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Controls of a superconducting 
quantum parametron 
under a strong pump field
Shumpei Masuda  *, Toyofumi Ishikawa, Yuichiro Matsuzaki & Shiro Kawabata

Pumped at approximately twice the natural frequency, a Josephson parametric oscillator called 
parametron or Kerr parametric oscillator shows self-oscillation. Quantum annealing and universal 
quantum computation using self-oscillating parametrons as qubits were proposed. However, 
controls of parametrons under the pump field are degraded by unwanted rapidly oscillating terms 
in the Hamiltonian, which we call non-resonant rapidly oscillating terms (NROTs) coming from the 
violation of the rotating wave approximation. Therefore, the pump field can be an intrinsic origin of 
the imperfection of controls of parametrons. Here, we theoretically study the influence of the NROTs 
on the accuracy of controls of a parametron: a cat-state creation and a single-qubit gate. It is shown 
that there is a trade-off relationship between the suppression of the nonadiabatic transitions and 
the validity of the rotating wave approximation in a conventional approach. We also show that the 
tailored time dependence of the detuning of the pump field can suppress both of the nonadiabatic 
transitions and the disturbance of the state of the parametron due to the NROTs.

Parametric phase-locked oscillators1, which are also called parametrons2, can store binary digital information 
as the phase of the self-oscillation when they are driven via a periodic modulation of their circuit element. 
Parametrons were actually operated as classical bits in digital computers in 1950s and 1960s until the transistor 
acquired the solid stability. More recently, parametrons were revived in the nanoelectromechanical, optical and 
the superconducting circuit systems. Basic bit operations have been demonstrated in a nanoelectromechani-
cal system using a electromechanical resonator3, and the Ising machine based on optical parametron has been 
proposed4. To see the quantum nature of the parametron, the nonlinearity should be sufficiently large compared 
to the decay rate. The nonlinearity smaller than the decay rate gives rise to the appearance of classical dynamics of 
the system5. The quantum regime with the nonlinearity larger than the decay rate has been studied theoretically6–8 
and experimentally9,10. We consider this quantum regime in this paper.

The parametron was applied to the qubit readout11,12 in circuit QED architectures which are promising plat-
form of quantum information processing13–15. Quantum annealing16–18 and universal quantum computation19, 
which utilize the quantum nature of parametrons in a superconducting circuit, have been proposed. Recently, the 
bias-preserving gates20 and single-qubit operations21 were studied theoretically and experimentally. Exponential 
increase of the bit-flip time with the cat size was also observed22.

Under the pump field oscillating at approximately twice its natural frequency, a superconducting quantum 
parametron (we refer parametron hereafter) can work as a qubit in contrast to transmons and flux qubits which 
do not require an oscillating pump field to realize an effective two-level system.

The decay from the parametron causes the decoherence of the qubit states23. In order to avoid the decoher-
ence, we need controls much faster than the decay rate. For such rapid controls, we require a large pump field to 
avoid unwanted nonadiabatic transitions19. However, the strong pump field can be an origin of the degradation 
of qubit operations. Such a trade-off relationship has been overlooked in earlier studies on the parametron.

In this paper, we study the effect of the strong pump field to the operations of a parametron in the quantum 
regime assuming that the operation time is much shorter than the coherence time. First, in order to quantita-
tively assess the feasibility of superconducting parametron for quantum applications, we study the effect of the 
unwanted non-resonant rapidly oscillating terms (NROTs) in the Hamiltonian on the accuracy of the creation 
of a cat state. It is shown that there is a trade-off relationship between the suppression of the nonadiabatic 
transitions and the validity of the rotating wave approximation in a conventional approach16,19. Second, we also 
show that the tailored time dependence of the detuning of the pump field can suppress both the nonadiabatic 
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transitions and the disturbance of the state of a parametron due to the NROTs. Finally, we study the effect of 
the NROTs on an Rx gate.

