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ABSTRACT

Targeted anticancer therapies represent the most effective pharmacological 
strategies in terms of clinical responses. In this context, genetic alteration of 
several oncogenes represents an optimal predictor of response to targeted therapy. 
Integration of large-scale molecular and pharmacological data from cancer cell lines 
promises to be effective in the discovery of new genetic markers of drug sensitivity 
and of clinically relevant anticancer compounds. To define novel pharmacogenomic 
dependencies in cancer, we created the Mutations and Drugs Portal (MDP, http://
mdp.unimore.it), a web accessible database that combines the cell-based NCI60 
screening of more than 50,000 compounds with genomic data extracted from the 
Cancer Cell Line Encyclopedia and the NCI60 DTP projects. MDP can be queried 
for drugs active in cancer cell lines carrying mutations in specific cancer genes or 
for genetic markers associated to sensitivity or resistance to a given compound. 
As proof of performance, we interrogated MDP to identify both known and novel 
pharmacogenomics associations and unveiled an unpredicted combination of two 
FDA-approved compounds, namely statins and Dasatinib, as an effective strategy to 
potently inhibit YAP/TAZ in cancer cells.

INTRODUCTION

Genetic alterations in cancer cells often generate 
cancer-specific dependencies that are exploited to 
develop targeted therapies. Mounting evidence shows 
that the number of cancer patients responding to targeted 
therapies has dramatically increased. For example, about 
half of melanomas show mutations in BRAF, making these 
cells sensitive to specific BRAF (Vemurafenib) and/or  

MEK inhibitors. Although the beneficial responses are 
not always durable [1], the likelihood of patients bearing 
this kind of mutations to respond to Vemurafenib or 
MEK inhibitors is high [2]. For those patients without 
these genetic alterations, unfortunately no dedicated 
therapies exist yet [3] and the identification of novel 
pharmacogenomics associations driven by large-scale 
genomic studies could undoubtedly provide information 
that may increase patients’ chances to survive. However, 
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the systematic identification of disease-specific genes 
associated to drug sensitivity or resistance is hampered 
by the lack of integrated large-scale genomic and 
pharmacological data. The NCI60 cancer cell line 
database [4] and the Cancer Cell Line Encyclopedia 
(CCLE) [5] are the most comprehensive large-scale 
information sets with multiple genomic and drug response 
resources. Due to the extensive pharmacological and 
genomic data available, these open source databases 
are prime candidates for integration and broad public 
access. Nevertheless, the lack of interconnection among 
these resources reduces the opportunities for molecular 
oncology and system pharmacology investigations. 
With the aim to develop novel therapies by identifying 
cancer cells with specific drug sensitivity as a result of 
genetic abnormalities, we designed the Mutations and 
Drugs Portal (MDP), a publicly accessible database that 
interconnects pharmacological information extracted 
from the NCI60 DTP screening with genomic data of 
the CCLE and NCI60 projects. Specifically, the MDP 
not only associates pharmacological and genomics 
data of the NCI60 repository but also correlates CCLE 
sequencing data (1,651 genes) to NCI60 drug response 
information (50,816 compound). Indeed, while NCI60 
exome-sequencing of 15,000 genes can be linked to 
pharmacological data through Cell Miner [4], a web 
tool part of the NCI60 project, the high quality genomic 
variant information of the CCLE, focusing on a specific 
set of cancer related genes, still lacks of any integration 
with a large panel of drug response data. As compared to 
other tools, whose pharmacological database is limited 
to few hundreds compounds [6, 7], MDP integration of 
CCLE sequencing and NCI60 drug data leverages the 
possibility to identify candidate compounds or genomic 
markers of response from cancer cell lines models. In this 
study, querying MDP for drugs active on cells bearing 
inactivating mutation in NF2 (Neurofibromatosis 2/
Merlin) gene, a condition associated with hyperactivation 
of the oncogenes YAP and TAZ, we identified statins 
and Dasatinib as a pharmacological combination able to 
potently inhibit YAP/TAZ function in cancer cells.

RESULTS

Database content and architecture

The MDP database builds on exome-sequencing and 
drug response data from the NCI60 and the CCLE datasets. 
The National Cancer Institute (NCI) anticancer drug screen 
was originally developed to identify compounds with 
growth-inhibitory or toxic effects on a panel of 60 human 
tumour cell lines (NCI60), representing different tumour 
types [8,9]. The aim of the project was to prioritize 
compounds for their ability to inhibit, in vitro, growth of 
human cancer cell lines from tissues as breast, prostate, 
lung, colon, ovary, kidney, central nervous system and 

