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SUMMARY

A full understanding of the developmental process requires fine-scale character-
ization of cell divisions and cell types, which are naturally organized as the devel-
opmental cell lineage tree (CLT). Technological breakthroughs facilitated deter-
mination of more CLTs, but complete comprehension of the data remains
difficult without quantitative comparison among CLTs. We hereby quantified
phenotypic similarity between CLTs using a novel computational method that
exhaustively searches for optimal correspondence between individual cells mean-
while retaining their topological relationships. The revealed CLT similarities al-
lowed us to infer functional similarity at the transcriptome level, identify cell
fate transformations, predict functional relationships between mutants, and
find evolutionary correspondence between cell types of different species. By al-
lowing quantitative comparison between CLTs, our work is expected to greatly
enhance the interpretability of relevant data and help answer the myriad of ques-
tions surrounding the developmental process.

INTRODUCTION

The life of multicellular organisms typically starts from a zygote, which undergoes multiple rounds of cell

divisions and simultaneous differentiation and eventually develops into an individual organism with multi-

ple types of cells. The developmental cell lineage tree (CLT) is a record of both the differentiation result of

the cells appearing at a specific developmental time point (cell types the terminal nodes of the CLT) and the

cell division events since the zygote that led to these cells (topology of the CLT) (Figure 1A). A more gener-

alized CLT does not necessarily root at the zygote but may start from any dividable cell, in which case it is a

subtree of the CLT rooted at the zygote or a sub-CLT (Figure 1A). As one of the most important traits of

multicellular organisms, the CLT is the key to resolving many significant problems in the life sciences.

For example, developmental CLTs record the process of development (Du et al., 2014, 2015; Junker

et al., 2017; Kalhor et al., 2017; McKenna et al., 2016; Santella et al., 2016; Sulston et al., 1983) and help un-

derstanding the mechanism of developmental robustness (Reizel et al., 2012; Salipante et al., 2010; Yang

et al., 2014). Other types of CLTs reveal the origin of relapsed or metastatic tumor cell populations (Frumkin

et al., 2008; Shlush et al., 2012), the risk of carcinogenesis attributable to the number of cell divisions since

the zygote (Tomasetti et al., 2017; Wasserstrom et al., 2008), and the origin and evolution of cell types and

lineages (Arendt et al., 2016; Lescroart et al., 2015).

Since the resolution of the first complete cell lineage tree in Caenorhabditis elegans (Sulston et al., 1983),

technological advancements ranging from 3D time-lapse imaging (Gritti et al., 2016) to genome editing in

combination with single-cell high-throughput sequencing (Junker et al., 2017; Kalhor et al., 2017; McKenna

et al., 2016; Raj et al., 2018a, 2018b) had fueled the accumulation of more CLT data. However, a general

computational framework for quantitative comparison of CLTs has been lacking. Take the classical CLT

of Caenorhabditis elegans for example, phenotypic comparison and functional inference were previously

made on the predefined lists of developmental phenotypes (Gunsalus et al., 2005; Piano et al., 2002). This

approach had not fully utilized the rich information embedded in the CLT and cannot reveal finer scale cor-

respondence between individual cells. Quantitative comparison of CLTs should facilitate quality assess-

ment of CLT data, relating new observations to the known, disentangling variation from the consensus,

and evolutionary comparative studies.
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To address this critical demand, we designed Developmental Cell Lineage Tree Alignment (DELTA), an al-

gorithm that aligns a pair of CLTs and quantifies the similarity between them by identifying homeomorphic

sub-CLTs, with the assumption that similar genetic (or developmental) programs should give rise to similar

sub-CLTs (Azevedo et al., 2005; Yang et al., 2014). A critical feature of DELTA is its compatibility with clas-

sical CLTs (such as those of nematodes) and the genome-editing-based lineage CLTs, as it only required

the topology and the terminal cell types of the CLT to work. Using simulated CLTs (Lohaus et al., 2007) and

real CLTs from C. elegans (Murray et al., 2012), we showed that homeomorphic sub-CLTs found by DELTA

have highly similar expression profiles. Comparisons among CLTs of the wild-type and single-gene knock-

down strains of C. elegans (Santella et al., 2016) revealed both known (Du et al., 2015) and novel homeotic

transformations of cell fates in the knockdown strains and suggested for the knockdown genes functional

A

B

C

Figure 1. Overview of the DELTA Algorithm

(A) A very simple typical developmental CLT rooted at the zygote (‘‘Z’’). Cells undergoing further division are represented

by internal nodes and others by terminal nodes. The cell types of the terminal nodes are indicated by the colors in the

legend on the right, whereas the type of the internal cells, as inferred from the cell type of the two daughter cells, are also

indicated by different node colors. The depth, or the number of divisions since the zygote, of a cell is indicated by the

vertical axis. A subtree, or sub-CLT, is outlined by a dotted box.

(B) Two CLTs to be aligned,Q and S, are presented with their terminal cell types color coded. DELTA aligns them globally

(DELTA-g), where all cells in respective CLTs are either pruned or aligned, or locally (DELTA-l), where only pairs of sub-

CLTs with good enough alignments are reported (see Figure S1A for more details).

(C) The DELTA alignment of the C. elegans CLT of standard anatomical terminal cell type annotation, with an isomorphic

version of itself, where 30% of randomly chosen sister sub-CLT pairs were swapped. The resulting CLT alignments were

visualized by our newly developed R package, ‘‘ggVITA’’ (see also Figure S1C). See also Figure S1.
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relationships compatible with evolutionary and experimental evidence. Finally, we compared the develop-

mental CLTs of two nematodes and were able to pinpoint the evolutionary changes in fates between cells in

these two CLTs. By maximizing the alignment score between real CLTs of the two species, we found bio-

logically interpretable correspondence between their nonuniformly defined cell types, highlighting a

conceptually new way of inferring the evolutionary relationship between cell types. Together, these results

recapitulated known developmental patterns and demonstrated the usefulness of DELTA. In the way that

sequence alignment algorithms fundamentally transformed genetics, CLT comparison/alignment enabled

by DELTA will likely lead to new opportunities for a deeper understanding of the biology of multicellular

organisms, such as assessing the repeatability of differentiation, linking sub-CLTs to developmental pro-

grams, and distinguishing autonomous and regulatory components involved in development.

RESULTS

Overview of the DELTA Algorithm

A typical developmental CLT, as analyzed here, is a binary tree (Figure 1A), where each node represents a

single cell and each branch represents a descendant relationship from a mother cell to one of its daughter

cells. The cells in the tree can be divided into internal or terminal cells/nodes based on whether they un-

dergo further division as recorded by the CLT. A subtree rooted at any of the cells is a sub-CLT. The ter-

minal cells of the CLT are all labeled by their cell types, which could be anatomically defined as, for

example, muscle or neural cells, or defined by the expression state of one or more genes such as CD4+

cells. Note that, in contrast to the CLTs commonly discussed in nematodes such as C. elegans, we ignored

the temporal duration of the cell cycle and the order of sister cells to ensure compatibility with CLTs deter-

mined by genome editing. In other words, the length of the branch contains no information about how long

each cell exists and swapping any pair of sister sub-CLTs (i.e., two sub-CLTs whose roots are a pair of sister

cells divided from the same mother) will not change the CLT.

