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Abstract

Host response to airway infections can vary widely. Cystic fibrosis (CF) pulmonary exacerbations 

provide an opportunity to better understand the interplay between respiratory microbes and the 

host. This study aimed to investigate the observed heterogeneity in airway infection recovery by 

analyzing microbiome and host response (i.e., blood proteome) data collected during the onset of 

33 pulmonary infection events. We used sparse multiple canonical correlation network (SmCCNet) 

analysis to integrate these two types of -omics data along with a clinical measure of recovery. 

Four microbe–protein SmCCNet subnetworks at infection onset were identified that strongly 

correlate with recovery. Our findings support existing knowledge regarding CF airway infections. 

Additionally, we discovered novel microbe–protein subnetworks that are associated with recovery 

and merit further investigation.
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1. Introduction

Mucosal barriers are important for maintaining human health, they evolved to co-exist in the 

presence of commensal bacteria while recognizing and responding to pathogens. Exposure 

to micro-organisms in a normal respiratory tract can induce an inflammatory response or 

the offending organisms can often be cleared prior to eliciting a response. Moreover, the 
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number of bacteria found in the airway can be large and the resulting host-response can 

be multi-factorial, complicating the interplay between the airway microbiome and the host 

inflammatory response.

In a lung disease like cystic fibrosis (CF), ineffective clearance mechanisms and a less 

regulated inflammatory response results in chronic respiratory infections and periods 

of acute infections called pulmonary exacerbations (PExs). Individuals who experience 

frequent and recurring PEx episodes often sustain long-term deterioration in lung function 

and shortened survival (Amadori et al., 2009; Liou et al., 2001; Sanders et al., 2011). 

Intravenous (IV) antibiotic treatment is typically administered at the onset of a CF PEx 

to combat bacterial airway infection. PEx recovery is variable, however, as many patients 

do not return to baseline health (Sanders et al., 2010a, 2010b). These episodes of acute 

infection provide an opportunity to evaluate the host-response to airway infections. Blood 

and airway inflammatory biomarkers have been shown to decrease after treatment of a PEx, 

suggesting that airway infection in CF results in a robust host immune response (Ordoñez et 

al., 2003; Colombo et al., 2005; Chiron et al., 2008; Sagel et al., 2015). Further, exploring 

microbe–protein relationships in the context of PEx recovery may provide novel insights 

into how the host responds to different bacterial infections and the mechanisms of PEx.

In this study, we use sparse multiple canonical correlation network (SmCCNet) to integrate 

plasma proteomics and airway microbiome data collected at the onset of PExs (Shi et 

al., 2019). Specifically, these omics data are integrated into interpretable microbe–protein 

subnetworks that are associated with PEx recovery. Our aim was to identify microbe–protein 

subnetworks at PEx onset that are associated with PEx recovery.

2. Materials and methods

2.1. Study design and cohort

This study was conducted between 2010 and 2012 and includes 33 PEx events from a cohort 

of 29 subjects aged 10–22 years old with a confirmed diagnosis of CF. Participants could 

re-enroll in the study if PEx events were separated by at least six months. Accordingly, 

the study population includes four subjects with two PEx events and 26 subjects with one 

PEx event. Participants were recruited prospectively and enrolled at the time of hospital 

admission for IV antibiotic therapy of a clinically diagnosed PEx. Study participants were 

treated with IV antibiotics, selected by the treating physician targeting their individual CF 

pathogens, and aggressive mucus clearance based on standard CF clinical care guidelines. 

The study was approved by the Colorado Multiple IRB (COMIRB #07–0365). Written 

informed consent and HIPPA authorization was obtained from all patients ≥ 18 years or 

from parents or legal guardians of patients younger than 18 years. Assent was obtained from 

patients between 10 and 17 years.

