdivision, resulting in a hierarchical structure of parti-
tions. This network-based clustering method allowed us to clus-
ter on similarity in high dimensional data, without the need for
prior input (ie, number of clusters or resolution parameter),
hence providing insight into hierarchical structures within the
data. In this study, we will focus primarily on the upper level of
the hierarchical structure (ie, the first subdivision). Cluster con-
sensus was calculated for each cluster at this level by computing
the mean consensus value for each pair of patients within a clus-
ter. Subclusters of the second level of the hierarchical clustering
were analyzed to visualize the level of heterogeneity at this level.

Visualizing Cluster Characteristics
Characteristics of each cluster were explored by comparing the
gray and white matter of patients in each cluster directly to all
338 control subjects. Linear models were used for cortical thick-
ness using age and sex as covariates. Although subcortical vol-
umes (19 subcortical structures and 6 ventricular) and cerebellar
subfields (28 regions) were not included in the clustering algo-
rithm due to the low dimensionality of the data, these data were
analyzed for each cluster with linear models, using age, sex, and
estimated total intracranial volume as covariates. Cerebellar sub-
fields were measured after segmentation of T1-weighted images
using automatic cerebellum anatomical parcellation using U-Net
with locally constrained optimization (ACAPULCO).21 Frac-
tional anisotropy was analyzed using pooled linear models with
covariates for age and sex.

To correct for multiple testing, we used FMRIB Software
Library (FSL) Permutation Analysis of Linear Models (PALM)
together with threshold-free cluster enhancement (TFCE) for
cortical thickness analyses.22,23 Bonferroni corrections were per-
formed on fractional anisotropy analyses and subcortical

structure analyses. The p values <0.05 (after correction for multi-
ple testing) were considered significant for all analyses in this
study.

Clinical and Cognitive Associations
Clinical characteristics were collected at the time of diagnosis or
as soon as possible thereafter. We determined site of symptom
onset, age at symptom onset, the presence of FTD, and C9orf72
and UNC13A genotype. Disease progression rates were calcu-
lated using the slope of the ALSFRS-R, defined as (48 ALSFRS-R
score)/months since onset. Survival status was obtained from
municipal records. Differences between clusters were analyzed
using linear and logistic regression models. An additive genetic
model was used to analyze UNC13A. Due to their non-normal
distribution, the variables for disease duration, ALSFRS-R score,
and ALSFRS-R slope were analyzed using the Mann–Whitney
U test. To assess clinical signs of lower and upper motor neuron
(UMN) involvement, patients underwent neurological examina-
tions at each study visit, which were scored according to the
Devine scoring method.24–26 Total UMN and lower motor neu-
ron (LMN) sum scores were analyzed and compared between
clusters using linear regression.

ECAS data on cognitive status and behavioral abnormali-
ties were used to analyze differences in cognitive and behavioral
impairment between the resulting clusters and between clusters
and control subjects. A complete case analysis of ECAS data was
performed. ECAS scores were classified as normal or abnormal
using normative data (based on age, sex, and education) that had
been derived from the Dutch population in an earlier study.13

The Strong criteria for ALS with cognitive impairment (ALS-ci),
ALS with behavioral impairment (ALS-bi), and ALS with
frontotemporal dementia (ALS-FTD) were derived from ECAS
data.27 The frontal assessment battery (FAB),28 administered at
diagnosis from 2011 onward, was included in the analysis. Scores
<13 were considered abnormal. The p values were calculated
using logistic regression, using impairment of cognitive or behav-
ioral measures as an independent variable and cluster as a depen-
dent variable. The ALS-FTD Questionnaire (ALS-FTD-Q) for
behavioral symptoms was filled in by proxies and patients were
categorized as having none, mild, or severe behavioral impair-
ment according to previously defined cutoffs.29

Longitudinal Analysis
Follow-up scans were processed identically to the baseline scans.
A multilayer network was constructed similarly to the cross-
sectional data, without including prior information about the
subject to whom the scans belonged, thus treating each scan sep-
arately. The same clustering algorithm was then applied to the
network. Of the resulting clusters, the cortical thickness and frac-
tional anisotropy were compared with controls using linear
mixed models, corrected for age and sex, while also including a
random intercept for each patient. For each patient, we analyzed
whether there were transitions between clusters over the course
of their follow-up. The longitudinal data were analyzed for tran-
sitional trends, which could potentially represent transitions in
disease stages, rather than different disease subtypes.
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Sensitivity Analysis
To account for possible biases being introduced due to scanner
effects, we repeated the clustering analysis adding the scanner as
a covariable in the first model (in addition to age and sex). The
brain phenotypes of the resulting clusters were subsequently visu-
alized using the method described above.

Results
Demographics
Demographics are shown in Table 1. Patients with ALS
(n = 488) and controls (n = 338) were well matched for
age and sex. We aimed to include patients early in the
course of disease: the median disease duration at the first
MRI scan was 14.5 months (interquartile range
[IQR] = 10.0–22.6 months).

Clustering Results
The clustering algorithm identified 3 main clusters of
187, 163, and 138 patients based on neurodegeneration
patterns that are independent of naturally occurring varia-
tion. The main clusters showed a mean cluster consensus
of 22.0%, 26.4%, and 30.6%, respectively, compared to a
mean inter-cluster consensus of 7.8%. An overview of the
consensus matrix and clustering dendrogram, along with
the brain phenotypes, can be found in Figure 2.