We designed the DELTA algorithm with the purpose of identifying similarities in developmental programs

using the phenotypic information represented by the CLT. Here the developmental program is a succes-

sion of cell fate choices made at every division event recorded by the CLT. We assumed that the develop-

mental state of a cell is reflected by the states of its daughter cells, which are further defined by their own

daughter cells until reaching the terminal cells with known cell types (Figure 1A, color of nodes). In other

words, a pair of cells is similar if the two sub-CLTs rooted at them resemble each other in topology and

lineal organization of terminal cell types. This assumption was deemed useful in demonstrating the

simplicity (Azevedo et al., 2005) and robustness (Yang et al., 2014) of metazoan CLTs, as well as in identi-

fying homeotic transformation of cell fates (Du et al., 2015). DELTA compares every sub-CLT from a query

CLT with those from a subject CLT and exhaustively searches for their maximal resemblance in terms of to-

pology and lineal organization of terminal cell types via a dynamic programming strategy (Figure S1A). As

an analogy, sequence alignment algorithms align residues in biological sequences with the constraint of

their sequential order, whereas DELTA aligns terminal and internal cells in CLTs with the constraint of their

lineal organization. DELTA can align CLTs globally (DELTA-g), where all cells in respective CLTs are either

pruned or aligned, or locally (DELTA-l), where only pairs of sub-CLTs with good enough alignments are re-

ported, very similar to global and local sequence alignment, respectively (Figure 1B). DELTA also estimates

the statistical significance of each CLT alignment relative to random pairs of CLTs with the same sizes and

terminal cell type compositions as the aligned CLTs. More algorithmic details of DELTA are given in the

Transparent Methods section and Supplemental Information.

As a basic validation of DELTA, we aligned a C. elegans CLT with an isomorphic version of itself, where 30%

of randomly chosen sister sub-CLT pairs were swapped. DELTA-g successfully aligned the isomorphic CLT

with the original CLT by matching all terminal nodes, yielding the same DELTA score as that of the align-

ment between two identical C. elegans CLTs (Figure 1C; see also Figure S1B). We also developed an

accompanying R package named ggtree-based visualization of tree alignments (ggVITA) for the visualiza-

tion of DELTA alignments (Figure 1C; see also Figure S1C).

CLT Simulations Suggest that DELTA Can Identify Developmental Similarities

To further demonstrate that DELTA alignment can indeed reveal developmental similarities, we simulated

CLTs using a previously published model (Lohaus et al., 2007), in which the gene expression status (on/off)

of each gene in each cell and at each discrete time point was calculated by a predefined regulatory network

(Figures 2A and 2B; see Transparent Methods). DELTA-l was used to align the simulated CLT with itself. This
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Figure 2. Validating DELTA by Simulated CLTs

(A) An example of a transcriptional regulatory network used to simulate CLTs. There are eight genes, each of which is

regulated by an average of four other genes. Red and blue lines represent activations and repressions, respectively.

Values in the matrix of regulatory interactions are detailed in Figure S2A. The sectors underneath the genes represent the

sectors shown for each cell in (B).

(B) An example of a simulated CLT. Lowercase letters a to h represent eight terminal cell types based on the ON/OFF

state of eight genes, which is shown as red (ON) or white (OFF) in the corresponding sector around the letter. The

development of the lineage tree stops when one of the terminal cells reaches 12 rounds of divisions or the 50th discrete

time point of the simulation. CLTs were also simulated under other parameter settings, as listed in Figure S2B and

explained in the Transparent Methods.

(C) The score of the top 10 CLT alignments found by DELTA-l from self-comparison of simulated CLTs. In addition to the

full simulated CLT (red bars), perturbations were added to mimic experimental/biological noises, such as the 35% loss of
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process was repeated with 1,000 different simulated CLTs, and the top ten local alignments from each

simulation were examined to assess the performance of DELTA. Several results in support of the capability

of DELTA were observed. First, we found that, for each simulated CLT, the self-alignment always had the

highest DELTA score in the local alignment result (Figure 2C, left-most red bar). Second, DELTA tended to

find alignments between large sub-CLTs, which contained more developmental information (Figure 2D,

red bars). Third, the CLT alignments were statistically highly significant, indicating that DELTA scores

were much higher than those between random CLTs of similar sizes and terminal cell type compositions

(Figure 2E, red bars). Fourth, the differences in gene expression status, as measured by the Hamming dis-

tance (the number of genes with differences in expression status between two cells), between the roots of

the aligned sub-CLTs was much smaller than that between two randomly chosen internal cells and tended

to be lower for those with higher DELTA scores (Figure 2F, red bars). Fifth, by comparing the expression

status of each gene for all aligned (terminal and internal) cells in a pair of (sub-)CLTs, we found that their

expression trajectories were much more similar (Hamming distance scaled to [0,1], therefore having an

expectation of 0.5) between aligned internal or terminal cells than expected (Figure 2G), suggesting

that not only the initial state but also the subsequence changes in expression were highly similar between

the aligned CLTs. These results demonstrated that DELTA can indeed pair internal cells with similar gene

expression status.

Two practical considerations prompted us to further scrutinize the performance of DELTA using revised

CLT simulation models. First, the aforementioned model used for simulated CLTs implicitly assumed

that all cells differentiate autonomously, whereas the real differentiation process is believed to be highly

regulated. To mimic such regulation by external signals from other cells or the environment, we introduced

a probability (5%) of randomly flipping the gene expression status of a gene at every time point during the

simulated development by negating its expression level (see Transparent Methods), excluding the cell cy-

cle and asymmetric division regulator. Second, current experimental techniques are not perfect in

capturing all cells, making the experimentally reconstructed CLTs incomplete. For example, the state-

of-the-art lineage tree reconstruction method used a droplet-based single-cell sequencing system (Raj

et al., 2018a) and the most commonly used commercial single-cell sequencing platform (10x Chromium)

has a cell loss rate of�35%. To reflect such technical limitations, we simulated two CLTs with identical initial

parameters (regulatory network and expression of the root), randomly removed 35% of terminal cells from

each CLT, reconstructed the simulated CLTs following the actual lineal relationship among the remaining

terminal cells (see Transparent Methods), and aligned them by DELTA. As expected, these two perturba-

tions reduced the DELTA score (Figure 2C, green and blue bars), CLT size (Figure 2D, green and blue bars),

statistical significance (Figure 2E, green and blue bars), and gene expression similarity between the aligned

sub-CLTs (green and blue bars in Figure 2F and the two panel on the right of Figure 2G). Nevertheless,

DELTA is still capable of identifying statistically significant sub-CLTs with highly similar gene expression

status (Figures 2C–2G). We found by additional simulations that statistically significant alignments could

readily be found with 5%, 10%, 20%, or 50% cell losses, but not 90% (Figure S2). These results suggest

that, despite the detection power reduction due to stochastic perturbations, associating CLT phenotypes

with underlying gene expression status by DELTA remains feasible as long asR50% of the terminal cells of

the real CLT were captured by the reconstructed CLT. Note, however, recent genome-editing-based CLT

reconstruction efforts have not yielded CLTs with cell capture rate R50%; we therefore refrained from

trying DELTA on genome-editing-based CLTs (see more details in Limitations of the Study).