2.2. Clinical phenotype definition

The PEx scoring system is a systematic definition of PEx using patient symptoms (e.g., 

change in exercise tolerance, cough, sputum production, chest congestion, and school 

or work attendance) and physical examination measures (e.g., change in FEV1 over the 
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preceding month) (Rosenfeld et al., 2001). Higher PEx scores correspond to increased PEx 

severity. A PEx corresponds to a PEx score ≥ 5 and at least three out of 11 PEx criteria 

being met, as defined by the CF Foundation (CFF) Consensus Conference guidelines. The 

PEx score was collected at two time points: hospital admission (i.e., PEx onset, day 0–2) 

and hospital discharge (i.e., after the IV treatment had been administered, day 4–21). The 

phenotype of interest in this study is percent change in PEx score (%ΔPExS) between 

hospital admission (t1) and hospital discharge (t2). %ΔPExS is defined in Eq. 1. Negative 

%ΔPExS values represent an improved PExS between hospital admission and discharge, 

with larger negative values indicating greater improvement.

%ΔPExS =
ΔPExSt2 − ΔPExSt1

ΔPExSt1
× 100%

(1)

2.3. Microbiome data

2.3.1. Sputum sample collection—Spontaneously expectorated sputum was collected 

into a sterile container for microbiologic analysis. Participants unable to spontaneously 

expectorate underwent sputum induction using a standardized, published protocol with 3% 

hypertonic saline (Sagel et al., 2001). Quantitative bacterial culture was performed on 

sputum (expectorated and induced) samples following CFF guidelines (Saiman et al., 2014). 

Residual sputum samples were frozen at − 70 °C for small subunit rRNA (SSU-rRNA) gene 

sequencing.

2.3.2. SSU-rRNA sequencing—Bacterial profiles were determined by broad-range 

amplification and sequence analysis of the SSU-rRNA gene following previously described 

methods. Amplicons were generated using primers targeting approximately 300 base pairs 

of the V1/V2 variable region of the SSU-rRNA gene. An Illumina MiSeq v2 reagent kit 

was used to prepare libraries for 2 × 250 bp paired-end sequencing on the Illumina MiSeq 

platform.

2.3.3. Analysis of illumina paired-end reads—Quality control procedures were 

performed on paired-end sequences as described in the online supplement. Assembled 

sequences were aligned and classified with SINA (1.2.11) using the SILVA 115 database as 

reference configured to yield the SILVA taxonomy (Quast et al., 2012; Pruesse et al., 2012).

2.3.4. Data preprocessing—Before statistical analysis, microbiome count data were 

filtered to include only prominent taxa. Taxa were filtered out if they did not exceed 0.1% 

relative abundance (RA, calculated as count/total) in at least 10% of samples. A total of 

446 taxa did not meet the filtering criteria and were not included in the analytic dataset 

which included 60 taxa. Count data were transformed using the centered log-ratio (CLR) 

transformation. A pseudocount (RAmin/2) was applied to exact zero RA entries before CLR 

transformation was performed. Microbiome features were standardized prior to downstream 

statistical analysis by subtracting the mean and scaling to unit variance.
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2.4. Proteomics data

2.4.1. Blood sample collection—An aliquot of 3.5 mL was collected in an EDTA-

collection tube and processed following a standard operating procedure. Blood samples were 

frozen and batch shipped on dry ice to SomaLogic in Boulder, Colorado for proteomics 

analysis.

2.4.2. SomaLogic proteomics assay—Proteomics data were measured using the 

SomaScan multiplex proteomics assay (version 3.2), an aptamer-based quantitative 

proteomic biomarker discovery platform (Gold et al., 2010). Approximately 4000 aptamers, 

or single-stranded deoxyribonucleic acid (ssDNA) molecules that bind specific protein 

targets, were measured in this assay. Aptamers targeted approximately 3600 unique proteins.