Brain Phenotype
The largest main cluster (n = 187) can be described as a
pure motor phenotype (pure motor cluster [PM]), charac-
terized by isolated cortical thinning at the precentral gyrus,
together with lower fractional anisotropy located at the
corticospinal tract and surrounding white matter tracts
when compared with controls. (Data on white matter
tracts can be found in Table S3.) There was no volume
loss of subcortical structures or ventricular enlargement.
Cerebellar subfield analysis did not reveal any volume loss
(Table 2).

The second main cluster (n = 163) showed cortical
thinning of the entire frontal cortex, including the
precentral gyrus, prefrontal, and orbitofrontal cortices, as
well as anterior temporal lobe involvement and predomi-
nantly left occipitoparietal thinning. White matter degen-
eration was concordant with frontotemporal atrophy,
shown by an impaired white matter network connecting
orbitofrontal and anterior temporal regions. Analyses of
subcortical structures revealed a significantly smaller amyg-
dala, hippocampus, and basal ganglia in both hemispheres,
in addition to enlargement of both the lateral ventricle
temporal horns of the third ventricle and fourth ventricles.
In the cerebellum, white matter volumes were lower in
the left hemisphere compared to controls, but cerebellar
gray matter volumes did not differ from controls.

Cerebellar subfield analysis did not show any volume loss.
This cluster will be referred to as the frontotemporal clus-
ter (FT) in the remainder of this paper.

The third main cluster (n = 138) is characterized by
cortical thinning along the posterior cingulate and isthmus
cingulate regions, together with thinning in the temporal,
occipital, and medial frontal regions. Motor and premotor
regions are also affected, consistent with the diagnosis of
ALS. Compared to the FT cluster, orbitofrontal regions
were spared. White matter analyses showed degeneration
of tracts connected with the posterior cingulate cortex and
the superior parietal cortex. Analyses of the subcortical
structures revealed involvement of bilateral thalamus,
lentiform nucleus, hippocampus, and cerebellum, but
sparing of the caudate nucleus and amygdala. Moreover,
cingulate-parietal–temporal cluster (CPT) showed ventric-
ular enlargement of both lateral ventricles and temporal
horns, as well as the third ventricle. Cerebellar subfield
analyses showed cerebellar atrophy predominantly involv-
ing the corpus medullare, lobules V and VIIB right, and
bilateral IX. In the remainder of this paper, we will refer
to this cluster as the CPT.

Inter-cluster comparisons are illustrated in Figure 3.
A closer look at FT versus CPT comparisons revealed sig-
nificantly greater involvement of the posterior cingulate
cortex and the parietal white matter in CPT, in addition
to larger lateral ventricle volumes. FT showed more severe
involvement of orbitofrontal and anterior temporal gray
and white matter, in addition to more severe atrophy of
the caudate nucleus, amygdala, and parietal cortex.

Using our hierarchical clustering algorithm, the
3 main clusters of brain phenotypes can be further sub-
divided. There were 2 subclusters per main cluster: a
smaller subcluster (PM-A: n = 35, FT-A: n = 28, and
CPT-A: n = 13) and a larger subcluster (PM-B: n = 152,
FT-B: n = 135, and CPT-B: n = 125). Neu-
rodegeneration patterns of the larger subclusters were in
line with those of the main clusters. Although the sample
size differences in these subclusters require careful inter-
pretation, PM-A showed right frontal cortical thinning in
addition to precentral and corticospinal neu-
rodegeneration, FT-A showed pure right frontal lobe thin-
ning, and CPT-A showed parietal white matter
involvement with cortical thinning limited to the
precentral gyrus. A total of 26 clusters were found at the
finest partition. These subclusters are considerably smaller;
therefore, reliable characterization is more challenging.

Clinical Characteristics
Clinical characteristics for each cluster are described in
Table 3. Patients in the PM group were predominantly
men (73.3%), younger at disease onset
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TABLE 1. Cohort Characteristics

Variable ALS Controls Missing data, %

n 488 338

Sex, M 324 (66.4) 229 (67.8) 0

Age at onset, yr 60.5 (52.6–66.6) 0.8

Age at first MRI, yr 62.3 (54.0–68.2) 62.7 (55.2–68.8) 0

Disease duration at inclusion, mo 14.5 (10.0–22.6) – 0.8

Total number of scans per subject, 1/2/3/4 213/128/57/90 338/0/0/0

Bulbar onset 115 (23.9) – 1.2

ALS-FTD clinical diagnosis 11 (3.1) – 26.2

Survival, mo, median (95% CI) 40.4 (37.9–44.2) – 0.8

C9orf72 repeat expansions 42 (9.0) – 4.3

UNC13A genotype 19.9

A/A 162 (41.4) –

A/C 175 (44.8) –

C/C 54 (13.8) –

UNC13A MAF 0.36 – 19.9

King’s stage, 1/2/3/4a/4ba 157/160/156/3/6 3.9

UMN sum score 7.0 (5.0–10.0) – 37.5

LMN sum score 8.0 (6.0–10.0) – 35.9

ALSFRS-R score 40.0 (36.0–43.0) – 4.7

ALSFRS-R slopeb 0.52 (0.29–0.85) – 5.3

ECAS administered 272 (55.7) 142 (42.0)