Figure 2. Continued

terminal cells (green bars), non-autonomous cell fate (purple bars), or both (blue bars). Each bar shows the average

score and its standard error assessed by 1,000 simulations with different regulatory networks and initial expression

states.

(D–F) Similar to (C), except that the number of terminal cells in the aligned CLT (D), statistical significance of the alignment

(E) (P values truncated at 10�300), and difference in expression status between roots of aligned CLTs as measured by the

Hamming distance (F) are plotted. Please see Figure S3 for results from simulations with cell loss rate of 5%, 10%, 20%,

50%, or 90%.

(G) For the same set of top 10 CLT alignments presented in (C) (x axis), the expression trajectory dissimilarity of every gene

except genes 1 and 2 (y axis) is shown. The expression states of a specific gene at the last time point of every cell were

compared for every pair of matched cells (terminal or internal) from the two aligned CLTs. The resulting Hamming

distance is normalized by the number of matched cell pairs, giving rise to the expression trajectory dissimilarity, the value

of which is scaled based on the color scale bar to the right. All expression trajectory dissimilarities are average values from

the DELTA-l results of 1,000 simulations. The expression trajectory dissimilarities between the aligned cells are clearly

much lower than the null expectation 0.5 for the normalized Hamming distance. See also Figures S2 and S3.
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Comparison of C. elegans CLTs by DELTA Reveals Cells with Highly Similar Developmental

Programs

Next, we sought to test the performance of DELTA using real CLTs from C. elegans. The C. elegans embry-

onic CLT contains 31 pairs of bilaterally symmetrical sub-CLTs (Sulston et al., 1983), 8 of which have 10 or

more terminal cells (Figure 3A). We aligned these symmetric pairs of sub-CLTs by DELTA-g and found that

their DELTA scores were highly significant (Figure 3B, gray bars) and always higher than those from the

alignments between one sub-CLT from the symmetric pairs and another sub-CLT with a similar number

of terminal cells (Figure 3B, blue dots; see Transparent Methods). For the 17 symmetric pairs of sub-

CLTs with three to nine terminal cells, all but one (ABarappa versus ABalpaaa) pair gave rise to statistically

significant CLT alignments (Table S1). The remaining six symmetric pairs of sub-CLTs cannot be aligned by

DELTA as they have <3 terminal cells (Table S1).

To further assess the capability of DELTA to find similarities in developmental programs, we take advan-

tage of the Expression Patterns inC. elegans (EPIC) database, where the expression of 130 genes is tracked

in each cell during the embryonic development of C. elegans, from the zygote to the last round of

embryonic cleavage (the 350-cell stage) (Murray et al., 2012). We collected all statistically significant (nom-

inal P < 0.05) entries from the top 2,000 sub-CLT alignments in the DELTA-l results of a C. elegans CLT

versus itself and calculated the Pearson’s correlation coefficient R between the aligned cells in the sub-

CLTs (See Transparent Methods). Since the sizes of different alignments vary, the Pearson’s R values are

standardized by Fisher’s r-to-z transformation before being compared. In support of the usefulness of

DELTA, a higher z is observed in CLT alignments with higher DELTA scores (Figure 4A, Pearson’s

R = 0.951, P < 10�300, Spearman’s r = 0.926, P < 10�300) and more significant alignment P values (Figure 4B,

Pearson’s R = 0.505, P < 10�98, Spearman’s r = 0.177, P < 10�11). In combination with the results from the

simulated CLTs, we demonstrated that DELTA can indeed identify CLTs with highly similar developmental

programs.

Phenotypic Differences in Knockdown CLTs Quantified by DELTA Reveal Functional

Relationships among Underlying Genes

Inspired by the capability of DELTA to identify similarities in developmental programs by homeomorphic

(sub-)CLTs, we continued to test whether DELTA can associate CLT changes with their underlying genetic

mechanisms. The Digital Development database (Santella et al., 2016), where CLTs are recorded for

C. elegans strains with �200 conserved genes individually knocked down (knockdown strains) provides

a unique opportunity to compare phenotypic changes in CLTs with underlying genetic differences.

A

B

Figure 3. Bilaterally Symmetric sub-CLTs Yielded Highly Significant DELTA Alignments

(A) Bilaterally symmetric sub-CLTs with at least 10 terminal cells in the C. elegans CLT are highlighted by different colors,

whereas the lineal names of their root are also marked below every sub-CLT.

(B) The alignment score (dots, scaled by the left y axis) and statistical significance (gray boxes, scaled by the right y axis,

see Transparent Methods) found by DELTA-g alignment between the symmetric sub-CLTs are indicated by red dots. As

controls, sub-CLTs with a number of terminal cells differing from the symmetric sub-CLTs by no more than 10% were

also compared with one of the symmetric sub-CLTs, and the resulting DELTA scores are indicated by blue dots. Please

see Table S1 for DELTA results between other bilaterally symmetric sub-CLTs with less than 10 terminal cells. See also

Table S1.
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Specifically, homeotic transformations, where a cell x in a knockdown strain adopted the fate used by cell y

in the wild-type strain (an x-to-y transformation), were previously observed using this dataset (Du et al.,

2015). For a homeotic transformation of x-to-y, we extracted the sub-CLT rooted at x from the knockdown

strain as well as the sub-CLT rooted at y from the wild-type strain. Using a scoring matrix defined by the

number of markers with shared expression (Figure 5A) and a pruning cost of 1, we used DELTA-g to align

all the extracted pairs of sub-CLTs from the homeotic transformations, i.e., the sub-CLT with an altered fate

in the mutant strain and the sub-CLT from the wild-type strain representing the new fate resulting from

transformation. We found that 87.3% of the pairs gave rise to statistically significant (P < 0.05) alignments

(Figures 5B and 5C; see also Table S3), suggesting that DELTA can indeed identify homeotic cell fate trans-

formations. Moreover, DELTA showed the correspondence between the terminal cells of these aligned

CLTs (Figure 5D, alignments on the left), revealing the subtle differences between wild-type and trans-

formed sub-CLTs.