2.4.3. Data preprocessing—SomaScan measurements, reported in relative fluorescent 

units (RFUs), were normalized using internal hybridization controls added to the assay prior 

to hybridization. Normalization was performed to adjust for inter-sample, inter-plate, and 

inter-run variation. Normalized RFU values were log2 transformed to handle skewness and 

improve normality. Proteomics features were standardized prior to downstream statistical 

analysis by subtracting the mean and scaling to unit variance.

2.5. Statistical analysis

A complete description of the statistical approach is included in the online supplement. 

Statistical methods, including multi-omic integration, subnetwork identification, and 

subnetwork sensitivity analysis, were performed using R version 4.1.1.

2.5.1. Multi-omic integration with SmCCNet—Airway microbiome, plasma 

proteomics and PEx recovery were integrated using SmCCNet (version 0.99.0). SmCCNet 

is an extension of canonical correlation analysis (CCA) that incorporates a quantitative 

phenotype to construct phenotype-related multi-omic subnetworks. Given our omic 

data types and phenotype of interest, we use SmCCNet to construct microbe–protein 

subnetworks at PEx onset that are correlated with PEx recovery (%ΔPExS). Penalty 

parameters to induce sparsity were selected using five-fold cross-validation and a 

randomized grid search approach.

2.5.2. Subnetwork–phenotype correlations—Subnetworks were summarized using 

principal component analysis (PCA), whereby each subnetwork’s first principal component 

(PC1) was used for univariate subnetwork representation. Subnetwork-specific taxa and 

proteins were merged into a common matrix for determining the PC1 of each subnetwork. 

Subnetwork–phenotype correlation was calculated as the Pearson correlation between a the 

PC1 of a subnetwork and %ΔPExS. Absolute Pearson correlation values are reported since 

PCA obscures the interpretability of negative and positive relationships. The percentage of 

variance explained by each subnetwork PC1 was additionally calculated and reported.

2.5.3. Subnetwork selection—SmCCNet results in subnetworks with varying levels 

of relevance to the phenotype (i.e., not all subnetworks are strongly correlated with the 

phenotype). We set the following subnetwork selection criteria to focus our results and 
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discussion on subnetworks that are related to %ΔPExS. First, we required subnetworks to 

be strongly correlated with the phenotype (i.e., r PC1-%ΔPExS ≥ 0.35). Second, we only 

considered subnetworks with PC1s that explained greater than 50% of the variability 

observed within the subnetwork. This was enforced to ensure that PC1s were reasonable 

subnetwork representations. Third, we required at least two nodes of each omic type to be 

present in selected subnetworks to limit omic type imbalance.

2.5.4. Gene ontology enrichment analysis—GO enrichment analyses were 

performed on selected subnetworks using subnetwork-specific protein sets. Metascape 

(v3.5.20230501), a method that is advantageous for identifying non-redundant GO terms, 

was used for enrichment analysis (Zhou et al., 2019). The aim was to identify over-

represented GO terms (specifically biological processes) associated with subnetworks of 

interest. The full set of proteins targeted by the SomaScan proteomics assay was used 

as the background protein list (3554 unique proteins after filtering out duplicates). Entrez 

Gene symbols were used as input for both the sample gene list and background gene list. 

56 aptamers in the SomaScan assay were found to target multiple proteins, these repeats 

were removed prior to performing GO enrichment analyses. Minimum enrichment factor 

and p-value cutoffs of 3 and 0.001 were used to guard against false discoveries (i.e., type I 

errors). We further required a 3 protein overlap between our subnetwork protein lists and GO 

term protein lists to consider a given GO term over-represented.

2.5.5. Subnetwork visualization—Network visualizations were created using 

CytoScape (version 3.9.1) (Shannon et al., 2003). We focus visualizations on one over-

represented GO term per selected network, rather than full subnetworks, to preserve 

the interpretability of visualizations and focus discussion. Subnetwork visualizations 

include overlapping proteins (i.e., proteins found in the subnetwork and GO term) and 

subnetwork-specific taxa. Subnetwork visualizations provide information about individual 

node–phenotype associations, node–node relationships and connectivity, and canonical 

weight contributions.