Model
We consider a parametron composed of a SQUID-array resonator with N SQUIDs (Fig. 1a) which was imple-
mented in Ref.10. The effective Hamiltonian of the system is represented as10

where φ and n are the overall phase across the junction array and its conjugate variable, respectively. EJ is the 
Josephson energy of a single SQUID. The effective Hamiltonian with a single degree of freedom, φ , is valid when 
the Josephson energy EJ is much greater than the charging energy of a single junction24. EC is the resonator’s 
charging energy including the contributions of the junction capacitance CJ and the shunt capacitance C, and 
can be extracted from measurements and also can be calculated with finite-element capacitance simulations10. 
The Josephson energy is periodically modulated by the external magnetic flux, �(t) , threading the SQUIDs as 
EJ (t) = EJ + δEJ cosωpt.

Taking into account up to the 4th order of φ/N in Eq. (1), we obtain an approximate Hamiltonian

where ω(0)
c = 1

�

√

8ECEJ/N  , χ = EC/�N
2 and β = ω

(0)
c δEJ/8EJ . Here, β corresponds to the pump strength. The 

annihilation operator a is related to n and φ as n = −in0(a− a†) and φ = φ0(a+ a†) with n20 =
√

EJ/32NEC  and 

φ2
0 =

√

2NEC/EJ  . For the expansion of Eq. (1), we considered the parameter regime, where φ0/N = 2

√

χ/ω
(0)
c  

is sufficiently smaller than unity so that the approximation is valid. We took into account up to the forth order 
of φ/N to see the effect of the Kerr nonlinearity, which is important for a parametron. We neglect the last term 
in Eq. (2) assuming χβ ≪ ω

(0)
c  , and drop c-valued terms to obtain

Moving into a rotating frame at the frequency of ωp/2 , the Hamiltonian is written as

When we neglect all the oscillating terms such as a2e−2iωpt which are called NROTs, we obtain an approximate 
Hamiltonian (rotating wave approximation),

where � = ω
(0)
c − χ − ωp/2 . We compare the results for the Hamiltonians in Eqs. (4) and (5) in the following 

sections. We neglect the decay and the dephasing to highlight the effect of the NROTs assuming that the decay 
and the dephasing time is sufficiently longer than the duration of the controls.
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Figure 1.   (a) Schematic of a superconducting quantum parametron. EJ and CJ are the Josephson energy of a 
single SQUID and the capacitance of a single Josephson junction, respectively. C denotes the capacitor shunting 
the SQUID array. φ is the overall phase across the junction array. �(t) is the external magnetic flux threading 
the SQUIDs. (b) Energy level diagram as a function of pump strength for � < 0 and χ > 0 . Because � < 0 , 
the highest energy level is the vacuum state for β = 0 . The inset is a typical image of the Wigner function of the 
highest energy level for large 

√
2β/χ(≃ 2.5) . The top two curves overlap as β is sufficiently large.
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Figure 1(b) shows a schematic of the energy level diagram of the Hamiltonian (5). The vacuum state is the 
highest energy level in the rotating frame when β = 0 . The highest and the second highest energy levels for suf-
ficiently large β/χ are represented as

respectively, with coherent states, | − α� and |α� , where α =
√
(2β +�)/χ 25, and |�| is much smaller than β . 

These coherent states , | − α� and |α� , can be used as a qubit for quantum annealing and universal quantum 
computation16,19. Thus, the creation of predetermined states such as cat states in Eq. (6) is of importance for 
quantum information processing.

In this paper, we consider the case that � ≤ 0 . If � is positive, the vacuum state is not the highest energy 
level in the rotating frame when β = 0 , and the vacuum state is driven to a state different from |ϕ0� as the pump 
field is ramped8.

Results
We examine the effect of the NROTs on the creation of a cat state, |ϕ0� , and on an accuracy of a single-qubit gate 
along the x axis ( Rx gate). We solve the time-dependent Schrödinger equation with a fourth-order Runge-Kutta 
integrator with the time step of 0.025 fs in the following numerical simulations.