Abnormal ALS-specific scorec 35 (12.9) 8 (5.7) 49.8

Abnormal nonspecific scorec 17 (6.3) 2 (1.4) 49.8

Abnormal total scorec 34 (12.5) 8 (5.7) 49.8

FAB administered 337 (69.0) 146 (43.2)

FAB abnormal, <13 25 (7.4) 4 (2.7) 41.5

ALS-FTD-Q administered 233 (47.7) –

Mild to severe behavioral changes, >22 38 (16.3) – 52.3

Severe behavioral changes, >29 20 (8.6) – 52.3

Values are median (IQR) for continuous data and count (%) for categorical data unless otherwise specified. No significant differences were found
between patients with ALS and controls.
aDerived from ALSFRS-R questionnaires.
bDisplayed in ALSFRS-R points decrease per month since symptom onset.
cECAS data abnormal scores are derived from Dutch normative data in a previous study.13

95% CI = 95% confidence interval; ALS = amyotrophic lateral sclerosis; ALSFRS-R = revised amyotrophic lateral sclerosis functional rating scale;
ALS-FTD-Q = Amyotrophic Lateral Sclerosis Frontotemporal Dementia Questionnaire; ECAS = Edinburgh cognitive and behavioral amyotrophic
lateral sclerosis screen; FAB = frontal assessment battery; FTD = frontotemporal dementia; IQR = interquartile range; LMN = lower motor neuron;
MAF = minor allele frequency; MRI = magnetic resonance imaging; UMN = upper motor neuron.
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(median = 56.5 years), and the frequency of bulbar symp-
tom onset was relatively low (13.0%). The FT cluster
comprised relatively more women (56.4% men,

p = 0.001 vs PM) and patients were older at disease onset
(median = 62.1 years, p < 0.001 vs PM), with a higher
percentage of bulbar onset (29.8%, p < 0.001 vs PM). As

FIGURE 2: Clustering matrix and phenotype of 3 main clusters compared to controls. Consensus matrix and neurodegeneration
patterns for the 3 resulting ALS clusters: PM (pure motor), FT (frontotemporal), and CPT (cingulate-parietal–temporal). The
consensus matrix is the result of the probabilistic clustering algorithm. Both columns and rows represent individual patients.
Colors represent the frequency with which a pair of patients were clustered together over the 10,000 clustering iterations. The
dendrogram on the left of the consensus matrix shows the outcomes of the hierarchical clustering. Results are displayed for the
first level in the clustering hierarchy (red dashed line). For both gray matter (cortical thickness and subcortical volumes) and
white matter parameters (fractional anisotropy) of each cluster, group comparisons were performed with control subjects
(n = 338), using linear models with age and sex (and estimated total intracranial volume for volumetric analyses) as covariables.
Resulting p values were corrected for multiple comparisons using permutations and TFCE for cortical thickness analyses and
were Bonferroni corrected for subcortical volumes and fractional anisotropy analyses. Neurodegeneration patterns of cortex,
deep gray matter, ventricles, brain stem, cerebellum, and white matter are displayed for each cluster. ALS = amyotrophic lateral
sclerosis; CPT = cingulate-parietal–temporal cluster; FT = frontotemporal cluster; PM = pure motor cluster; TFCE = threshold-
free cluster enhancement; LV = lateral vent.
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TABLE 2. Volumes of Cerebellar Subfields for Each Cluster

Subfield Controls

Cluster Corrected pa

PM FT CPT
CPT vs
controls

Corpus
medullare

13.28 (13.14–13.43) 13.46 (13.26–13.67) 13.05 (12.84–13.26) 12.73 (12.51–12.96) 0.006

Left I–III 0.87 (0.85–0.89) 0.84 (0.81–0.86) 0.86 (0.84–0.89) 0.86 (0.83–0.89) NS

Left IV 3.41 (3.35–3.46) 3.41 (3.33–3.49) 3.51 (3.43–3.59) 3.35 (3.26–3.44) NS

Left V 3.21 (3.17–3.26) 3.16 (3.09–3.22) 3.23 (3.17–3.30) 3.08 (3.01–3.16) 0.067

Left VI 9.16 (9.03–9.29) 9.17 (8.99–9.35) 8.89 (8.70–9.07) 8.93 (8.72–9.13) NS

Left VIIA–Crus
I

12.93 (12.75–13.11) 13.05 (12.8–13.30) 12.58 (12.32–12.84) 12.49 (12.21–12.77) NS

Left VIIA–Crus
II

7.63 (7.50–7.76) 7.62 (7.44–7.79) 7.66 (7.49–7.84) 7.60 (7.40–7.79) NS

Left VIIB 5.92 (5.83–6.02) 5.81 (5.67–5.94) 5.83 (5.70–5.97) 5.68 (5.53–5.83) NS

Left VIIIA 5.48 (5.37–5.59) 5.49 (5.34–5.65) 5.52 (5.36–5.67) 5.34 (5.17–5.51) NS

Left VIIIB 3.28 (3.21–3.34) 3.31 (3.22–3.40) 3.26 (3.17–3.35) 3.09 (2.99–3.19) 0.094

Left IX 3.24 (3.18–3.31) 3.21 (3.13–3.30) 3.21 (3.12–3.30) 3.03 (2.94–3.13) 0.022