2.5.6. Subnetwork sensitivity analysis—A sensitivity analysis was performed after 

removing the repeat PEx events and only including the first PEx event for each 

study participant. Node overlaps (i.e., microbe and protein overlaps) between reported 

subnetworks and sensitivity analysis subnetworks were subsequently assessed using 

visualizations and Fisher’s exact test.

3. Results

3.1. Study cohort

Cohort characteristics and PEx event clinical measures are described in Table 1 (Table S1). 

The median PEx score at study enrollment was 12 and ranged between 8 and 16. %ΔPExS 

ranged from – 100–0% (Fig. S1), indicating that PEx score either improved (i.e., decreased) 

or remained constant from hospital admission to discharge for all exacerbations.
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3.2. SmCCNet configuration and subnetwork selection

A total of 10 subnetworks were identified using SmCCNet, 4 of which had a strong 

correlation between the first principal component (PC1) and %ΔPExS (r PC1-%ΔPExS ≥ 0.35) 

(Fig. 1). Subnetworks 2, 4, 5, and 6 met criteria for subnetwork selection and are described 

in depth in subsequent sections.

3.3. Identified subnetworks

3.3.1. Subnetwork 2—Subnetwork 2 is a large subnetwork comprised of the most 

influential nodes and edges in the data set. Features in this network are associated with large 

canonical weights relative to other networks, suggesting their importance in maximizing 

the canonical correlation between the taxa, proteins and %ΔPExS (Fig. 1B). The original 

subnetwork constructed by SmCCNet contained 364 nodes, including 334 proteins and 

30 taxa. The pruned subnetwork used for GO enrichment analysis contains 325 nodes, 

including 298 proteins and 27 taxa (Table 2). Correlations between individual nodes and 

%ΔPExS range from – 0.57–0.62 (Fig. 1A). A correlation of 0.43 is observed between PC1 

of the full subnetwork and %ΔPExS (p-value = 0.01). The central node of the network 

is Atopobium (Fig. 2), which is strongly associated with %ΔPExS (r = 0.44; p-value = 

0.01, Table S2). The largest weighted edge connects Atopobium and Actinomyces and 

corresponds to a positive association. The top non-redundant GO biological pathways that 

are enriched in Subnetwork 2 include GO:0048738 (cardiac muscle tissue development), 

GO:0042100 (B cell proliferation), and GO:0006703 (estrogen biosynthetic process) (Fig. 

3).

3.3.2. Subnetwork 4—Subnetwork 4 contains 209 nodes, including 204 proteins and 

5 taxa (Table 2). The subnetwork includes Stenotrophomonas, a taxon that is traditionally 

tracked in CF airways but does not appear to be associated with %ΔPExS in this cohort (r = 

−0.02; p-value = 0.92). Soluble low-density lipoprotein receptor-related protein 1 (sLRP1), 

the omic feature most strongly correlated with %ΔPExS, is included in this subnetwork (r 
= 0.63; p-value < 0.01). Subnetwork 4 is the strongest of the selected subnetworks when 

considering subnetwork–phenotype correlation (r = 0.54; p-value < 0.01) (Fig. 1A). GO 

biological processes enriched in Subnetwork 4 include GO:0010498 (proteasomal protein 

catabolic process), GO:0043949 (regulation of cAMP-mediated signaling), and GO:2000328 

(regulation of T-helper 17 cell-lineage commitment) (Fig. 3). GO:2000328 proteins are 

visualized with Subnetwork 4 proteins in Fig. 4. Interestingly, IL-23 and IL-23 receptor, 

each found in this subnetwork and GO:2000328, are inversely expressed. Streptococcus 
anginosus shows no connectivity to other nodes in Fig. 4, indicating that the taxon is weakly 

associated with GO:2000328 proteins (r < 0.2).