We further examined the top 100 DELTA-l results between the wild-type and each mutant strain for home-

otic transformation events. Some known homeotic transformations are among the top-ranking local align-

ments. For example, the cell fate transformation of the ABar lineage in the MOM-2 knockdown strain into

ABal in the wild-type strain had the sixth highest DELTA score in the local alignment between the wild-type

and MOM-2 knockdown CLTs, the detailed alignment of which between individual cells found by DELTA

was visualized by ggVITA (Figure 5D, top left alignment). Similarly, the E cell in GLD-2 knockdown strains

takes the cell fate of wild-type MS, which corresponds to the 32nd top alignment in the DELTA-l results be-

tween the wild-type and GLD-2 knockdown CLTs (Figure 5D, bottom left alignment). Furthermore, we

found some alignments between sub-CLTs that likely correspond to additional homeotic cell fate transfor-

mations that have not been previously reported, such as the transformation of P1 into ABp when CAMT-1 is
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Figure 4. Expression Similarities between Aligned sub-CLTs in C. elegans

The top 2,000 local alignments between sub-CLTs of C. eleganswere found by DELTA-l, and those with a nominal P < 0.05

were checked for expression similarities between aligned cells. For each sub-CLT alignment, the expression levels of 130

genes recorded in the EPIC database were compared for all aligned cells, giving rise to the expression similarity between

the two aligned sub-CLTs in the form of Pearson’s correlation coefficient (point size). The expression similarities were

further processed by Fisher’s r-to-z transformation to ensure comparability between sub-CLT alignments with different

numbers of cells and then shown to be highly correlated with the DELTA score (A) and p value (B) of the sub-CLT

alignment. A full list of all 1,526 results with nominal P < 0.05 within the top 2,000 local alignments was given as Table S2.

Note that 30 alignments with DELTA score >250 were truncated from this figure to facilitate a better visualization of the

trends for alignments with small DELTA scores. See also Table S2.
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knocked down and P1 into ABa when C01A2.5 is knocked down (Figure 5D, right alignments). Note,

however, that most local alignments found in DELTA-l between wild-type and mutant strains are between

sub-CLTs unchanged by the gene knockdown or highly similar in the original CLT. Nevertheless, these re-

sults suggest that homeotic cell fate transformation can be readily found by DELTA.

Given the above results, we further hypothesized that the phenotypic impact of the gene knockdown, as

approximated by the DELTA score between wild-type and knockdown CLTs, can reflect the functional

importance of the underlying genes. To test this hypothesis, we compared the DELTA score, which was

calculated from the global alignment between wild-type and knockdown CLTs, with the evolutionary rates

of the genes being knocked down, since functionally more important genes generally evolve more slowly

and thus are more conserved (Zhang and Yang, 2015). Here we used the dN/dS ratio tomeasure the protein

evolutionary rate, where dN is the number of nonsynonymous nucleotide substitutions per nonsynonymous

site and dS is the number of synonymous nucleotide substitutions per synonymous site (Nei and Kumar,

2000). We split the genes with knockdown CLTs into two groups with high or low DELTA scores with the

wild-type CLT and compared the average evolutionary rates of the two groups. As we divided the two

groups based on greater DELTA score differences, the deviation of the evolutionary rate of the two groups

continued to increase up to� 8-fold when genes with DELTA scores >7400 and <2600 were compared (Fig-

ure 6A). Since genes with a more dramatic functional impact upon deletion are generally more constrained

by natural selection (Zhang and Yang, 2015), this observation suggests that DELTA comparisons between

A

D

B C

Figure 5. DELTA Reveals Homeotic Cell Fate Transformation in C. elegans Mutants

(A) The scoring matrix used in DELTA analyses of cell types annotated in the Digital Development database.

(B and C) For the 131 homeotic cell fate transformation events found by Du et al. between CLTs with at least five terminal

cells, the DELTA score (B) and p value (C) between the sub-CLTs in mutant strains and those in a wild-type strain

representing the adopted cell fate are shown.

(D) Detailed sub-CLT alignments visualized by our newly developed R package ‘‘ggVITA’’. The two alignments on the left

were previously marked by Du et al., and the two on the right were newly found by DELTA. Terminal cell types are

indicated by colors as in (A). Sub-CLT pruning was shown as red circles on the corresponding internal nodes, in which the

number of pruned nodes was indicated. See also Table S3.
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Figure 6. DELTA Relates Phenotypic Changes in CLTs to Underlying Genetic Mechanisms

(A–D) C. elegans single-gene knockdown (KD) CLTs were categorized into high (dark color) or low (light color) DELTA

score groups by different thresholds (x axis) according to their DELTA score of global alignments with the wild-type CLT.

The differences between the high and low DELTA score groups become more dramatic for dN/dS (A) and dN (B), but not

the dS (B) or expression level (D) of the knockdown genes. The error bar indicates the standard deviation assessed by

1,000 bootstraps of the genes.

(E and F) Enrichment with experimentally determined interactions (E) and coexpression (F) in pairs of genes with

knockdown CLTs having a high DELTA score relative to those with a low DELTA score was assessed by an odds ratio from

the Mantel-Haenszel test, where the thresholds for high and low DELTA scores are indicated on the x axis. The
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knockdown and wild-type CLTs can indeed quantify phenotypic changes in CLTs in relation to the func-

tional importance of the knockdown gene.

To better understand this observation, we compared dN and dS separately with the DELTA score. We

found that differences in DELTA scores were predictive of deviation in dN (Figure 6B) but not dS (Figure 6C).

Since dS is primarily determined by the mutation rate, whereas dN is determined jointly by the mutation

rate and natural selection (Nei and Kumar, 2000), these results suggest that the DELTA score indeed

captured phenotypic changes in CLT that are subject to natural selection acting on the function of the

gene, instead of a mutational bias in favor of less important genes. In addition, the gene expression level

was found to be unrelated to the DELTA score (Figure 6D). Therefore, the correspondence between the

evolutionary conservation of a gene and the impact of its knockdown quantified by DELTA is not

confounded (Zhang and Yang, 2015) by the expression level of the gene.

We next asked whether comparisons between CLTs of two knockdown strains can reveal a functional rela-

tionship between the knockdown genes, as has been shown by CLT comparison using methods other than

DELTA (Gunsalus et al., 2005; Lee et al., 2008; Piano et al., 2002). Since the DELTA score quantifies the

phenotypic similarity between two CLTs, we hypothesized that, if the DELTA score between two knock-

down CLTs is higher, the genes knocked down in these strains will more likely be functionally related. To

test our hypothesis, we assessed the enrichment of experimentally determined interactions recorded by

STRING (Szklarczyk et al., 2017) in pairs of genes with knockdown CLTs having a high DELTA score relative

to those with a low DELTA score. To avoid interdependence between gene pairs due to involvement of the

same gene, we constructed a 2x2 contingency table for each of the 204 genes separately based on (1)

whether their DELTA scores with the 203 other knockdown CLTs were higher or lower than some thresholds

(Figure 6E, x axis) and (ii) whether the confidence of experimentally determined interactions between the

pair of knockdown genes in comparison surpassed a selected confidence threshold (Figure 6E, color scale).