from melanomas and leukemias. In the NCI60 screen, 
drug activity is measured in terms of GI50, the log of 
compound concentration required to cause 50% of growth 
inhibition whereas molecular data of cell lines includes 
DNA copy number, single nucleotide polymorphisms 
(SNPs) [10,11], whole-exome sequencing [12], and RNA/
micro-RNA expression profiles [13–15]. In particular, 
exome-sequencing data are available for 15,000 genes. 
Nowadays, the database of the NCI60 Developmental 
Therapeutics Program (NCI60 DTP) is by far the largest 
public repository of pharmacological and genomics data 
comprising response characteristics of cancer cell lines to 
more than 50,000 compounds. The Broad-Novartis Cancer 
Cell Line Encyclopedia (CCLE) instead, contains genome-
wide DNA copy number, gene expression profiles for 
960 human cancer cell lines, drug response information for 
24 anticancer drugs across 504 cell lines, and the mutational 
status of 1,651 genes determined by hybrid capture high-
throughput sequencing [5]. In essence, the NCI60 provides 
the largest variety of compounds and a comprehensive 
profiling of exonic variants, while CCLE offers the 
complete panel of cell lines, a profound sequencing depth, 
although limited to slightly more than 1,600 cancer-related 
genes, but rather limited pharmacological information. 
Given these premises, the aim of MDP is bridging NCI60 
uniquely large number of drug sensitivity data with both 
CCLE and NCI60 DTP gene sequencing information. As 
such, MDP can query drug sensitivity data for 50,816 
compounds on CCLE and NCI60 sequenced cell lines 
(see Figure 1). The guiding element, used to link NCI60 
pharmacological information to CCLE and NCI60 genomic 
data, is the set of common cancer cell lines between the 
NCI60 drug screening (now available for 115 cell lines) and 
the CCLE and NCI60 genomic repositories, comprising 
50 and 60 cell lines, respectively. Using these common cell 
lines, MDP can query NCI60 pharmacological data and 
CCLE and NCI-60 genomic information to identify drugs 
correlated to gene mutations (from gene to drug) or gene 
mutations associated to drug response (from drug to gene).

Web interface

The web interface allows querying associations 
between genomic and pharmacological data in either 
direction depending on the particular question of interest. 
In the Analysis page, selecting the from gene to drug 
section, it is possible to start from a gene to retrieve 
compounds or drug families with growth-inhibitory 
effects on cancer cell lines carrying mutations on that 
gene. Instead, using the from drug to gene analysis, the 
user can input a drug to identify which genomic mutations 
affect the sensitivity of the cancer cell lines. Both types 
of queries can be performed selecting the genomic 
information of the 1,651 oncogenes from CCLE (run 
analysis on CCLE) or the whole set of 15,000 human 
genes from NCI60 repository (run analysis on NCI60).
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Specifically, when selecting the from gene to drug 
section, both run analysis on CCLE and run analysis on 
NCI60 buttons re-direct to a web page where the user can 
query for the gene names or the SNP Ids of interest [16]. 
Multiple gene names or dbSNP Ids can be inputted at the 
same time to explore drug sensitivity to combinations of 
multiple genes or SNPs. Once selected the genomic entity, 
the query can be limited to subsets of tissues (i.e., cell 
lines) and of variant classifications (i.e., mutation types). 
Available gene names, dbSNP Ids, and mutation types will 
vary depending on the selected sequencing data, meaning 
that the search will be less flexible when selecting the high-
depth genomic sequencing of the 1,651 cancer-related 
genes from CCLE. The output of from gene to drug 
analysis is a list of molecules that show a statistically 
significant activity on cell lines bearing specific mutations 
on the selected gene/s (Figure 2A). Results are returned 
using graphical and interactive representations and the 
list of molecules can be downloaded for post-processing 
evaluations. In particular, the result page contains two 
main tables, i.e., the Table Results and the Enriched Drug 

Families table. The Table Results lists the compound 
NSC ID, the compound name, the drug family, mechanism 
of action and FDA status, and the enrichment score and 
p-value, and can be sorted, ordered and searched to 
select specific characteristics of the outputted molecules. 
Instead, the Enriched Drug Families table shows the 
total sensitivity enrichment of each drug family when 
compared to the total number of compounds. Drug 
families are ranked according to the p-value of drugs with 
an enrichment score higher than 0.6. Furthermore, the 
result page contains three different plots:

1.	 a pie-chart showing the drug families frequency 
distribution of the complete pool of significant drugs;

2.	 a barplot showing the score of each drug 
belonging to a particular drug family;

3.	 a scatterplot showing the relationship between 
the score and the p-value for each drug and highlighting 
in red statistically significant compounds for a specific 
drug family.