Left X 0.49 (0.48–0.50) 0.49 (0.48–0.50) 0.49 (0.48–0.50) 0.47 (0.46–0.49) NS

Right I–III 0.88 (0.86–0.90) 0.84 (0.82–0.87) 0.88 (0.85–0.90) 0.91 (0.88–0.93) NS

Right IV 3.52 (3.46–3.57) 3.49 (3.41–3.57) 3.53 (3.45–3.61) 3.44 (3.35–3.53) NS

Right V 3.43 (3.38–3.48) 3.39 (3.32–3.45) 3.38 (3.32–3.45) 3.27 (3.19–3.34) 0.027

Right VI 8.90 (8.78–9.02) 8.90 (8.73–9.07) 8.63 (8.45–8.80) 8.67 (8.48–8.86) NS

Right VIIA–
Crus I

12.99 (12.81–13.17) 13.14 (12.89–13.39) 12.77 (12.52–13.03) 12.70 (12.42–12.98) NS

Right VIIA–
Crus II

8.21 (8.07–8.36) 8.13 (7.94–8.33) 8.21 (8.01–8.41) 8.27 (8.05–8.49) NS

Right VIIB 5.96 (5.86–6.05) 5.84 (5.70–5.97) 5.86 (5.73–6.00) 5.67 (5.52–5.82) 0.045

Right VIIIA 4.50 (4.41–4.59) 4.51 (4.39–4.64) 4.65 (4.53–4.78) 4.38 (4.24–4.52) NS

Right VIIIB 3.41 (3.35–3.48) 3.49 (3.41–3.58) 3.42 (3.34–3.51) 3.22 (3.13–3.32) 0.051

Right IX 3.13 (3.06–3.19) 3.13 (3.04–3.22) 3.07 (2.99–3.16) 2.92 (2.83–3.02) 0.018

Right X 0.49 (0.48–0.50) 0.49 (0.48–0.51) 0.49 (0.48–0.50) 0.48 (0.47–0.49) NS

Vermis VI 1.57 (1.54–1.59) 1.56 (1.53–1.59) 1.55 (1.52–1.58) 1.53 (1.50–1.56) NS

Vermis VII 1.00 (0.99–1.02) 1.01 (0.98–1.03) 0.98 (0.96–1.01) 1.00 (0.97–1.02) NS

Vermis VIII 2.05 (2.02–2.08) 2.06 (2.02–2.10) 2.05 (2.01–2.10) 2.02 (1.97–2.06) NS

Vermis IX 1.02 (1.01–1.04) 1.01 (0.99–1.04) 0.99 (0.97–1.01) 1.01 (0.98–1.03) NS

Vermis X 0.34 (0.34–0.35) 0.34 (0.33–0.34) 0.33 (0.32–0.34) 0.33 (0.33–0.34) NS

Estimated marginal means and p-values derived from a linear model, using age, sex and estimated intracranial volume as covariates. p-values are
corrected using Bonferroni’s method. Volumes are given in cm3 (95% confidence interval).
aNo significant differences were found for PM versus controls and FT versus controls.
CPT = cingulate-parietal–temporal cluster; FT = frontotemporal cluster; NS = not significant and p value >0.10; PM = pure motor cluster.
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expected, most of the patients with a clinical diagnosis of
FTD were assigned to the FT cluster (8 [6.6%] vs PM:
1 [0.8%], p = 0.036; vs CPT: 2 [1.9%], p = 0.10). Dis-
tinct from FT, the CPT cluster was predominantly men
(68.8%, p = 0.028 vs FT), and distinct from PM, had an
older age at onset (median = 62.2 years, p < 0.001 vs
PM) and more frequent bulbar onset of symptoms
(31.4%, p < 0.001 vs PM). No differences were found in
survival rates since symptom onset, nor was there a differ-
ence between disease duration. Analysis of clinical stages
did not reveal significant differences; however, a nonsignif-
icant trend (p = 0.097) was detected, in that CPT
appeared to have a higher King’s stage compared to FT,
but not compared to PM. UMN sum scores were lower in
FT (p = 0.004 vs PM and p = 0.009 vs CPT), indicating
less UMN symptoms, whereas LMN scores did not differ.
ALSFRS-R scores on MRI were higher in the FT cluster
(p = 0.003 vs PM, p = 0.004 vs CPT). C9orf72 mutation
and UNC13A SNP were not associated with the different
clusters.

Cognition and Behavior
For 272 patients and 171 controls included after 2015, an
ECAS was administered at time of the first MRI scan. In
166 patients, the ECAS behavioral screen was adminis-
tered to proxies. ECAS data were available for
117 (62.6%) patients in the PM group, 93 (57.0%)
patients in the FT group, 62 (44.9%) patients in the CPT
group, and 142 (42.0%) controls. Cognitive abnormalities
according to the ECAS are presented in Figure 4. The
PM group did not differ from the control subjects on any
of the domains. For FT, there were significantly higher

frequencies of patients with cognitive impairment in lan-
guage (20.4% vs controls 7.8%, p = 0.006), executive
function (13.0% vs controls 3.5%, p = 0.011), and mem-
ory domains (16.5% vs controls 6.3%, p = 0.016), when
compared with control subjects. For FT, higher rates of
abnormal sum scores were also found on the ALS-specific
sum score (15.4% vs controls 5.7%, p = 0.018), non-
specific score (8.8% vs controls 1.4%, p = 0.017), and
total score (14.4% vs controls 5.7%, p = 0.029). Com-
pared with controls, CPT also showed significantly more
patients with abnormal ALS-specific sum scores (15.0% vs
controls 5.7%, p = 0.037), nonspecific sum score (8.2%
vs controls 1.4%, p = 0.031), and total score (15.0% vs
controls 5.7%, p = 0.037). For CPT, this lower ALS-
specific sum score was mainly driven by differences in lan-
guage (17.7% vs controls 7.8%, p = 0.041) and executive
domains (13.3% vs controls 3.5%, p = 0.016).