3.3.3. Subnetwork 5—Subnetwork 5 is a 208-node subnetwork comprised of 201 

proteins and 7 taxa (Table 2). Nodes include taxa traditionally found in CF airways, such as 

Pseudomonas aeruginosa (P. aeruginosa) and Prevotella (both at the species and genus level). 

P. aeruginosa abundance at PEx onset is moderately positively associated with %ΔPExS 

(r = 0.23; p-value = 0.19, Table S3). Individual node–%ΔPExS correlations range from – 

0.46–0.47 (Fig. 1A). A correlation of 0.35 is observed between PC1 of the subnetwork and 

%ΔPExS (p-value = 0.05). Edges are relatively weak in Subnetwork 5 when compared to the 
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edges in the other selected subnetworks, both in terms of the edge strength median and range 

(Fig. 1B). Weaker edges suggest that Subnetwork 5 nodes are less interrelated than nodes 

in other subnetworks. GO biological processes found within the Subnetwork protein set 

include GO:0006412 (translation), GO:0006417 (regulation of transcription), GO:0051092 

(positive regulation of NF-kappaB transcription factor activity), and GO:0043039 (tRNA 

aminoacylation) (Fig. 3). Proteins overlapping both GO:0051092 and Subnetwork 5 are 

visualized with Subnetwork 5 taxa in Fig. 5.

3.3.4. Subnetwork 6—Subnetwork 6 contains 98 nodes, including 96 proteins and 2 

taxa (Table 2). Taxa include Streptococcus speciesIG2 and Prevotella histicola. Several 

nodes within Subnetwork 6 are well-correlated with %ΔPExS, with node–%ΔPExS 

correlation values ranging from – 0.50–0.58. The PC1 representation of Subnetwork 6 

shows an absolute correlation of 0.42 with %ΔPExS (p-value = 0.01). GO enrichment 

analysis results suggest that GO:0072126 (positive regulation of glomerular mesangial 

cell proliferation), GO:1901881 (positive regulation of protein depolymerization), and 

GO:0072524 (pyridine-containing compound metabolic process) are over-represented in the 

Subnetwork 6 protein set (Fig. 3). Proteins overlapping Subnetwork 6 and GO:0072126 are 

visualized with Streptococcus speciesIG2 and Prevotella histicola in Fig. 6.

3.4. Subnetwork sensitivity analysis

Subnetwork sensitivity analysis results are visualized in Fig. 7. Of the originally reported 

subnetworks, Subnetwork 2 is shown to be the most robust to PEx repeat removal. 81% 

and 84% of the reported Subnetwork 2 taxa and proteins are preserved in the corresponding 

sensitivity analysis (SA) subnetwork. Interestingly, taxa and proteins from Subnetworks 4, 5 

and 6 agglomerate into SA Subnetwork 5. These results suggest that the originally reported 

Subnetworks 4, 5, and 6 are more sensitive to PEx repeat removal. Over-represented and 

non-redundant GO terms determined from the protein sets of SA Subnetworks 2 and 5 are 

shown in Fig. 8. Similar to the reported GO enrichment analysis results for Subnetwork 2, 

GO:0042100 (B cell proliferation) and GO:0048738 (cardiac muscle tissue development) 

proteins are enriched in SA Subnetwork 2. GO terms associated with the SA Subnetwork 

5 protein set are inconsistent with GO terms reported for Subnetworks 4, 5 and 6. Some 

of the SA Subnetwork 5 GO terms are interesting in the context of CF, however, such 

as GO:0031396 (protein ubiquitination; −log10p = 3.8) and GO:19033844 (regulation of 

cellular response to transforming growth factor beta stimulus; −log10p = 2.9).