When using the from drug to gene analysis, MDP 
identifies genomic variants that might be related to the 

Figure 1: The database scheme of MDP. MDP allows identifying compounds with statistically significant anticancer activity (from 
gene to drug) or the most enriched mutations for a selected compound (from drug to gene). Pharmacological data are from the NCI60 
screening of 50,816 compounds on 115 cancer cell lines; genomic information is from the CCLE and NCI60 databases and comprises the 
high-throughput screening of 1,651 cancer-related genes on 50 cancer cell lines (CCLE) and of 15, 000 genes on 60 cell lines (NCI60). 
MDP can be interrogated to retrieve the most significant anticancer molecules selecting a gene or mutation using the from gene to drug 
analysis or to search for the most enriched mutation given a specific compound using the from drug to gene query.
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sensitivity or resistance of cancer cell lines to a specific 
compound. The overall output is summarized in the 
Volcano Plot highlighting gene variants significantly 
associated to sensitivity (green bubbles) or resistance (red 
bubbles) to the selected molecule (p-value < 0.05 and 
score > 0.3). The size of the bubbles is proportional to 
the total number of mutations found in cancer cell lines 
(Figure 2B). The detail output lists, for gene variants 
associated to sensitivity or resistance, the tissue type, 
the gene carrying the mutation, the affected cell line, the 
variant classification, the mutation type, the chromosomal 
localization, the SNP ID, the enrichment score and 
p-value. The detailed results also include three pie 
charts showing the frequency of the identified variants in 
each cell line (Cell Lines Analysis Distribution), in each 
tissue (Tissues Analysis Distribution), and for each variant 
classification (Variant Type Analysis Distribution).

Validation of known dependencies

To determine whether MDP could be used to find out 
real pharmacogenomic associations between somatic gene 
mutations and sensitivity to specific drugs, we decided to 
interrogate MDP for genes on which targeted therapies 
have been already established and clinically proved. In 
particular, the Mitogen-activated protein kinase (MAPK) 
pathway is involved in the control of proliferation of both 
normal and transformed cells [17]. MAPK cascade and 
its downstream kinase MEK (Mitogen-activated protein 
kinase) are activated by the Serine/Threonine Kinase RAF 

[17]. Somatic BRAF mutations, in particular the V600E 
mutation within the kinase domain, have been frequently 
found in melanomas, thyroid, colorectal, and lung cancer 
[18]. For these reasons, the oncogenic RAF-MAPK axis is 
nowadays used as a target for cancer therapies and specific 
BRAF and MEK inhibitors have been now approved by 
FDA (US Food and Drug Administration) for the treatment 
of diseases such as melanoma and lung cancer [19, 20].

Thus, we interrogated MDP searching for drugs 
with selective cytotoxicity for cancer cells bearing BRAF 
mutations. Since the V600E accounts for the majority of 
BRAF mutations in cancer, we used its specific dbSNP 
Id number (rs113488022) to query CCLE genomic data. 
When considering all tissues, the analysis identified, out 
of 5,793  drugs, 197 drugs with significant selectivity 
for the BRAF-mutated cell lines. Interestingly, among 
the top 20  score-ranked molecules we identified seven 
compounds that are already associated with BRAF 
mutations. In particular, we identified three BRAF inhibitors: 
Dabrafenib  [19] ( p  =   6.48 × 10−7), Vemurafenib  [20] 
( p = 1.2 × 10−5) and SB-590885-AAD [21] ( p = 7.96 × 10−5); 
three MEK inhibitors: Hypothemycin [22] ( p = 9.49 × 10−5), 
Selumetinib  [23] ( p  =  0.0008) and protein LF (anthrax 
lethal factor, p = 0.001) [24]; and a tyrosine kinase inhibitor:  
SB-682330-A ( p = 7.96 × 10−5) (Figure 3A). Similar results 
were obtained querying MDP with NCI60 genomic data. 
Notably, Vemurafenib and Dabrafenib are FDA-approved 
and currently used for the treatment of melanoma, whereas 
Selumetinib is under clinical trials [25]. These results 
demonstrate the capacity of MDP to identify drugs with 

Figure 2: The result pages. MDP mutation result pages contain different information depending on the type of query. A. When 
performing a from gene to drug analysis, the result page reports a list of molecules that show a statistically significant activity on cell 
lines bearing mutations on selected gene/s. In particular, the result page contains the Table Results, the Enriched Drug Families table and 
three plots charting the drug families frequency distribution of the complete pool of significant drugs, the score of each drug belonging 
to a particular drug family, and the relationship between the score and the p-value for each drug. B. When using the from drug to gene 
analysis, MDP returns a Volcano Plot highlighting gene variants significantly associated (p-value < 0.05 and score > 0.3) to sensitivity 
(green bubbles) or resistance (red bubbles). The size of the bubbles is proportional to the total number of mutations in sensitive/resistant 
cancer cell lines. Table and plots summarize the characteristics and distributions of gene variants associated to sensitivity or resistance
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exquisite selectivity for specific mutations. It is of major 
interest to note that all the other molecules identified 
in our analysis could potentially act as BRAF-MEK 
inhibitors perhaps with better therapeutic activity and/or 
pharmacodynamic properties. As an example, the compound 
NSC-682449 (Benzo[1,2-b:4,5-b’]dithiophene-4,8-dione, 
2-(1-hydroxyethyl)), which falls within the 10 top ranked 
drugs, is surely worth of further investigations.