Between-cluster comparisons showed a difference
between FT and PM in language (FT 20.4% vs PM
8.5%, p = 0.016) and memory domains (FT 16.5% vs
PM 7.0%, p = 0.036). CPT showed significantly more
patients who fulfilled the criteria for ALS-ci, compared to
PM (CPT 40.3% vs PM 33.3%, p = 0.028). No other
differences were found between FT and CPT or between
CPT and PM. Behavioral questions from the ECAS and
the criteria for ALS-bi and ALS-FTD derived from these
were also compared between clusters, but yielded no sig-
nificant findings. The FAB was administered in
337 (69.0%) patients and showed a significantly higher
proportion of abnormal scoring patients in FT compared
to PM (FT 11.9% vs PM 3.9%, p = 0.027), but this did
not differ from CPT (FT 11.9% vs CPT 6.5%,

FIGURE 3: Inter-cluster neurodegeneration comparison. The p value maps of whole-brain inter-cluster comparison of
neurodegeneration patterns. Cortical thickness and fractional anisotropy are analyzed using a linear model, using age and sex as
covariables. Subcortical volumes are analyzed using the same model containing estimated total intracranial volume as an extra
covariate. Resulting p values were corrected for multiple comparisons using permutations and TFCE for cortical thickness
analyses and were Bonferroni corrected for subcortical volumes and fractional anisotropy analyses. Neurodegeneration patterns
of cortex, deep gray matter, ventricles, brain stem, cerebellum, and white matter are displayed for each cluster.
CPT = cingulate-parietal–temporal cluster; FT = frontotemporal cluster; PM = pure motor cluster; TFCE = threshold-free cluster
enhancement.
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TABLE 3. Disease Characteristics Per Cluster

Variable

Cluster p

PM FT CPT
PM
vs FT

PM
vs CPT

FT
vs CPT

n 187 163 138

Sex, M 137 (73.3) 92 (56.4) 95 (68.8) 0.001 NS 0.028

Age at onset, yr 56.5 (48.9–63.1) 62.1 (55.0–67.5) 62.2 (55.9–69.1) <0.001 <0.001 NS

Age at MRI, yr 58.2 (50.4–64.9) 64.0 (56.3–69.0) 64.7 (57.7–70.9) <0.001 <0.001 NS

Disease duration, mo 14.7 (9.8–22.4) 15.0 (10.1–22.1) 14.1 (10.3–24.3) NS NS NS

Bulbar onset 24 (13.0) 48 (29.8) 43 (31.4) <0.001 <0.001 NS

ALS-FTD clinical diagnosis 1 (0.8) 8 (6.6) 2 (1.9) 0.036 NS 0.10

Survival, mo, median (95% CI)a 45.6 (39.6–49.1) 39.0 (32.7–42.9) 39.3 (32.7–51.1) NS NS NS

C9orf72 repeat expansions 15 (8.6) 16 (10.2) 11 (8.1) NS NS NS

UNC13A genotype NS NS NS

A/A 63 (43.4) 54 (41.5) 45 (38.8)

A/C 63 (43.4) 63 (48.5) 49 (42.2)

C/C 19 (13.1) 13 (10.0) 22 (19.0)

UNC13A MAF 0.35 (0.35) 0.34 (0.32) 0.40 (0.37)

King’s stage, 1/2/3/4a/4bb 54/71/56/1/3 58/55/45/2/0 45/34/55/0/3 NS NS 0.097

UMN sum score 8.0 (5.0–10.0) 6.0 (4.0–8.0) 7.0 (5.0–10.5) 0.004 NS 0.009

LMN sum score 8.0 (6.0–10.0) 7.0 (6.0–10.0) 8.0 (6.0–11.0) NS NS NS

ALSFRS-R score 39.0 (36.0–42.0) 41.0 (38.0–43.0) 39.0 (34.0–42.8) 0.003 NS 0.004

ALSFRS-R slopec 0.54 (0.33–0.90) 0.47 (0.27–0.75) 0.50 (0.27–0.86) 0.066 NS NS

ECAS administered at MRI 117 (62.6) 93 (57.0) 62 (44.9)

Abnormal ALS-specific scored 12 (10.4) 14 (15.4) 9 (15.0) NS NS NS

Abnormal nonspecific scored 4 (3.5) 8 (8.8) 5 (8.2) NS NS NS

Abnormal total scored 12 (10.5) 13 (14.4) 9 (15.0) NS NS NS

FAB administered 127 (67.9) 118 (72.4) 92 (66.7)

FAB abnormal, <13 5 (3.9) 14 (11.9) 6 (6.5) 0.027 NS NS

ALS-FTD-Q administered 100 (53.5) 80 (49.1) 53 (38.4)