4. Discussion

Previous analyses investigating the contribution of the microbiome in CF PExs have shown 

limited evidence that typical CF pathogens change prior to exacerbations and that these 

organisms are resilient despite treatment with antibiotics (Bevivino et al., 2019; Price et 

al., 2013; Raghuvanshi et al., 2020; Widder et al., 2022; Zhao et al., 2012). Furthermore, 

the role of non-traditional CF pathogens, particularly anaerobic organisms, is less clear 

(Khanolkar et al., 2020). A paradigm shift has recently been suggested in order to better 

understand the complex polymicrobial nature of CF airway infections (Bevivino et al., 2019; 

Khanolkar et al., 2020; O’Toole et al., 2021). Essentially, it has been suggested that there is 
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redundancy in the bacterial community, that a set of taxa could perform similar functions, 

in which case, classifying taxa based on functions or mechanism may yield additional 

insight over focusing on individual taxa. Similarly, using a hypothesis generating method 

to elucidate microbe-host interactions may also be used for identifying groups of taxa. 

In this work, we have used such an approach to identify relationships between taxa and 

markers of host-response that correspond to sub-networks. A better understanding of the 

complex relationships is needed before treatments targeted at a taxa group can be explored 

(Khanolkar et al., 2020).

Several microbe–protein networks from PEx onset associated with PEx recovery were 

identified in this study. To our knowledge, this is the first study to integrate airway 

microbiome data and host response blood proteome data within the context of CF and 

PEx recovery. Further, this is the first known report to use SmCCNet for integration of 

these omic types. We identified four distinct microbe–protein subnetworks from PEx onset 

that are associated with %ΔPExS. Certain subnetworks, including Subnetwork 5, align 

with preexisting knowledge in CF and provide evidence for the usefulness of SmCCNet in 

this multi-omic application. Novel, hypothesis generating subnetworks additionally emerged 

from this analysis. These include subnetworks like Subnetwork 2, which include taxa that 

have not been historically tracked in CF.

Subnetwork 5, a subnetwork containing P. aeruginosa and proteins involved in inflammatory 

response processes such as regulation of nuclear factor kappa beta (NF-κB) transcription 

factor activity, serves as a traditional CF subnetwork. P. aeruginosa is largely considered the 

hallmark pathogen of CF and its involvement in the excessive inflammatory and immune 

responses seen in people with CF has been consistently reported. The NF-κB signaling 

pathway plays significant roles in adaptive and innate immune response and has been 

shown to induce the expression of pro-inflammatory cytokines and chemokines. These 

pro-inflammatory markers include cytokines and chemokines previously observed during 

CF PExs (Liu et al., 2017). Several studies have linked NF-κB transcription factor activity 

to CF. One study found that NF-κB activation can result in respiratory epithelial cells 

from the presence of P. aeruginosa pilin (DiMango et al., 1998). A separate study aimed 

to inhibit IL-8 transcription (and subsequently reduce the inflammatory host response) in 

CF epithelial cells infected with P. aeruginosa by interfering with the NF-κB transcription 

signaling pathway (Finotti et al., 2012).

Subnetwork 2 was found to contain the strongest node connectivity and served as the 

most robust subnetwork when removing repeat PEx events in the sensitivity analysis. 

Interestingly, this subnetwork revolves around Atopobium and Actinomyces; two taxa that 

have not historically been tracked in CF airways. These nodes are associated with larger 

canonical weights than all other omic features. They are positively associated with %ΔPExS, 

suggesting that increased abundance of these taxa at PEx onset is associated with less 

favorable PEx recovery. GO:0042100, the GO term representative of B cell activation, was 

found to be enriched in the Subnetwork 2 protein set. B cells play a critical role in humoral, 

or antibody-mediated, immunity in humans (Althwaiqeb and Bordoni, 2023). While the 

involvement of B cells in CF is ill-defined, some studies suggest heightened B cell activation 

in CF airways (Giacalone et al., 2020). One report found that B cell-derived lymphoid 
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aggregates were significantly larger in CF airways as compared to non-CF airways (Hubeau 

et al., 2002). The authors suggest that increased presence of B cells in the airway contributes 

to the exaggerated inflammatory process observed in CF. Interleukin 7 (IL-7), a protein 

that overlaps Subnetwork 2 and GO:0042100 and is known for its growth-promoting effects 

on B cells progenitors, has specifically been linked to CF. One study found that increased 

levels of serum IL-7 are associated with worsened lung function in CF, as measured by 