The 2x2 contingency tables for all genes were summarized by theMantel-Haenszel procedure to calculate a

combined odds ratio to reflect the enrichment of the interaction, such that a larger odds ratio indicates that

the gene pairs underlying the knockdown CLTs are more likely to be coexpressed. A similar analysis was

also performed for coexpression between knockdown genes (Figure 6F). For both interaction and coex-

pression, we found that the odds ratio increased as the DELTA score difference between the two groups

of gene pairs became larger, regardless of the confidence threshold used. For example, the enrichment of

experimentally determined interactions with a confidence value >0.5 yielded an odds ratio of 25.5 when

gene pairs with a DELTA score >6,000 were compared with those with a DELTA score <4,000. These results

suggest that genes whose knockdown yields similar phenotypic outcomes for CLTs tend to be functionally

related. Our observations also provided novel CLT-based results that were consistent with previous obser-

vation derived from image-based developmental phenotypes (Gunsalus et al., 2005; Piano et al., 2002), yet

offering an analytical method that is more versatile than a predefined list of image-based phenotypes. Alto-

gether, our comparative analyses among knockdown and wild-type CLTs by DELTA successfully associate

CLT phenotypes with the underlying genotypes.

CLT Comparison between Species by DELTA Hints at Evolutionary Correspondence between

Cell Identities and Cell Types

The diversity of cell types is a significant feature of multicellular organisms, but how it evolves remains

largely unexplored. Similar to the necessity of finding orthologous genes between species, the study of

cell type evolution is impossible without mapping cell types or constructing the ‘‘cell type orthology’’ be-

tween different species. Traditionally, cell types from two species are considered ‘‘orthologous’’ according

to structure- and/or function-based cell type definitions, such as neural or muscle cells. Recent technolog-

ical development of single-cell RNA sequencing and other high-throughput approaches (Schwartzman and

Tanay, 2015; Shapiro et al., 2013; Stegle et al., 2015) has promoted research efforts to revise cell type def-

initions by molecular similarities at the transcriptome or epigenome level, such as in the Human Cell Atlas

Project (Regev et al., 2017). However, inferring cell type orthology by structural/functional/molecular sim-

ilarities may not be reliable because such similarities could have emerged from phenotypic convergence

Figure 6. Continued

experimentally determined interactions and coexpression relationships were extracted from the STRING database

with different confidence thresholds, as indicated by the color scale. The error bar indicates the 95% confidence

interval of the odds ratio given by the Mantel-Haenszel test.
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(Arendt et al., 2016), as found for the striated muscles of vertebrates and Drosophila melanogaster (Brunet

et al., 2016). Alternatively, we hypothesized that the DELTA score between CLTs from two species with non-

uniformly defined cell types would be maximized by a scoring matrix based on the actual evolutionary rela-

tionship between specific cell types.

To test our hypothesis, we compared the CLTs of Pellioditis marina and C. elegans, the cell type identities

of which were previously defined by structure and function nonuniformly in the two species (Azevedo et al.,

A

C

D E

B

Figure 7. DELTA Comparison across Species Highlights the Evolutionary Correspondence of Cell Fates

(A) Optimization of the scoring matrix between cell types of two species. With the cell types from two species, we first

defined a scoringmatrixM, the row and column labels (cell types) of which were randomly permutated to generate control

matrices M1, M2, ., and Ml. These 1 + l matrices were individually used by DELTA to align the CLTs from the two

species, giving rise to 1 + l corresponding DELTA scores w, w1, w2, ., and wl. The deviation of w from its random

expectation ~w = 1
I

PI
i = 1wi , i.e., Dw = w� ~w, is optimized by a greedy strategy. See Transparent Methods and Figure S4

for more details.

(B) The optimal scoring matrix for comparisons between C. elegans and P. marina.

(C) The alignment between C. elegans and P. marina found by DELTA using the scoring matrix shown in (B). Note that the

small circled numbers on some internal branches indicate the size of the pruned sub-CLT.

(D) A sub-alignment from (C); note that the Epiderm ‘‘P1aabab’’ cell in P. marina is apoptotic in C. elegans.

(E) The number of aligned cell pairs in (E) that fall into each cell type pairs between P. marina (x axis) and C. elegans (y axis)

is shown by the number and the color within the grid of a heatmap, with the color scale indicated by the scale bar to the

right. See also Table S4 and Figure S4.
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2005). By a greedy strategy (see Transparent Methods, Figures 7A and S4), we optimized the scoring matrix

such that the DELTA score from global alignments between the two CLTs was maximally higher than the

scores from pairs of control CLTs created by relabeling all cells of a type as another random type. Intrigu-

ingly, the high matching scores in the optimized scoring matrix indeed hint at biologically reasonable cor-

respondence between cell types from the two species (Figure 7B). For example, the optimized matrix sug-

gests that the cells labeled as ‘‘Muscle,’’ ‘‘Death,’’ ‘‘Intestinal,’’ and ‘‘Germ’’ have exact matches between

the two species. On the other hand, cells labeled as ‘‘Nervous System’’ in P. marina correspond to the cells

labeled as ‘‘Neurons’’ and ‘‘Structural’’ (neuronal structural) cells, and the cells labeled as ‘‘Pharynx’’ in

P. marina correspond to ‘‘Gland,’’ ‘‘Epithelial,’’ ‘‘Muscle,’’ and ‘‘Neuron’’ cells in C. elegans. Finally, the

30 cells in P. marina with the ‘‘Other’’ fate were suggested by the optimized matrix to be epithelial cells

in C. elegans.

Furthermore, the DELTA-g alignment based on the optimized scoring matrix revealed the detailed corre-

spondence between terminal cells of the two species (Figure 7C). Some evolutionary events of cell fate

changes are clearly highlighted, such as an Epiderm cell in P. marina becoming apoptotic in C. elegans

(Figure 7D. See Table S4 for a full list of cell pairs between P. marina and C. elegans aligned by DELTA-g).

On a broader scale, the CLT alignment between P. marina and C. elegans showed results highly consistent

with those found in previous reports (Houthoofd et al., 2003). For example, it was previously found that gut

and somatic muscle of P. marina is highly conserved in comparison to C. elegans (Houthoofd et al., 2003).

The same pattern was quite apparent if we count, for the CLT alignment by DELTA-g between P. marina

and C. elegans, the number of aligned terminal cell pairs that fall into each combination of cell types be-

tween P. marina and C. elegans (Figure 7E). Indeed, all 20 intestine cells in P. marina were aligned to intes-

tine cells in C. elegans, and 80 of 81 somatic muscle cells in P. marina were aligned to muscle cells in

C. elegans. Given that DELTA only used the CLT (tree topology and terminal cell type), but not other infor-

mation such as the cellular position, this observation therefore again supported the utility of DELTA.

DISCUSSION

A Computational Framework for Comparative Studies of CLTs

In this study, we designed and implemented DELTA, a computational framework for the alignment of

developmental CLTs. Using simulated CLTs and real CLTs from C. elegans, we showed that DELTA can

find sub-CLTs with highly similar developmental programs, such as bilaterally symmetric lineage pairs,

and lineages with highly similar expression trajectories. Furthermore, DELTA alignments among knock-

down andwild-typeC. elegans strains identified homeotic cell fate transformations, showedmore dramatic

phenotypic changes for the knockdown of more important genes, and revealed higher CLT similarities be-

tween strains where functionally related genes are individually knocked down. Finally, we found that the

scoring matrix, optimized for the DELTA score between CLTs from two species, shed light on the evolution

of cell types and CLTs of the two species. Together, these results not only recapitulated previously known

developmental patterns and therefore demonstrated the utility of DELTA but also pointed to some novel

biological patterns that merit further investigation.