Mild to severe behavioral changes, >22 17 (17.0) 17 (21.2) 4 (7.5) NS NS 0.042

Severe behavioral changes, >29 8 (8.0) 9 (11.2) 3 (5.7) NS NS NS

Values are median (IQR) for continuous data and count (%) for categorical data unless otherwise specified. The p values are computed using linear
models for continuous variables and logistic models for categorical variables. Variables UNC13A and King’s stage were treated as ordinal, the p values
are calculated using the Cochran-Armitage trend test. The p values for disease duration, ALSFRS-R score, ALSFRS-R slope, and ALS-FTD-Q total
score were calculated using Mann–Whitney U test.
aThe p value is calculated using a Cox proportional hazard model corrected for the linear predictor of the ENCALS model.2
bDerived from ALSFRS-R questionnaires.11
cDisplayed in ALSFRS-R points decrease per month since symptom onset.
dECAS data abnormal scores are derived from Dutch normative data in a previous study.13

95% CI = 95% confidence interval; ALS = amyotrophic lateral sclerosis; ALSFRS-R = revised amyotrophic lateral sclerosis functional rating scale;
ALS-FTD-Q = Amyotrophic Lateral Sclerosis Frontotemporal Dementia Questionnaire; CPT = cingulate-parietal–temporal cluster;
ECAS = Edinburgh cognitive and behavioral amyotrophic lateral sclerosis screen; FAB = frontal assessment battery; FT = frontotemporal cluster;
FTD = frontotemporal dementia; IQR = interquartile range; LMN = lower motor neuron; MAF = minor allele frequency; MRI = magnetic reso-
nance imaging; NS = not significant and p value >0.10; PM = pure motor cluster; UMN = upper motor neuron.
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p = 0.20). The ALS-FTD-Q was filled in by proxies of
233 (47.7%) patients. The FT cluster did show more
patients with mild to severe behavioral symptoms than the

CPT cluster (FT 21.2% vs CPT 7.5%, p = 0.042), but
this did not differ significantly from the PM group
(FT 21.2% vs PM 17.0%, p = 0.47).

FIGURE 4: Cognitive profiles for each of the main clusters. (A) Proportions of abnormal cognition scores for the different cognitive
domains on the ECAS. Cutoff scores are derived from Dutch normative data based on age, sex and education level.13 Error bars
represent 95% confidence intervals. The p values are calculated using logistic regression models. Only significant p values are
displayed above the data with brackets. (B) Frequency of behavioral symptoms derived from the proxy questionnaire of the ALS-
bi = ALS with behavioral impairment; ALS-ci = ALS with cognitive impairment; and ALS-FTD = ALS with frontotemporal dementia.
ALS = amyotrophic lateral sclerosis; Apath = apathy; CPT = cingulate-parietal–temporal cluster; Disinh = behavioral disinhibition;
ECAS = Edinburgh cognitive and behavioral ALS screen; FT = frontotemporal cluster; LossEmp = loss of empathy/sympathy;
NonSpec = ALS nonspecific sum score; Oral = hyperorality/altered eating behavior; Persev = perseverative/stereotyped behavior;
PM = pure motor cluster; Psych = psychotic symptoms; Spec = ALS-specific sum score. [Color figure can be viewed at www.
annalsofneurology.org]
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To analyze whether the neurodegeneration patterns
of the FT and CPT clusters were not solely driven by spe-
cific subclusters of patients with cognitive impairment, we
performed a sensitivity analysis in which patients with
cognitive impairment were excluded from the FT and the
CPT clusters. Cognitive impairment was defined as fulfill-
ing the ALS-ci criteria using the ECAS or an abnormal
score on the FAB. Using the available data, we identified
39 cognitively impaired and 108 cognitively normal
patients in the FT group. In the CPT cluster there were
26 cognitively impaired and 89 cognitively healthy
patients. Neurodegeneration patterns of cognitively

healthy patients were similar to the main cluster in both
FT and CPT, showing that neurodegeneration patterns of
the main clusters were not solely driven by a subcluster of
cognitively impaired patients.

Longitudinal Analysis
Of the 488 participating patients, 213 (44%) had a single
scan, 128 (26%) had a total of 2 scans, 57 (12%) had
3 scans, and 90 (18%) patients had 4 scans (total number
of scans in patients = 1,000). The median time interval
between scans was 4.2 (IQR = 3.4–5.7) months
(described in more detail in Table S4). Clustering this

FIGURE 5: Longitudinal clustering results and cluster transitions. (A) Consensus matrix and (B) neurodegeneration patterns for
the 3 clusters resulting from longitudinal data analysis. For both gray matter (cortical thickness and subcortical volumes) and
white matter parameters (fractional anisotropy) of each cluster, group comparisons were performed with control subjects
(n = 338, one scan only), using a linear mixed-effects model with age and sex (and estimated total intracranial volume for
volumetric analyses) as covariables, accounting for between-subject variation using a random intercept. The p value maps were
Bonferroni corrected for cortical thickness, subcortical volumes, and fractional anisotropy analyses. (C) Sankey diagram
illustrating the transitions for each patient’s follow-up scans. Columns represent different time points (T1 to T4), with bar sizes
representing the total number of scans in each cluster at given time point. Gray flows represent transitions in patients’ cluster
assignments over the different timepoints. In 90.4% of the follow-up visits, patients remained in the same subgroup as their
baseline visit. ALS = amyotrophic lateral sclerosis; CPT = cingulate-parietal–temporal cluster; FT = frontotemporal cluster;
PM = pure motor cluster.
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total of 1,000 scans resulted in 3 groups, whose brain phe-
notypes were identical to those found in the cross-
sectional analysis (Fig 5A, B).