Next, we searched for pharmacogenomic 
associations with mutations in one of the most clinically 
relevant tyrosine kinase receptor: the Epidermal Growth 
Factor Receptor (EGFR). Mutations that lead to EGFR 
overexpression or hyperactivity have been associated 
with a number of cancers, including lung cancer [25]. 
To further demonstrate the reliability of MDP, we found 
a statistical significant association between the EGFR 
inhibitor Gefitinib (Iressa) (p-value = 0.03) [26] and the 
tyrosine kinase inhibitor Selumetinib (p-value = 0.03) with 
somatic missense EGFR mutations in CCLE cancer cell 
lines (Figure 3B).

We also successfully identified a number of other 
known pharmacogenomic associations such as: cytidine 

derivatives with KRAS mutations [27], gemcitabine with 
HSP90 mutations [28] and PI3K/AKT/mTOR inhibitors 
Sirolimus (Rapamycin) with PI3K missense mutations 
[29] (Figure 3C). Altogether, these results demonstrate 
that MDP resource can easily identify already known 
pharmacogenomic associations and might be a conceivable 
starting point to unveil and design new rational targeted 
therapies.

Identification of new dependencies

Several other new pharmacogenomic associations 
that we identified cannot be explained with our current 
biological knowledge but surely generate novel interesting 
hypothesis to be validated with in vitro experiments. 
For example MDP suggests that BRCA1 and BRCA2 
missense mutations are associated with sensitivity to 
Mitoxantrone; PTEN mutations with sensitivity to 
Brequinar; MET mutations with sensitivity to Dabrafenib; 
ATM mutations with sensitivity to Lapatinib; FBXW7 
mutations with sensitivity to Corticosteroids (Prednisolone 
and Fluorometholone) and ERBB4 mutations with 

Figure 3: Application of MDP to investigate known dependencies. MDP has been tested for its ability to retrieve known 
dependencies between gene variants and drugs. A. When searching for drugs active on cell lines bearing the V600E BRAF mutation 
(SNP Id rs113488022), MDP identifies well-known inhibitors such as Dabrafenib, Selumetinib and Vemurafenib. The scatter plot highlights 
the significance thresholds in terms of scores (vertical line, cut off of 0.3) and p-values (horizontal line, cut off of 0.05). B. The same 
graphical representation highlights Selumetinib and Iressa as effective drugs on cells with mutations on EGFR. C. Drugs statistically 
relevant on cancer cell lines with mutations of Kras, Hsp90 or Pi3K. D. Drugs statistically relevant on cancer cell lines with mutations of 
Brca1 and 2, Pten, Met, Atm, Fbxw7, and Erbb4 genes.
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sensitivity to Acivicin (Figure 3D). If validated, all these 
associations could open new therapeutic opportunities for 
several tumours lacking approved targeted therapies.

Having tested its robustness and reliability, we 
used MDP to identify those compounds that might be 
able to inhibit proliferation of cancer cells with aberrant 
nuclear YAP/TAZ activation. YAP/TAZ are transcriptional 
cofactors that, in tumours, are deregulated by loss of cell 
polarity and EMT (epithelial-to-mesenchymal transition) 
and are highly expressed in cells with cancer stem cells 
properties and metastatic potential [30]. Increased YAP/
TAZ transcriptional activity is frequent in several human 
malignancies, making YAP/TAZ an ideal therapeutic 
target for cancer. The main genetic lesions associated with 
YAP and TAZ hyperactivation, excluding the occasional 
gene amplification of chromosome locus 11q22 [31], 
are represented by mutations occurring on the genes 
encoding for members of the Hippo signalling pathway. 
Indeed, the Hippo pathway is the major negative regulator 
of YAP/TAZ transcriptional activity and, as such, is a 
potent regulator of cellular proliferation, differentiation, 
and tissue homeostasis [38]. Among the members of 
the Hippo pathway, mutations in the gene NF2 are the 
most frequent alterations [32]. Germline mutations in the 
NF2 gene is the cause of the Neurofibromatosis type 2, a 
tumour-prone disorder characterized by the development 
of multiple schwannomas and meningiomas, but 
importantly, NF2 is also frequently inactivated in human 
malignant pleural mesothelioma, a disease where YAP is 
frequently activated [33].

Based on these premises, we used MDP to 
seek for compounds that could specifically target 
cancer cells bearing NF2 gene mutations and thus 
with aberrant YAP/TAZ activity. In particular, we 
queried the association of NF2 missense and non-sense 
mutations and drugs (from gene to drug) on all CCLE 
cell lines and identified the most enriched family drugs. 
Interestingly, the Enriched Drug Families table of this 
query highlighted Statins (p-value < 0.01) and Imatinib 
analogues (p-value  < 0.01) as the only two classes of 
drugs significantly associated to drug sensitivity in cancer 
cell lines harbouring NF2 mutations (Supplementary 
Figure 1). Of note, these classes of drugs were identified 
as statistically significant also by querying MDP with 
NCI60 data.