DELTA relies on two critical pieces of information to align CLTs, i.e., the topology and the terminal cell

types of the CLT. This feature of DELTA ensures its compatibility with both classical CLTs (such as those

of nematodes) and genome-editing-based CLTs. To the best of our knowledge, there is currently no other

tool designed to quantify the similarity of CLTs other than DELTA. Algorithms for the quantitative compar-

ison of other types of trees do exist. For example, similarities between phylogenetic trees can bemeasured

by the edit distance between two trees with identical sets of unique leaves (species) (Nye et al., 2006). Addi-

tionally, an algorithm has been designed to find similarities between RNA structure trees, which are un-

rooted trees with nodes (internal or terminal) representing one of four nucleotides (A/U/G/C) (Milo

et al., 2013). Both these methods are apparently not suitable for alignment and similarity quantification be-

tween CLTs, which are rooted trees with different non-uniquely labeled leaves. In conclusion, DELTA is ex-

pected to open new paths to the analysis of CLTs, which include both classical CLT (Houthoofd et al., 2003;

Sulston et al., 1983) and novel genome-editing based CLT that will rapidly accumulate (Junker et al., 2017;

Kalhor et al., 2017; McKenna et al., 2016; Raj et al., 2018a, 2018b).

Potential Applications of DELTA

As more CLTs are being determined, the application of DELTA to them shall provide critical insight into

several important biological questions. First, the repeatability of development can be assessed by
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comparing CLTs from different individuals or CLTs that root at different cells from an otherwise homoge-

neous cell population. This analysis is particularly relevant for the efficiency of induced pluripotent stem

(iPS) cells, where a seemingly homogeneous population of cells are similarly treated but only a very small

fraction are successfully transformed to the pluripotent state, with an even smaller fraction capable of

growth into organoids. Comparisons between the CLTs rooted at failed or successful iPS cells may hint

at the mechanisms underlying their differences.

Second, as demonstrated with simulated and wild-type C. elegans CLTs, DELTA is capable of associating

CLT phenotypes with the genetic states of individual cells. Theoretically, the phenotypic consequence of

genetic states, i.e., genotype-phenotype mapping (GPM), will become more complex when more cells are

involved. As an intermediate phenotype to the phenotypes of single cells and of tissues/organisms, DELTA

offers a novel path of bridging GPM at the unicellular and multicellular levels.

Third, we have shown in our study that DELTA can be used to find the evolutionary correspondence be-

tween cell types in two species. The advancement of single-cell transcriptome profiling experiments has

allowed cell type classification at the finest scale with molecular signatures of gene expression. Experi-

mental limitations aside, this approach for cell type identity determination has two biological difficulties.

On the one hand, the similarity of the transcriptional profiles may arise from both cell type homology owing

to inheritance from the common precursor and phenotypic convergence, which might lead to false com-

binations of different cell types into one. On the other hand, the stochastic nature of gene expression (Elo-

witz et al., 2002) may lead to erroneous separation of the homogeneous cell population of one type into

two. This problem was recently reported (Arendt et al., 2016), where an evolutionary definition of cell types

based on the ‘‘core regulatory complex’’ (CoRC) of transcription factors was proposed. As a complemen-

tary approach, DELTA utilizes the biological information in a CLT to find the evolutionary correspondence

between cell types and simultaneously reveals how the CLT itself evolves.

Fourth, one critical unanswered question in development is the relative prevalence of autonomous and

regulatory development. In nematodes such as C. elegans, development is autonomous except for a small

number of sub-CLTs (Sulston andWhite, 1980). In most other animals, however, it is generally believed that

regulatory development is the prevailing mode and autonomy is the exception. A direct quantitative

answer to this question would emerge by examining the result from DELTA local alignments for the fre-

quency of identical sub-CLTs, should a CLT or sub-CLT be available for those species.

Fifth, an ideal CLT comprises complete longitudinal and horizontal data. However, during experimental

assessment of CLTs by single-cell transcriptome profiling and lineage barcoding, cell lysis and loss are inev-

itable even in the state-of-the-art method, which dictates that CLT is longitudinally (because the cells are

killed at the time of experimentation) and horizontally incomplete. DELTA may provide a resolution to this

problem by allowing assembly of temporally ‘‘sliced’’ incomplete CLTs, just as sequence alignment allows

the assembly of the genome from short reads.

Limitations of the Study

There are several potential caveats in our study that are worth discussing. The DELTA result critically relies

on the choice of its two parameters: the scoring matrix between cell types and the pruning cost. Although

we have carefully chosen biologically informed parameters (see Transparent Methods), there is no objec-

tive estimate of how good or bad they are, which is likely impossible to obtain before more CLT data

become available, similar to the refinement of the substitution matrix for sequence alignment when

more sequences were determined (Dayhoff, 1972). Additionally, the value of the pruning cost relative to

the matching score also affects the DELTA results. On the one hand, a lower pruning cost makes DELTA

more sensitive because pruning of small sub-CLTs improves alignment compared with terminal cell type

mismatches. On the other hand, a higher pruning cost makes DELTA more specific since terminal cell

type mismatches are more likely to be retained than pruned. Nevertheless, a poor choice of parameters

likely reduces biological signals. The significance of all patterns we have shown in this paper would thus

be stronger if the parameters were further optimized, further enhancing the value of DELTA.

We have considered the qualitative cell type or gene expression status in our definition of CLTs. However,

the dynamic programming scheme for comparison between CLTs is readily adaptable to the quantitative

definition of cell types made by high-throughput experiments, such as single-cell transcriptomics. In this
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case, instead of using the scoring matrix between qualitatively defined cell types, the alignment score be-

tween a pair of terminal cells is calculated by the similarities between their transcriptome profiles, using

quantitative metrics such as correlation coefficients or negated Euclidean distances.

In the current study, CLTs were used without considering the temporal duration of the cell cycle for each

cell. On the one hand, this is a necessary trade-off to ensure DELTA’s compatibility with genome-editing-

based CLTs, which contains minimal (if any) information on the temporal duration of the cell cycle. On the

other hand, discarding the information of cell cycle duration did not prevent us from discovering the sim-

ilarities in developmental programs by analyzing CLTs. There are two potential explanations for this

observation. First, the molecular pathway that regulates cell cycles might be tightly coupled to the devel-

opmental program, such that cell cycle duration is an intrinsic property of the cell type. In other words, most

cell types have their own specific cell cycle duration, such that the definition of cell types already contains

the information concerning cell cycle duration. Second, the definition of cell types might have nothing to

do with the cell cycle duration, in which case DELTA needs to be further improved by allowing cell cycle

duration adjustment as an additional CLT revision (in addition to sub-CLT pruning), with properly defined

costs to the DELTA score.