Patients were analyzed with regard to whether they
were categorized in the same cluster over the different
timepoints or whether they transitioned to another cluster
over time. The transitions between the clusters over the
different time points are depicted in a Sankey plot
(Fig 5C). (Mean follow-up times and transition matrices
can be found in Table S4). Of the 512 total follow-up
scans, 463 (90.4%) were assigned to the same cluster as
the baseline scan (n = 488) of the same patient. There
were no between-cluster transitions that occurred remark-
ably more frequently, indicating that transitions observed
are more likely caused by noise, rather than progression
through possible stages.

Sensitivity Analysis
Analysis of scanner effects revealed that 290 patients and
152 controls were scanned using scanner A, and
198 patients and 186 controls were scanned on scanner
B. Individual neurodegeneration maps were reconstructed
by calculating Z-scores using an MRI scanner as a
covariable in addition to age and sex. The repeated cluster-
ing analysis resulted in 3 main subgroups of 178, 159, and
151 patients. The resulting phenotypes were consistent
with the main clustering analysis, and similarly showed
characteristics of PM, FT, and CPT, respectively (Fig S1).

Discussion
By using a large multimodal neuroimaging dataset of, in
total, 1,338 MRI scans from 488 clinically well-
characterized patients with ALS and 338 control subjects,
in combination with a probabilistic data-driven approach,
we were able to identify 3 distinct subtypes of ALS, which
can be described as a pure motor, a frontotemporal, and a
cingulate-parietal–temporal variant of ALS. The large sam-
ple size allows the use of a network-based probabilistic
clustering algorithm, which clusters according to neu-
rodegeneration pattern similarity rather than severity and
does not require prior assumptions to be made. The
resulting neuroimaging subtypes are associated with dis-
tinct clinical features and congruent with cognitive func-
tion. Longitudinal analysis replicates cross-sectional
clustering and reveals that patients usually remain in the
same cluster over time, providing evidence for distinct
subtypes of ALS rather than progressing disease stages.
This finding challenges the hypothesis of the ALS-FTD
spectrum being a linear spectrum of varying disease sever-
ity and shows that extra-motor neurodegeneration fre-
quently occurs in patterns outside frontotemporal
degeneration.

The discovery of the CPT subtype—characterized
by cingulate, parietal, temporal, and cerebellar
involvement—is novel in the field of ALS. Individual fea-
tures of this subtype have been reported separately in pre-
vious, smaller, ALS neuroimaging studies: involvement of
the cingulum has been reported, often related to cognitive
impairment8,30–33; decreased parietal white matter integ-
rity has been reported, specifically seen in patients with
behavioral impairment8,34; furthermore, involvement of
the cerebellum has been described in ALS by neuroimag-
ing and histological studies.35–38 In our clustering
approach involving over 1,000 MRI scans, we were able
to identify a more comprehensive, separate, neuroimaging
phenotype. As the CPT subtype comprises a smaller, yet
significant, proportion of our neuroimaging cohort
(138/488 patients, 28%), without sufficient stratification,
different aspects of the phenotype would easily be diluted
in studies with smaller sample sizes. A neuroimaging-based
stratification of study populations could potentially pro-
vide new insights for researching other disease aspects
of ALS.

Our cerebellar subfield analysis of CPT partially
overlaps with an earlier meta-analysis showing similar focal
upper lobule involvement (lobule V) and lower lobule
involvement (VIIIb and IX), but not showing involvement
of the Crus.39 These regions are thought to be associated
with somatomotor function and default mode network,
which could be in line with the cerebral degeneration pat-
tern found in CPT.40,41

Despite significant differences in neurodegeneration
patterns and clinical UMN presentation, we found that
the CPT and FT subtypes are not distinguishable using
the cognitive and behavioral screening tests that are fre-
quently applied in clinical practice (ie, ECAS,
ALSFTD-Q, and FAB). We do, however, note a trend in
which the CPT cluster has a higher rate of apathy than
the FT cluster, which could be linked to findings from a
study linking parietal atrophy to apathy.42 Considering
the significantly differing patterns of neurodegeneration in
FT and CPT, it is unlikely that these patterns cause iden-
tical impairment of cognitive function. Because patients
are stratified on patterns of neurodegeneration, rather than
disease severity, it is possible that a substantial proportion
of patients display mild, subclinical levels of FT or CPT
type degeneration. Furthermore, the neuropsychological
instruments that were used in this study are screeners
designed to identify changes within the spectrum of FTD.
Therefore, (subtle) cognitive deficits outside this spectrum
may have been missed. We also note that the extent of
extra-motor degeneration might not necessarily be related
to severity of motor function, as the more widespread
affected FT subgroup shows less motor impairment on
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the ALS-FRS-R and King’s stage than CPT. Future neuro-
psychological assessment studies might focus on
uncovering a cognitive phenotype associated with the
CPT neurodegenerative profile to differentiate more pre-
cisely clinical features of ALS subtypes.