Statins are inhibitors of HMG-CoA-reductase, 
the limiting step enzyme of the metabolic mevalonate 
pathway and used in clinics for the treatment of 
hypercholesterolemia [34]. Several clinical and pre-
clinical studies suggest that statins can exert an anti-
tumour effect in particular biological contexts [35]. 
Importantly, we recently identified statins as inhibitors of 
YAP/TAZ activity in cancer cells [36]. Furthermore, YAP 
expression has been shown to be a predictive biomarker 
of Dasatinib response in breast cancer cells [37, 48]. 
Therefore when interrogated for drugs acting on cells 

with mutations in genes controlling the activity of YAP 
and TAZ the portal allowed the identification of molecules 
affecting YAP and TAZ function. We next wanted to test 
whether the pharmacological combination of statins and 
Dasatinib could have stronger effects in inhibiting YAP/
TAZ nuclear localization and transcriptional activity. To 
this aim, we treated a panel of cancer cells from tissues in 
which the role of YAP and TAZ in tumorigenesis has been 
established (breast, lung, colon, prostate) [38] with statins 
and Dasatinib alone or in combination. Although both 
statins and Dasatinib, as single treatments, were effective 
in reducing YAP/TAZ nuclear localization (Supplementary 
Figure 2), the combination of these two drugs dramatically 
increased the number of cells showing a complete YAP/
TAZ nuclear exclusion (Figure 4A and 4B). Similar 
results were obtained using an alternative mevalonate 
pathway inhibitor: zoledronic acid (ZA) (Figure 4C). 
Moreover, the concomitant treatment of MDA-MB-231 
breast cancer cells with statins and Dasatinib completely 
blocked the YAP/TAZ transcriptional activity, as 
observed by the dramatic drop in the expression of the 
well established YAP/TAZ target genes CTGF, CYR61, 
ANKRD1 and BIRC5 and the TEAD-responsive reporter 
8XGTII (Figure 4D and 4E) [36, 40]. Of note, the effect 
of Dasatinib and statins reduced YAP/TAZ target genes 
expression to the same extent obtained by YAP/TAZ 
siRNA transfection, suggesting that this combinatorial 
treatment can fully blunt the pro-oncogenic transcriptional 
activities of YAP/TAZ. Strikingly, in different cancer 
cell lines, statins and Dasatinib were significantly more 
active in inducing apoptosis (Figure 4F and 4G and 
Supplementary Figure 3A and 3B) when administered 
concomitantly.

YAP and TAZ are known to induce chemoresistance 
to taxanes in different cancer cells and their inhibition 
has been proposed as a strategy to sensitize cancers 
cells to standard chemotherapy [42]. Based on this, we 
hypothesized that combination of mevalonate pathway 
inhibitors and Dasatinib could efficiently sensitize 
cancer cells to sub-lethal doses of paclitaxel. As shown 
in Figure 4H, viability assay performed in MDA-MB-231 
breast cancer cells with activated YAP/TAZ, confirmed 
that combination of Zoledronic acid and Dasatinib 
significantly sensitized cancer cells to paclitaxel treatment. 
These results demonstrate that combinations of Dasatinib 
and mevalonate pathway inhibitors could represent a 
pharmacological strategy to inhibit YAP/TAZ in cancer 
cells and to sensitize cells with active YAP/TAZ to 
standard chemotherapy.

DISCUSSION

Targeted therapies directed against specific 
oncogenes are established strategies to successfully treat 
a growing number of cancers. Although many patients 
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Figure 4: Dasatinib and statin combination fully blunts YAP/TAZ nuclear activity. A. Quantification of cells with complete 
YAP/TAZ nuclear exclusion in seven cancer cell lines treated with vehicle (-), statin 1 μM (S) and Dasatinib 1 μM (D) alone or in 
combination (SD) for 24 h. Data are derived from n = 3 independent experiments where at least 300 cells were scored. Error bars represent 
mean ± s.d. B. Representative images of immunofluorescence in MDA-MB-231 treated as in A. C. Quantification of cells with complete 
YAP/TAZ nuclear exclusion. MDA-MB-231 cells were treated with vehicle (-), Zoledronic acid 30 μM (ZA) and Dasatinib 1 μM (D) 
alone or in combination (ZAD) for 24 h. Data are derived from n = 3 independent experiments where at least 300 cells were scored. Error 
bars represent mean ± s.d. D. Luciferase reporter assay (8XGTII–lux). Cells were transfected with control siRNA (siCTL) or with YAP/
TAZ siRNA (siYT). After 24 h cells were treated with vehicle (-) or with statin 1 μM and Dasatinib 1 μM in combination (DS) for 24 h. 
Error bars represent mean ± s.d., from n = 3. E. Quantitative PCR (qPCR) analysis in MDA-MB-231. Cells were transfected with control 
siRNA (siCTL) or with YAP/TAZ siRNA (siYT). After 24 h cells were treated with vehicle (-) or with statin 1 μM and Dasatinib 1 μM 
in combination (DS) for 48 h. Error bars represent mean ± s.d., from n = 3 biological replicates. F. MDA-MB-231 and H1299 cells were 
treated with indicated compounds for 48 h. Representative blots are shown. G. Cell growth of MDA-MB-231 and H1299 cells treated with 
vehicle (–), statin 1 μM (S) and Dasatinib 1 μM (D) alone or in combination (SD) for three days. Error bars represent mean ± s.d., from 
n = 3 biological replicates. H. Cell viability of MDA-MB-231 cells treated with vehicle (–), Paclitaxel 1 μM (PTX) alone or in combination 
with Zoledronic acid 30 μM and Dasatinib 1 μM (PTX+ZAD) for 48 hour.
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benefit of such therapeutic intervention, tumours often 
recur in few months due to acquired drug resistance, 
which calls for urgent development of novel strategies to 
identify drugs for personalized therapies [41].