For both simulated CLTs and real CLTs from C. elegans, the developmental process is mostly autonomous,

whereas in most complex organisms (except nematodes), it appears to be largely non-deterministic/regulatory.

The critical difference between autonomous and regulatory development is whether the gene expression status

of individual cells can be altered by external cues, such as environmental stress or signals from other cells. For

example, when isolated from the 8-cell-stage mouse blastomere, one cell can grow into one individual mouse

(Kelly, 1977) but not one-eighth of a mouse, as would be predicted by autonomous development. However,

autonomous cell fate determination is certainly not absent in complex organisms, especially toward the end of

thedevelopmentalprocess.Meiosis isone suchexampleof re-occurringsub-CLT,whereaprimaryoocytedivides

twice (three division events) and creates onemature ovum and three polar bodies. As long as such autonomous

sub-CLTs exist, DELTA alignment will be possible and informative, as demonstrated by our simulated CLTs with

perturbed gene expression (Figure 2).

In the current study, we revisited previously identified homeotic cell fate transformation caused by gene

knockdown. Although we found that >87% of previously found homeotic transformations gave rise to a sta-

tistically significant DELTA alignment, i.e., despite providing high sensitivity, the specificity of DELTA in

identifying homeotic transformations was low because most local alignments found in DELTA-l between

wild-type and mutant strains are between sub-CLTs that are unchanged by the gene knockdown or highly

similar in the original CLT. We caution readers that additional systematic examination of these local align-

ments is required to exclude those false positives before one can identify candidate homeotic transforma-

tion warranting further investigation.

Last but not least, current single-cell high-throughput experiments suffer from the loss of cells; thus, the

CLT reconstructed by lineage tracing of DNA barcodes is likely incomplete, with the majority of terminal

cells missing. The robustness of DELTA to such data quality issues dictates the applicability of DELTA.

As shown in our DELTA analysis by simulated CLTs with randomly dropped terminal cells (Figure S3), a

cell loss rate of 5%, 10%, 20%, or 50%, but not 90%, might still give rise to statistically significant DELTA

alignments with high gene expression similarity. In other words, the loss of terminal cells decreases the

sensitivity of DELTA. Unfortunately, to the best of our knowledge, none of the CLTs reconstructed by

genome editing and single-cell sequencing so far have achieved a cell loss rate %50%, which is why we

refrained from analyzing genome-editing-based CLT in this current study. Nevertheless, we do believe

this situation will be much improved in the near future, which is exactly why we decided to develop DELTA

at this time. Moreover, if more CLT data were to become available, this limitation could potentially be alle-

viated by assembling small fragmented CLTs into big complete CLTs (DELTA or similar algorithms should

be required in such assembling efforts), as short sequence fragments with sufficiently high coverage can be

assembled into the full-length sequence.

Overall, DELTA establishes a computational foundation for the alignment of CLTs and potentiates system-

atic analyses of lineage trees. Albeit the limitations, DELTA will likely illuminate the connection between

phenotypes represented by CLTs and their underlying genotypes, providing novel insights into many

unresolved biological questions.
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Resource Availability

Lead Contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the Lead Contact, Jian-Rong Yang (yangjianrong@mail.sysu.edu.cn).

Materials Availability

No new materials were generated in this study.

Data and Code Availability

This current study conducted computational analyses on publicly available datasets, whose source were all

explicitly mentioned in main text. As for the source code, DELTA has been deposited in GitHub (https://

github.com/yxj17173/DELTA), ggVITA has been deposited in GitHub (https://github.com/helloicyvodka/

ggvita), scripts for various DELTA-based analyses presented in this study have been deposited in Github

(https://github.com/helloicyvodka/DELTA_code).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101273.
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Figure S1. The DELTA algorithm, related to Fig. 1. 

(A) A detailed example of DELTA alignment in Fig. 1B. Two CLTs, Q and S, with types of their 
terminal cells are colo-coded. Note the nontriviality of the problem when the correspondence 
between cells in Q and S is sought after, regardless of the extreme simplicity of both trees. The two 
CLTs, plus a scoring matrix describing how the correspondence between specific cell types should 
be awarded based on hypothetical biological similarities of each pair, and a pruning cost, are used as 
input. The DELTA algorithm then uses a dynamics programming (DP) strategy to search for the 
optimal alignment between the two CLTs. Some critical steps of the DP procedure are exemplified 
here. First, a DP matrix was constructed and filled by comparing the smallest sub-CLTs (those 
containing only one terminal cell) first, as shown by the light blue-shaded elements of the DP matrix. 
Each score between an internal node and a terminal node (green shaded elements) was then 
calculated by choosing the best combination of pruning and matching, with the source of best scored 
saved for each comparison (top panel). A similar procedure was carried out for scores between two 
internal nodes (pink shaded elements), allowing (mis-)matches for both daughter cells or necessary 
pruning (middle panel). In both the top and middle panels, all possible combinations of daughter 
cell alignments and the corresponding score are listed as arrows and scores with different colors, 
whereas the best score is always colored blue. Arrows with dashed lines indicate pruning is involved, 
or solid lines otherwise. The high-scored element in the DP matrix was used as a starting point for 
backtracing, where the optimal alignment between Q and S are represented by the backtraced route 
(gray arrows in bottom panel). The final result provides the optimal alignment between Q and S. 
Note that the aligned terminal cells are vertically matched and the aligned internal cells are indicated 
by double-headed arrows. (B) The actual DP matrix generated by a DELTA alignment of the C. 
elegans CLT of standard anatomical terminal cell type annotation, with an isomorphic version of 
itself, where 30% randomly chosen sister sub-CLT pairs were swapped. Each element of the DP 
matrix is colored from low (blue) to high (red) by the scored percentile, as indicated by the color 
scale bar on top. The bottom right corner inset is a magnification for finer details. The bar-plot on 
top shows the number of leaves for the sub-CLTs represented by the column of the DP matrix. (C) 
The top local alignments found by DELTA comparing C. elegans CLT with itself. The terminal cell 
types were color-coded as indicated by the legend at the bottom right corner. Note that except the 
first alignment of the full CLT root vs root, each pair of aligned sub-CLTs appears twice as both X 
vs Y and Y vs X, which is an expected behavior of the local alignment of a CLT vs itself. 
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Figure S2. DELTA analyses with simulated CLT, related to Fig. 2. 

(A) A matrix representing the regulatory network in Fig 2A, which is used to simulate CLTs 
presented in Fig. 2B. (B) Other parameters we tested to simulate CLTs. Each row represents a 
parameter combination (see Transparent Methods), and the last three columns indicate the fraction 
of self-alignments of the simulated CLTs with a P value below three different thresholds. (C and D) 
The 1,000 CLTs simulated with the parameter set (a = 100, N = 16, K = 2, tmax = 50 and dmax = 12) 
were self-aligned by DELTA-l. The top 100 CLT alignments were extracted from each DELTA-l 
run. The relationship between the statistical significance of the alignment and the number of 
matched cell (C) or DELTA score (D) is shown. Linear models fitted with the 100,000 points are 
represented by red lines in both (C) and (D). 
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Figure S3. DELTA performance under various cell loss rate, related to Fig. 2. 