FEV-1% predicted (Seyfarth et al., 2019). This result is consistent with our findings. We 

observed a positive association between both IL-7 and the IL-7 receptor subunit alpha and 

%ΔPExS, suggesting worsened PEx recovery with increased levels of these proteins in the 

blood at PEx onset (r = 0.31 and r = 0.34, respectively). An additional Subnetwork 2 protein 

involved in CF includes interleukin 17 (IL-17), a pro-inflammatory cytokine that promotes 

the production of airway neutrophilia (Hsu et al., 2016).

In light of these findings, it is important to acknowledge the limitations of this study 

that should be considered when interpreting the results. First, our methodology assumes 

independent observations while there are repeated exacerbation events for four study 

participants. It is possible that results are weighted more heavily toward these individuals, 

especially if airway communities or host response are similar for these subjects between 

separate PEx events. We address this limitation by performing a sensitivity analysis that 

aims to assess the impact of repeat PEx removal. Results should be interpreted holistically, 

with sensitivity analysis results providing a gauge of confidence with respect to each 

reported subnetwork. Second, the generalizability of this study is limited since the study 

cohort is small and since subjects originate from a single site. Third, the host-response was 

measured in circulating blood which may not be fully representative of what is occurring in 

the lung, however, given that subjects are hospitalized with acute lung infections, it is likely 

that the inflammatory responses are originating from the site of infection. Fourth, the use of 

speciated taxa in this analysis might lead to misleading results for some of the non-speciated 

taxa. Fifth, and finally, non-linear relationships likely exist between some omic features or 

between some omic features and the phenotype, violating the linear assumption of CCA.

5. Conclusions

We identified subnetworks of microbe-protein combinations that were associated with 

recovery during a PEx in subjects with CF. This highly acute infection and inflammatory 

event provides a useful context in which to study the associations between microbial 

communities and host-response. The identified networks included both known and 

established relationships in CF as well as potentially new and novel associations.
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Fig. 1. 
SmCCNet subnetwork summarizations. (A) High level summarization of all subnetworks 

identified by SmCCNet. The scatterplot (left) shows correlations between individual 

subnetwork nodes and %ΔPExS. Protein nodes are represented as blue circles and taxon 

nodes are represented as pink triangles. The heatmap (right) reports the absolute correlation 

observed between PC1 of each subnetwork and %ΔPExS. (B) Shared canonical weight 

summarization for selected SmCCNet subnetworks. The rug plot shows the distribution of 

network edge weights (or edge strength) for each subnetwork. Edges for all unselected 

subnetworks are additionally shown for reference. Vertical blue lines indicate the median 

edge weight for a given subnetwork. The x-axis is log10transformed to improve resolution of 

small weights.

Graham et al. Page 13

Microbe. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Subnetwork 2, GO:0042100 (B cell proliferation) network visualization. Protein nodes are 

circular and taxon nodes are V-shaped. Node size corresponds to the absolute correlation 

observed between a given node and %ΔPExS. Edge thickness corresponds to between-

node canonical weight-based connectivity. Positively and negatively associated nodes are 

connected by purple and grey, respectively.
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Fig. 3. 
GO biological processes over-represented in selected subnetwork protein sets. The bar plot 

shows the p-value associated with each GO biological process, represented as – log10p. Each 

bar includes information about the number of proteins overlapping a given subnetwork and 

the GO term (FreqSample), the number of proteins annotated to the GO biological process in 

the background list (FreqBackground), and the determined enrichment factor (Enrichment). 
This information is presented in the following format: FreqSample / FreqBackground 
(Enrichment).
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Fig. 4. 
Subnetwork 4, GO:2000328 (regulation of T-helper 17 cell-lineage commitment). Protein 

nodes are circular and taxon nodes are V-shaped. Node size corresponds to the absolute 

correlation observed between a given node and %ΔPExS. Edge thickness corresponds to 

between-node canonical weight-based connectivity. Positively and negatively associated 

nodes are connected by purple and grey, respectively.
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Fig. 5. 
Subnetwork 5, GO:0051092 (positive regulation of NF-kappaB transcription factor activity). 