Creation of a cat state.  We assume that the system is in the vacuum state and β = 0 at t = 0 ; and β is 
gradually increased for 0 ≤ t ≤ T . The quantum adiabatic theorem states that the system remains in the highest 
energy level if β is increased slowly enough. Thus, the population of the highest energy level, p0 , is unity if the 
evolution is completely adiabatic. We set the time dependence of β as

(We consider a linear ramp of β for simplicity.) We define the fidelity of the control as p0(t) for t > T.
Figure 2a shows the fidelity of the control as a function of T. The fidelity for short T is lowered due to 

unwanted nonadiabatic transitions in the dynamics without NROTs. In the dynamics with the NROTs, the fidelity 
is even lower and keeps fluctuating after the ramp of the pump field. The standard deviation of the fluctuation 
of p0 for t > T is considerably large even for T = 100 ns where the nonadiabatic transitions are negligible. The 
fluctuation becomes large when T is short because of the large population of the lower levels. Figure 2b shows the 
fidelity as a function of ωp . In this numerical simulation, ω(0)

c  is changed with ωp so that the detuning is fixed. It 
is seen that, as ωp increases, the fidelity is increased and the fluctuation of p0 is suppressed. This comes from the 
fact that the rotating wave approximation becomes more accurate as we increase ωp and ω(0)

c .

(6)
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√
2
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,

(7)β(t) =
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Figure 2.   (a) Fidelity of the creation of a cat state as a function of T for the dynamics with (red) and without 
(green) the NROTs, where the error bars represent the standard deviation calculated using the data for t > T . 
The used parameters are β0/2π = 200 MHz, �/2π = −6.7 MHz, ωp/2π = 16 GHz and χ/2π = 68 MHz. The 
inset shows the time evolution of p0 for T = 50 ns. The red solid and the black dashed curves are for with and 
without the NROTs, respectively. We chose � to be the same as the previous study10. (b) Fidelity as a function of 
ωp/2π for T = 100 ns. We use the same value for β0 , χ and � as (a), while ω(0)

c  is changed so that � is unchanged 
(Note that ω(0)

c = ωp/2+�+ χ ). The dashed line corresponds to the dynamics without the NROTs.
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The time dependences of the population of lower levels are shown for T = 50 ns and 100 ns in Fig. 3a,c and 
Fig. 3b, d  respectively. In the case without the NROTs, the third highest level is populated due to the nonadiabatic 
transition while the population of the other lower levels are approximately zero (e.g., the population of the fifth 
highest level is less than 10−5 and 10−6 at t = T for the parameters used in Fig. 3a,c and Fig. 3b, d respectively). 
The population of the second, fourth, sixth, · · · levels is vanishing because of the parity difference from the high-
est level. On the other hand, the other lower levels with the same parity as the highest level are also populated in 
the dynamics with the NROTs as apparently seen in Fig. 3. The fluctuating population of the third highest level 
is higher than that without the NROTs for the both values of T. The oscillation of the populations saturates for 
t > T , when β is constant.

We discuss the significance of our results here. It is worth mentioning that we need a condition of �−α|α� ≃ 0 
to use the parametron as a qubit, and so β/χ should be sufficiently large. (The overlap, �−α|α� , becomes negligible 
when β/χ is sufficiently large because �−α|α� = exp[−2|α|2]16 and α =

√
(2β +�)/χ  .) For this purpose, we 

could decrease χ , but this leads us to a smaller energy gap between the eigenenergies of the Hamiltonian, which 
could induce more nonadiabatic transitions. An alternative approach to satisfy �−α|α� ≃ 0 while supressing the 
nonadiabatic transitions could be a increase of β . However, as we showed in this subsection, a large β could be 
another source of error due to the violation of the rotating wave approximation. Therefore, in the conventional 
approach, there is a trade-off relationship between the suppression of the nonadiabatic transitions and the validity 
of the rotating wave approximation, which was often overlooked in earlier works.