Next generation sequencing of cancer cell lines, 
coupled with high throughput cell viability-based 
screening of small molecules, offers the possibility to 
rapidly identify many cancer-specific dependencies, 
potentially targetable with numerous chemical 
compounds. Nevertheless, the full exploitation of 
these “omics” databases is still hampered by gaps in 
the integration of genomics and pharmacological data. 
Here we developed MDP, an open access resource, 
which helps the researchers to unveil oncogene-induced 
dependencies by systematically coupling specific gene 
mutations with the pharmacological response to tens 
of thousands of compounds. MDP is available on-line 
and links genomic information from CCLE and NCI60 
databases to pharmacological data from the NCI60 DTP 
screening allowing the identification of synthetic or 
natural compounds active in cancer cells with specific 
genetic features. The main goal of this web resource is 
to offer a very user-friendly platform for the execution 
of custom in-silico high-throughput screenings of 
thousand of compounds, with the possibility to querying 
associations in either direction (i.e., genes to drugs or 
drugs to genes) depending on the particular question of 
interest.

Since oncogenes may give rise to pharmacological 
dependencies only in particular tissues, MDP easily 
allows users to run the analysis selecting only cancer cells 
from a specific tissue thus leading to the identification 
of tissue-specific therapeutic biomarkers. Moreover the 
resource permits multiple mutation queries, enabling the 
identification of drugs active against cells with more than 
one mutated gene at the same time.

MDP, through the from drug to gene analysis, 
is capable of retrieving the most enriched mutations 
associated with sensitivity to the specific drug selected 
by the users and, in this way, might help researchers 
to identify potential drug-mutation dependencies in 
cancer cell lines, or unveiling new correlations between 
these mutated cancer cell lines and their sensitivity to a 
particular drug.

The reliability of this approach is guaranteed by the 
identification of already established and clinically proved 
gene-drug pairs, among them BRAF V600E mutation with 
clinically used BRAF/MEK inhibitors or EGFR mutations 
with EGFR inhibitors. Moreover, MDP suggests several 
novel dependencies, making it a powerful tool to guide 
the early phases of drug discovery or drug repositioning. 
As an example, querying MDP for drugs selectively active 
on cells bearing mutation in NF2 gene, an event that leads 
to the aberrant activation of the transcription cofactors 
YAP and TAZ, we found that the combinatorial use of 
two FDA-approved drugs, namely statins and Dasatinib, 

acts synergistically to strongly inhibit the activity of YAP 
and TAZ in different biological contexts.

YAP and TAZ are critical downstream effectors 
of actomyosin cytoskeleton acting as nuclear 
transducers of mechanical stimuli [40] and we and 
others, recently discovered that YAP and TAZ are 
activated by the metabolic mevalonate pathway through 
geranylgeranylation of RhoA, and their oncogenic 
activities can be efficiently blunted by using statins 
and bisphosphonates [36]. Furthermore, it has been 
recently shown that in cancer associated fibroblasts, 
downstream of actomyosin cytoskeleton and mechanical 
stress, the kinase Src is functionally required for YAP 
activation and its inhibition by Dasatinib can efficiently 
block YAP nuclear functions [49]. Therefore, the 
specific effect exerted by statins and Dasatinib in cells 
with YAP/TAZ hyperactivation could be ascribed to 
the combined inhibition of the signals that from the 
cytoskeleton converge on YAP/TAZ. YAP levels have 
been identified as a biomarker of Dasatinib sensitivity 
in breast cancer [48] and, in particular, basal-type triple 
negative breast cancer (TNBC) cells, which have highly 
activated Src and YAP, are more sensitive to Dasatinib 
treatment [46, 38].

The evidence that statin and Dasatinib, as 
demonstrated from our work, act synergistically to inhibit 
YAP/TAZ suggests that they could be used in combination 
and thus at lower concentrations, to inhibit YAP/TAZ 
activity and tumour growth in cancers characterised by 
hyperactivation of YAP/TAZ and, among them, in triple 
negative breast cancer and metastatic mesothelioma [42].