Protein nodes are circular and taxon nodes are V-shaped. Node size corresponds to 

the absolute correlation observed between a given node and %ΔPExS. Edge thickness 

corresponds to between-node canonical weight-based connectivity. Positively and negatively 

associated nodes are connected by purple and grey, respectively.
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Fig. 6. 
Subnetwork 6, GO:0072126 (positive regulation of glomerular mesangial cell proliferation). 

Protein nodes are circular and taxon nodes are V-shaped. Node size corresponds to 

the absolute correlation observed between a given node and %ΔPExS. Edge thickness 

corresponds to between-node canonical weight-based connectivity. Positively and negatively 

associated nodes are connected by purple and grey, respectively.
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Fig. 7. 
Subnetwork sensitivity analysis subnetwork overlap results. Heatmaps show the percentage 

of originally reported microbes or proteins (y-axis) present in SmCCNet-constructed 

sensitivity analysis subnetworks (x-axis).
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Fig. 8. 
Subnetwork sensitivity analysis GO enrichment analysis results. Bar plots indicate GO 

biological processes over-represented in sensitivity analysis Subnetworks 2 and 5. Each bar 

includes information about the number of proteins overlapping a given subnetwork and the 

GO term (FreqSample), the number of proteins annotated to the GO biological process in 

the background list (FreqBackground), and the determined enrichment factor (Enrichment). 
This information is presented in the following format: FreqSample / FreqBackground 
(Enrichment).

Graham et al. Page 20

Microbe. Author manuscript; available in PMC 2024 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Graham et al. Page 21

Table 1

Cohort demographics and clinical measures at hospital admission for a PEx. %ΔPExS, the phenotype of 

interest, is additionally reported. Continuous demographic and clinical information are reported as median 

[range]. Demographic information is reported at the subject level while clinical information is reported at the 

PEx event level. Multiple organisms can be detected by culture in the same sample; these groups are not 

mutually exclusive.

Cohort Subjects (n = 29)

Age (Years) 15.9 [10.5, 22.1]

Sex (Female) 15 (51.7%)

Genotype (CF Mutations)

0 F508del 2 (6.9%)

1 F508del 9 (31.0%)

2 F508del 18 (62.1%)

All PEx Events (n = 33)

FEV-1% Predicted at Admission 81 [30,119]

PEx Score at Admission 12 [8,16]

%ΔPExS −73 [− 100, 0]

CF Bacteria Culture Detection

P. aeruginosa 11 (33.3%)

S. aureus 19 (57.6%)

Haemophilus 1 (3.0%)

Stenotrophomonas 5 (15.2%)

Burkholderia 5 (15.2%)
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Table 2

SmCCNet subnetwork summarization metrics for the selected SmCCNet subnetworks (i.e., subnetworks with 

strong associations to %ΔPExS, or r PC1-%ΔPExS ≥ 0.35). Metrics include subnetwork PC1–phenotype 

correlation estimates, subnetwork size information, and node–phenotype correlation ranges.

PC1-Phenotype Correlation Node Description Node–Phenotype Correlation Range

Subnetwork r p-value n Nodes n Taxa n Proteins r min r max

2 0.43 0.01 325 27 298 −0.57 0.62

4 0.54 < 0.01 209   5 204 −0.57 0.63

5 0.35 0.05 208   7 201 −0.46 0.47

6 0.42 0.01   98   2   96 −0.50 0.58
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