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  10  20  30  40  50

3rd
5th
7th
9th
3rd w/o CRTs

po
pu

la
�o

n

t (ns) t (ns)

-6

-5

-4

-3

-2

-1

 0  10  20  30  40  50

po
pu

la
�o

n 
(lo

ga
rit

hm
ic

)

(c)

-6

-5

-4

-3

-2

-1

 0  20  40  60  80  100

po
pu

la
�o

n 
(lo

ga
rit

hm
ic

)

(d)

(b)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  20  40  60  80  100

3rd
5th
7th
9th
3rd w/o CRTs

po
pu

la
�o

n

t (ns) t (ns)
Figure 3.   Time dependence of the population of the third, fifth, seventh and the nineth highest levels during 
the cat-state creation for T = 50 ns (a) and 100 ns (b). The population of the second, fourth, sixth, · · · levels is 
vanishing because of the difference of the parity. The dotted curves represent the population of the third highest 
level in the dynamics without NROTs. The used parameters are the same as Fig. 2a. (c) and (d) are the same 
things as (a) and (b), respectively, but with the vertical axis in the logarithmic scale.
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Suppression of nonadiabatic transitions.  In order to overcome the trade-off relationship discussed in the pre-
vious subsection, we examine a way to enhance the fidelity of the creation of a cat state based on the time-
dependent detuning26. We show that the fluctuation of the population of the target state due to the NROTs and 
the nonadiabitc transitions are greatly suppressed without increasing β nor decreasing χ.

In this method, we set the initial detuning large and decrease it to zero as

The pump is ramped following Eq. (7). We set the initial detuning �0/2π = −67 MHz. The time-dependent 
detuning can be implemented by controlling ω(0)

c  depending on EJ which can be controlled with the magnetic 
flux. Unwanted resultant change in β can be compensated by changing δEJ . Alternatively, the time-dependent 
frequency of the pump field can be used for the implementation of the time-dependent detuning.

Figure 4a represents the fidelity of the creation of a cat state as a function of T. The modified method gives 
the fidelity considerably higher than the one with the constant detuning. We have obtained the fidelity of more 
than 0.995 with the modified method for T = 50 ns while the average fidelity for the control with the constant 
detuning is approximately 0.97. We emphasize that the fluctuation of the fidelity is suppressed in the modified 
method as seen in the error bars of Fig. 4a. We attribute this to the fact that the population of the lower levels are 
much smaller than the case with the constant detuning. Note that the NROTs, which couples the highest level to 
the other levels, weakly influence to the population of the highest level, when the population of the other levels 
are small. Figure 4b represents the Wigner function16 for t ≥ T(= 10 ns) in the controls with the constant and 
the time-dependent detunings. The Wigner function is disturbed and time dependent in the control with the 
constant detuning for t ≥ T , while in the modified method it is approximately stationary and coincides with 
that of the highest energy level of HRWA . The results for the controls with different values of �0 are shown in 
Supplementary Section S1.
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Figure 4.   (a) Fidelity of the creation of a cat state as a function of T with the time-dependent detuning in 
Eq. (8) (blue circles) and the constant detuning of �/2π = −6.7 MHz (red bars). The NROTs are taken into 
account in the both dynamics. The error bars represent the standard deviation which is calculated using the 
data for t > T . The used parameters are �0/2π = −67 MHz, β0/2π = 200 MHz, ωp/2π = 16 GHz and 
χ/2π = 68 MHz. (b) Wigner functions for t ≥ T(= 10 ns) in the controls with the constant (upper figures) and 
the time-dependent (lower figures) detunings. The other parameters are the same as (a). (c) The three highest 
eigenenergies of instantaneous HRWA in Eq. (5) for the constant and the time-dependent detuning for T = 20 
ns. The other parameters are the same as (a).
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Figure 4c shows the three highest eigenenergies of instantaneous HRWA in Eq. (5) for the constant and the 
time-dependent detuning. The reader may consider that the nonadiabatic transitions occur when t is large 
because the interval between the highest and the second highest levels become small. However, such transition 
does not occur because of the parity difference. The major population transfer is from the highest level to the 
third highest level.