Although FT is not distinguishable from CPT based
on cognitive tests, most patients with clinically diagnosed
ALS-FTD are assigned to the FT subgroup. Still, we see
that 3 patients with a clinical diagnosis of ALS-FTD are
assigned to either the PM or CPT subgroups. We
explored their Z-score maps (adjusted for age and sex;
Fig S2) and noticed that patients had relatively marked
white matter degeneration, but no clear frontal and tem-
poral gray matter involvement as seen in
FT. Heterogeneity might indeed exist within patients with
a clinical diagnosis of ALS-FTD. Studies in patients with
behavioral variant FTD have revealed heterogeneous pat-
terns of neurodegeneration,43,44 which may be related to
heterogeneity found in clinical phenotypes of behavioral
variant FTD.45 Using current methods of ALS-FTD diag-
nosis, distinct neurodegeneration patterns might present
as clinically overlapping syndromes.

Based on our study data, we were not able to find a
genetic basis for these differences in neurodegeneration
profiles. We found that patients with a C9orf72 repeat
expansion were not assigned to a single neurodegenerative
pattern. Previous studies have reported a neurodegenera-
tive signature associated with C9orf72, characterized by
widespread cortical and subcortical degeneration, most
severe in frontal and temporal brain lobes.46,47 Yet, little
is known about the within-group heterogeneity that is pre-
sent in patients with a C9orf72-mutation. In this study,
we demonstrate that C9orf72 carriers are not confined to
a single neurodegenerative profile; this is to be expected,
considering the phenotypic heterogeneity that can even be
found within families.48 We hypothesize that the neurode-
generative signature of C9orf72 at a group level might
have resulted from pooling patients with severe but dis-
tinct individual degeneration profiles. To investigate this,
we analyzed individual neurodegeneration patterns of
C9orf72 mutation carriers from each cluster. Their Z-score
maps (adjusted for age and sex) reveal heterogeneity
within the group of C9orf72 mutation carriers that is con-
cordant with neurodegeneration patterns of the different
clusters (Fig S3). Similarly, despite earlier studies showing
UNC13A to be related to temporal thinning,7 our study
did not show a significant association with any of the clus-
ters. Although UNC13A and C9orf72 represent 2 of the
most common genetic variants associated with ALS, a
more extensive genetic characterization might provide
greater insight into the genetic causes of neurodegenerative
heterogeneity in our study.

One of the key elements in our findings is that mul-
tiple disease aspects corroborate the hypothesis that
patients can be categorized into distinct ALS subgroups.
The identification of a PM and FT cluster—2 established
phenotypes of ALS—supports the validity of the clustering
algorithm results. Second, distinct neurodegenerative pat-
terns can be found in the analyses of subcortical structures
and cerebellar subfields, even though these imaging
parameters were not included in the clustering process.
Moreover, the cognitive profiles of the clusters are sup-
portive of the neuroimaging phenotypes, with cognitive
impairment predominantly being found in the 2 clusters
that show extra-motor neurodegeneration (FT and CPT).

Yet, there are limitations to the study. Due to the
nature of the MRI acquisition procedure, we had to
exclude patients with severe bulbar or respiratory impair-
ment as these impede lying in a supine position. Still, we
aimed to include patients as early as possible (when severe
bulbar or respiratory impairment is rare) and managed to
include a significant proportion of patients with bulbar
onset of symptoms who were still able to participate. The
rapidly progressing nature of the disease is a limiting factor
in ALS neuroimaging follow-up studies and poses a con-
siderable challenge to creating the large sample size needed
to apply machine learning algorithms.49 This also, unfor-
tunately, limited the possibility of performing external val-
idation, as our probabilistic clustering method requires
large size neuroimaging datasets to produce stable results.

Another limitation is the significant proportion of
missing data for cognitive analysis, largely due to the fact
that the Dutch version of the ECAS was established in
2015, and detailed cognitive data of patients who partici-
pated before 2015 are absent. Although it is possible that
the 272 (56%) patients whose ECAS were analyzed could
potentially differ from patients included before 2015, we
expect this bias to be limited, considering that both the
inclusion procedures and MRI scanning protocol
remained unchanged over the course of the study. Even
though a dataset of this size is probably large enough to
have detected clinically significant cognitive changes in the
tested domains, no full neuropsychological examination
was performed and subtle cognitive changes or cognitive
deficits in other domains may have passed undetected.

Due to technical limitations inherent to FACT
connectome reconstruction, multiple imputations were
needed to equitably perform interpatient comparisons.
Because Rubin’s rules were used, cross-dataset variance is
incorporated in the computation of Pearson’s ⍴, thus
reducing the risk of biased estimates due to imputation.
Last, we would highlight that the clustering algorithm is
used to identify subtypes of neurodegeneration at a group
level and is not designed to accurately classify individual
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patients. Subsequent studies may focus on developing
tools that could classify individual neurodegeneration sub-
types for implementation in clinical practice.

Connectome reconstruction using probabilistic
methods may overcome this, but come with other disad-
vantages (ie, high number of false positives and less accu-
racy in reconstruction of long-distance connections).

We demonstrate that ALS consists of, at least, 3 dis-
tinct subgroups based on patterns of cerebral involvement.
These subgroups remain stable during longitudinal assess-
ments and are each associated with distinct clinical charac-
teristics and cognitive profiles. A new neuroimaging
phenotype has emerged, besides the pure motor and
FTD-like variants, that uniquely exhibits posterior cingu-
late, parietal, and cerebellar neurodegeneration in addition
to motor and temporal involvement. The discovery of this
subtype could present a new area of focus for future
research and may provide a new approach toward advanc-
ing personalized medicine in ALS.
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