While the huge amount of compounds screened 
represents the strength of MDP, the limited number of 
cancer cells and genotypes used can depict a weakness. 
However, the NCI60 cell lines have been extensively 
used to identify novel predictive cancer biomarkers 
proving that the number of different genotypes is not 
necessarily a limitation [43–45]. Recent publications 
reported the generation of interactive resources useful to 
identify novel gene-drug dependencies [6, 7]. Although 
these databases are built from genomic characterization 
of more than 200 cell lines, thus showing higher 
genetic heterogeneity in comparison to MDP, the 
pharmacological data obtained by these resources are 
dramatically lower compared to our tool. Importantly, 
despite such differences, MDP and these other resources 
identified a number of similar gene-drug connections, 
such as the already established BRAF mutations with 
MEK inhibitors and EGFR mutations with tyrosine 
kinases inhibitors, as well as novel connections such as 
NF2 mutations with Dasatinib [6] and XIAP mutations 
with Brefeldin [7]. Thus, due to the very large number 
of pharmacological data deposited in its database, MDP 
can represent a reliable alternative to other predictor 
tools available on-line for the repositioning of several 
compounds for targeted therapy.
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In conclusion, here we present MDP, an on-
line tool able to perform prediction about cancer cell 
lines mutations and drugs sensitivity dependencies. 
MDP is, as far as we know, the largest database of 
pharmacogenomics structured to be a user-friendly tool 
for the investigation of drugs-mutations correlations, and 
can be queried either from the gene or drug perspective. 
Data obtained via MDP will help researchers in the 
challenge of patients’ stratification, thus refining the 
parameters for personalized targeted therapies on the 
basis of their specific genetic abnormalities. We strongly 
believe that MDP provides a novel and comprehensive 
tool for the systematic identification of new biomarkers 
of drug sensitivity, setting the rationale for the design of 
new clinical trials and the discovery of novel anticancer 
drugs.

MATERIALS AND METHODS

Statistical analysis

Statistical analyses are based on the drug response data 
file GI50 Data (Sept 2014 release; https://wiki.nci.nih.gov/
display/NCIDTPdata/NCI-60+Growth+Inhibition+Data), 
retrieved from the NCI60 DTP portal, and sequencing data 
and variant classifications retrieved from the CCLE (http://
www.broadinstitute.org/ccle/data/browseData?conversation
Propagation=begin) and NCI60 (http://discover.nci.nih.gov/
cellminer/loadDownload.do) public repositories.

GI50 Data file contains a matrix of GI50 values 
for 50,816 molecules tested on 115 cancer cell lines. 
GI50 values are computed, for any compound, as minus 
the log10 of IC50, i.e., the drug concentration necessary to 
inhibit 50% growth of treated cells relative to untreated 
controls. Prior to analysis, for any single compound, 
first  the GI50 is transformed back to IC50 and then the 
IC50 value is normalized dividing the IC50 of any cell line 
by the average of the IC50 across all 115 cell lines.

The normalized IC50 (in log2 scale) of a compound 
is used to define the response for any combination of drug 
and cell line in terms of i) good response if the normalized 
log2 IC50 is lower than two standard deviations of the 
distribution of all log2 IC50 in a given cell line, and ii) bad 
response otherwise.

In the from gene to drug analysis, given a specific 
set of mutation/s, compounds with increased activity in 
cases (cancer cell lines treated with the given compound 
and bearing the specific set of mutation/s selected by the 
user) as compared to controls (all the other cancer cell 
lines treated with the given compound), are identified 
ranking all compounds based on a score given by the 
fraction of good responses in cases multiplied by the 
fraction of bad responses in controls. This score ranks 
each drug based on the enrichment of good responses in 
the case group. The statistical significance (p-value) of 
this ranking is computed, for each drug, using a one-tailed 

Fisher’s exact test for the enrichment of good responses 
in cases as compared to bad responses in controls, given 
the number of bad responses in cases and good responses 
in controls.

The same ranking function and statistical test 
is also used to identify the most enriched mutations 
starting from a drug when performing a from drug to 
gene analysis. In this case, the normalized log2IC50 of 
the selected compound is used to first retrieve the two 
groups of cell lines with good and bad responses for that 
drug. Then, for each mutation, we calculate the number 
of cases, i.e., the fraction of cell lines in the good 
response group bearing  the considered mutation, and 
the number of controls, as the fraction of cell lines in 
the bad response group bearing the considered mutation. 
The score given by the fraction of good responses in 
cases multiplied by the fraction of bad responses in 
controls is again used to rank mutations and a Fisher’s 
test for the enrichment of good responses in cases as 
compared to bad responses in controls, given bad 
responses in cases and good responses in controls, to 
assess significance.