The enhancement of the fidelity in the modified method is explained as follows. It is known that the adiabatic 
condition:

should be satisfied to suppress the nonadiabatic transition between levels m and n, where Em is an eigenvalue of 
the instantaneous HRWA , and m  = n . The state of the highest level of HRWA changes drastically from the zero 
photon state to a superposition of Fock states as the pump is ramped in the small pump regime. The introduced 
large detuning in the small pump regime makes slow the rate of the change of the highest level, and makes the 
denominator of Eq. (9) large. Thus, the dynamics is well approximated by the adiabatic dynamics (nonadiabatic 
transitions are suppressed). On the other hand, the rate of the change of the highest level is slow for the large 
pump regime compared to the small pump regime. Therefore, the detuning can be gradually turned off.

Figure 5 shows the time dependence of hmn during the creation of a cat state with the time-dependent detun-
ing in Eq. (8) and the constant detuning. It is seen that hmn for the time-dependent detuning are smaller than 
the one for the constant detuning around t = 0 , and the peaks of hmn for the time-dependent detuning is lower 
than the maximum value for the control with the constant detuning.

Now, a comment is in order. Using larger constant detuning also can improve the fidelity of the creation of 
a cat state. However, finite � causes Rx gate of the parametron as explained in the following section because � 
increases the gap between the highest level and the second highest level of the parametron. Although using larger 
pump strength can decrease the gap, it increases the disturbance of the state due to NROTs. Therefore, it is favora-
ble to make � zero at the end of the creation of a cat state from the point of view of the information processing.

The decay from the parametron, which decoheres the qubit state, is an another origin of the imperfection 
of the control. The effect of the decay to the creation of a cat state is examined in Supplementary Section S2, 
although we focus mainly on the effect of NROTs in this paper.

Before moving to the next section, we surmmarize the trade-off relations and explain the role of our method. 
Creation of a cat state should be followed by some other controls such as gate operations and a measurement 
in applications. Therefore, the speed of creation of cat state should be sufficiently faster than the decay rate for 
practical purposes. Moreover, for quantum computation, such a fast control is essential to improve the clock 
frequency. β/χ should be increased rapidly, and its final value should be sufficiently large to use | − α� and |α� as 
qubit state. Then, we have the trade-off relations: 1. Choosing smaller χ causes more nonadiabatic transitions due 
to a smaller energy gap between the eigenenergies; 2. Making β larger causes more decrease and larger fluctuation 
of the fidelity of the control due to the effect of NROTs. The modified method with the time dependent detuning 
can increase the fidelity by decreasing the nonadiabatic transitions and can suppress the fluctuation of the fidelity.

R
x
(π
2

) gate.  A pulsed detuning realizes a rotation of a parametron around the x axis19. The detuning enlarges 
the energy difference between the highest and the second highest levels of the instantaneous Hamiltonian. Thus, 
the states obtain the different dynamical phases, which give rise to a Rx gate. This scheme of the Rx gate differs 
from the one which utilizes the time-dependent pump strength in Ref. 21.

We examine the degradation of the fidelity of the Rx( π2 ) gate due to the NROTs using the pulsed detuning 
given by

where Tg is the gate time and �0 is optimized for Rx( π2 ) gate (the angle of rotation is determined by �0 ). The 
other parameters are fixed during the control. The initial state is set to be

(9)hmn(t) = �|�ϕn(t)|ϕ̇m(t)�|/|En(t)− Em(t)| ≪ 1

(10)�(t) =
{

�0 sin
2(π t/Tg ) for 0 ≤ t ≤ Tg,
0 for t > Tg,
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Figure 5.   Time dependence of hmn for the creation of a cat state for T = 50 ns with the time-dependent 
detuning in Eq. (8) and the constant detuning. Other parameters are the same as Fig. 2a.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11459  | https://doi.org/10.1038/s41598-021-90874-4

www.nature.com/scientificreports/

The fidelity of the gate is defined by the population of the target state,

at t = Tg.
We consider two sets of (β ,χ) which give approximately the same α . Figure 6a,b show the fidelity of the Rx( π2 ) 