MDP web tool programming

MDP web interface has been written using 
PHP version 5.0, HTML 5.0 and CSS. Connections 
between pages and programming languages have been 
performed using Twig, a template engine that allows 
fast connections between PHP and HTML. Graphical 
representations in the results pages (i.e. barplots, pie 
charts, tables, and scatter plots) have been coded using 
JavaScript and jQuery, basing on the structure of the 
latest Google APIs release (2015). Statistical methods 
of analyses were performed using Python 2.7, through 
Pandas 0.16  module, and R 3.0.  R software was used 
in the from gene to drug analysis, whereas Python 2.7 
and Pandas were used to perform the from drug to gene 
statistical process. MDP is hosted on a Linux server with 
512 GB RAM and 64 processors.

Cancer cell lines/treatments

MDA-MB-231, HT29, PC-3, SKBR-3 and PANC-1  
were cultured in DMEM supplemented with 10% FBS 
(fetal bovine serum) and antibiotics. H1299 cells were 
cultured in RPMI 1640 with 10% FBS and antibiotics. 
Cells have been authenticated by STR profiling and are 
free from mycoplasma contamination. The following 
compounds were purchased from Sigma Aldrich: statin 
(Cerivastatin, SML0005), Zoledronic Acid (SML0223), 
Paclitaxel (T7191). Dasatinib was purchased from 
Selleck (S1021). Cell lines used to build MDP have been 
already authenticated (Berretina et al. 2012, Lorenzi 
et al. 2009).
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YAP/TAZ nuclear localization

For the quantification of the number of cells with 
nuclear YAP/TAZ at least 300 cells from different fields 
were counted. Only cells with complete nuclear YAP/TAZ 
exclusion were scored as positive.

Cell growth/viability assays

For cell growth assay cells (MDA-MB-231, H1299, 
HT-29, PANC-1) were plated in 96-well plates and treated 
as indicated. Cells were trypsinized, collected and counted 
at day 1, 2 and 3. Cell viability was assayed with ATPlite 
(Perkin Elmer) according to the manufacturer’s instructions 
using the EnSpireMultilabel Reader (Perkin Elmer).

Quantitative real-time PCR

Cells were collected in Qiazol lysis reagent (Qiagen) 
for total RNA extraction, and contaminant DNA was 
removed by DNase treatment. Retrotranscription was 
performed with the Quantitect reverse transcription kit 
(Qiagen). The obtained cDNA was properly diluted and 
used in qPCR reactions performed with SsoAdvanced 
SYBR Green Supermix (Biorad) using the CFX96 
Touch Real-Time PCR Detection System and analyzed 
with Biorad CFX Manager software. Each experiment 
was performed at least three times Expression levels are 
always given relative to histone H3. The primers used 
were previously described [36].

Transfections

siRNA transfections were performed with 
Lipofectamine RNAi-MAX (Life Technologies) in 
antibiotic-free medium according to the manufacturer’s 
instructions. Negative control siRNA was: AllStars 
negative control siRNA Qiagen 1027281. siRNA 
sequences are: YAP (GACAUCUUCUGGUCAGAGA) 
and TAZ (ACGUUGACUUAGGAACUUU).

DNA transfections were done with Lipofectamine 
LTX and Plus Reagent (Invitrogen) or Lipofectamine 
2000 (for H1299 cells; Life Technologies) according to 
the manufacturer’s instructions.

Luciferase assay

Luciferase assays were performed in MDA-MB-231  
cells with the established YAP/TAZ-responsive reporter 
8xGTII–lux. Cell lysates were analyzed using the Dual- 
Luciferase Reporter Assay System (Promega, cod. E1910). 
Luciferase reporter (300 ng cm−2) were transfected 
together with CMV–Renilla (30 ng cm−2) to normalize 
for transfection efficiency. Cells were collected 24 h 
after DNA transfection. For luciferase assays in siRNA-
transfected cells, siRNA transfection was achieved 
first and, after  48  h, transfection of plasmid DNA 

was performed. Cells were collected 24 h after DNA 
transfection.

Antibodies

The antibodies used for western blot and 
immunofluorescence were: anti-YAP/TAZ (1:1,000 for 
western blot, 1:100 for immunofluorescence; sc101199, 
Santa Cruz Biotechnology), anti-actin (1:2,000; C11, 
Sigma), anti-Cleaved Caspase 3 (1:1000; D175, Cell 
Signaling).

Immunofluorescence and western blot

Immunofluorescence staining was performed 
as previously described [36]. Briefly, cells were fixed 
in 4% paraformaldehyde for 10 min, washed in PBS, 
permeabilized with Triton 0.1% for 10 min and blocked 
in PBS FBS 3% for 30 min. Antigen recognition was done 
by incubating primary antibody for 1 h at 37°C and with 
Goat anti-mouse Alexa Fluor 568 (Life Technologies) 
as secondary antibody for 30 min at 37°C. Nuclei were 
counterstained with Hoechst 33342 (Life Technologies). 
Western blot analysis was performed as previously 
described [36].
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