gate for the both parameter sets with and without the NROTs. In the case without NROTs, the both parameter 
sets give the fidelity of approximately unity. The maximum fidelity for the smaller β and χ is approximately the 
same as the case without the NROTs [Fig. 6a] (The difference between them is less than 0.1%). On the other 
hand, the fidelity for the parameter set with larger β and χ is degraded when the NROTs are taken into account 
as seen in Fig. 6b. This means that, smaller parameter set is more suitable to decrease the disturbance by the 
NROTs in the Rx gate, although the smaller parameter set tends to induce more nonadiabatic transitions during 
the creation of the cat state. Fortunately, we have found that the method with Eq. (8) suppresses the nonadi-
abatic transitions and the fluctuation of the state when we create a cat state, as shown in Fig. 4. Therefore, we can 
safely choose the smaller parameter set of β and χ to achieve the higher fidelity of Rx gate while the nonadiabatic 
transitions and the fluctuation of the state during the cat-state creation are still significantly suppressed by using 
the modified method.

A comment on the intermediate state during the gate operation is in order. The larger parameter set gives 
small values of |�0|/χ and |�0|/β to perform the Rx( π2 ) gate. The required value of |�0|/χ is approximately 4.1 
and 2.8 for the smaller and the larger parameter sets, respectively. Thus, the intermediate states during the gate 
operations are different. Figure 6c,d show the Wigner function of the highest and the second highest levels of 
HRWA in Eq. (5) for � = 0 and � = �0 . The Wigner function, which is separated in three parts for � = 0 , is 
connected near the origin for � = �0 . It represents that the highest and the second highest levels become closer 
to the zero photon and the one photon Fock states, respectively. The Wigner function for the larger parameter 
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Figure 6.   Fidelity of Rx( π2 ) gate. The used parameters are β/2π = 53 MHz, χ/2π = 17 MHz for (a) and 
β/2π = 200 MHz, χ/2π = 68 MHz for (b). We used ωp/2π = 16 GHz and Tg = 100 ns for the both panels. 
The error bars represent the standard deviation calculated using the data for t > Tg . (c) and (d): Wigner 
function of the highest (upper panels) and the second highest levels (lower panels) of HRWA in Eq. (5). The left 
and the right panels correspond to � = 0 and � = �0 , where |�0|/χ = 4.1 for (c) and 2.8 for (d), respectively. 
The other parameters used in (c) and (d) are the same as (a) and (b), respectively.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11459  | https://doi.org/10.1038/s41598-021-90874-4

www.nature.com/scientificreports/

set is shrunk in the y−direction around the origin compared to that for the smaller parameter set because of 
the difference in |�0|/χ.

Rz and Rx gates can consist of a universal single-qubit gate set. Rz gates for a parametron can be realized by 
a drive with a microwave pulse19. Because the intensity of the microwave pulse is sufficiently smaller than the 
pump field, the interplay between the microwave pulse and the NROTs is negligible (see S3 for detail).

Conclusion
We have quantitatively investigated the effect of the non-resonant rapidly oscillating terms (NROTs) on controls 
of a parametron. It has been shown that the NROTs cause unwanted population transfer from the qubit levels to 
the other energy levels, and degrade the fidelity of the cat-state creation. The population transfer is mainly from 
the highest level to the third highest level when the frequency of the pump field is sufficiently high. However, we 
can increase the control fidelity by suitably choosing parameters such as the nonlinearity parameter, the pump 
strength and frequency. Furthermore, starting from large detuning and decreasing it to zero as the pump is 
ramped, we can greatly enhance the fidelity of the cat-state creation, which we call a modified method. Interest-
ingly, the fluctuation of the population of the target state is suppressed in the modified method. The mechanism 
of the enhancement of the fidelity has been explained from the viewpoint of the adiabatic condition. Also, we have 
studied the effect of the NROTs on a Rx gate. The fidelity of the Rx gate depends on the pump strength because 
of the NROTs. We have shown that smaller pump field and nonlinearity parameter realize higher gate fidelity.

Turning on and off the pump field can be used not only for the cat-state creation but also for transforming 
a parametron to a transmon for the qubit readout21. Therefore, the inverse process of the modified adiabatic 
method of the creation of a cat state is expected to be useful also for that purpose.
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