(A-D) These panels are similar to Fig. 2C-F, except that a terminal cell loss rate of 5% instead of 
35% was used in the simulation. Note that only the green and blue results were affected. 
(E-H) These panels are similar to Fig. 2C-F, except that a terminal cell loss rate of 10% instead of 
35% was used in the simulation. 
(I-L) These panels are similar to Fig. 2C-F, except that a terminal cell loss rate of 20% instead of 
35% was used in the simulation. 
(M-P) These panels are similar to Fig. 2C-F, except that a terminal cell loss rate of 50% instead of 
35% was used in the simulation. 
(Q-T) These panels are similar to Fig. 2C-F, except that a terminal cell loss rate of 90% instead of 
35% was used in the simulation. 
  



 

 

 
  



 

 

Figure S4. Greedy strategy used in optimization of the scoring matrix for C. elegans vs P. 
marina, related to Fig. 7.  

(A) Cell types containing more cells were arranged at the top left corner of the scoring matrix. Then 
elements in the matrix were optimized as sub-groups of n elements (we used n = 4 in this study). 
Only row and column labels related to the elements currently being optimized were permutated to 
generated control relabeled matrices, considerably reducing the computational time for 𝑤� . (B) 
Elements were optimized in groups as in (A) starting from the top-left (associated with more cells) 
to the bottom-right (associated with fewer cells), prioritizing those on the top-left to bottom-right 
diagonal line. (C) The scoring matrix was optimized following the scheme of (B) in four rounds, 
where each element of the matrix was chosen from two diverging options conditioned on the result 
of the previous round, such that ∆𝑤 is maximized. 

 
 
 

  



 

 

Transparent Methods 

The DELTA algorithm 

Given an alignment (not necessarily optimal) of two CLTs, two parameters are required to 
quantify the similarity of these two CLTs. First, for any pair of cell types containing one cell type 
from each of the two CLTs being compared, a “matching score” is required to describe their 
similarity in terms of developmental state. All the matching scores between the cell types from one 
CLT and the cell types from the other CLT can be summarized in a scoring matrix, analogous to the 
substitution matrix (e.g., PAM and BLOSUM) used in the sequence alignment, except that cell 
types from the two CLTs could be different. Second, similar to the gap penalty in sequence 
alignment, a pruning cost is used when some cells or sub-CLTs from one CLT are “pruned”, 
meaning no correspondence in the other CLT can be found for them. In our implementation, the 
pruning cost is multiplied by the size (number of leaves, regardless of the cell type) of the pruned 
sub-CLTs and then simply subtracted from the alignment score when sub-CLT pruning is required. 
With the scoring matrix and pruning cost defined, the goodness of correspondence between terminal 
cell types and topology can be quantified as a score for the alignment between a pair of CLTs. The 
task of DELTA is then to find the alignment with the maximal possible score (the “DELTA score”), 
allowing necessary mismatches of types in terminal cells and pruning of sub-CLTs. 

Finding the optimal alignment between CLTs is computationally intensive because a CLT 
remains unchanged or isomorphic by swapping any pair of sister sub-CLTs. Thus, a query CLT with 
1,000 internal nodes, approximately the size of the full C. elegans CLT, could be aligned to another 
subject CLT in 21,000 possible ways, not to mention the isomorphic transformation of the subject 
CLT and pruning of both CLTs. In DELTA, this issue is resolved by dynamic programming 
(Camacho et al., 2009; Needleman and Wunsch, 1970; Smith and Waterman, 1981) (Figure S1A), 
where the smallest sub-CLTs (those containing only one terminal cell) are aligned first and larger 
sub-CLTs are aligned by the best combination of the alignments of their two daughter sub-CLTs, be 
it a match, a mismatch, or pruning. The final alignment is extracted from the dynamic programming 
matrix by backtracing the subalignments from the matrix cell with the top DELTA score.  

To gauge the statistical significance of an alignment, for each of the aligned CLTs, we 
generated 1,000 pseudo-CLTs by randomly coalescing the leaves of the real CLT and calculated the 
DELTA score between the 1,000 pairs of pseudo-CLTs. (details given in Supplemental Text). The 
distribution of the DELTA scores assessed by these randomized CLTs controls both the sizes of the 
CLT and the composition of the terminal cells. The DELTA scores of the 1,000 pairs of 
pseudo-CLTs were used to estimate a P value for the actual DELTA score by a Z-test. 

We implemented the DELTA algorithm in C++, the source of which is available on GitHub. 
Three files are required as input for the DELTA algorithm, namely, two files with the CLTs to be 
aligned and a file defining the matching scores of different terminal cell types. 
 

Simulated CLTs 

We simulated CLTs using a previously published model (Lohaus et al., 2007). Briefly, the 
expression profile of a cell at time t is represented by vector S(t), for which the elements si(t) (-1 ≤ 
si(t) ≤ 1) indicate the expression of genes i = 1, 2, …, and N (N > 2), and the gene expression state of 



 

 

the gene is considered “on” if si(t) > 0, or “off” otherwise. A regulatory network composed of these 
N genes is constructed as a 𝑁 ×  𝑁 matrix R, for which the elements rij indicate the regulatory 
effect of gene i on the expression of gene j (Fig. 2A). We defined each gene to regulate an average of 
K other genes; thus, random values following a standard normal distribution were assigned to 
𝑁 ×  𝐾 random elements in R, the remaining elements of which were set to 0, indicating no 
regulation (Figure S2A). Therefore, the expression profile of the cell at the next discrete time point 
S(t+1) can be calculated algebraically using S(t) and R as S(t + 1) = f(R × S(t)), where f(x) =
1−e−ax

1+e−ax
 is a sigmoid activation function that determines how the expression of each gene is 

influenced by the total regulatory input from the interaction network (Azevedo et al., 2006; Siegal 
and Bergman, 2002) and a is the activation constant that determines the transitional shape of the 
sigmoid curve. Among the N genes, two have special roles as a cell cycle regulator or an asymmetric 
division regulator. For the cell cycle regulator (gene 1), the cell divides instantaneously into two 
daughter cells once s1(t) > 0, and the s1(t) for both daughter cells are reset to -1. For the asymmetric 
division regulator (gene 2), if the cell divides when s2(t) ≤ 0, both daughter cells retain the original 
expression of s2(t); otherwise, one of the daughter cells will be assigned s2(t) = -1, while the other 
daughter cell will retain the original s2(t). The developmental process is then simulated by 
initializing a single cell with a randomly generated S(0), with which S(1), S(2), and so on, are 
calculated. Multiple rounds of cell division as dictated by the regulatory network will be recorded 
until t = tmax or the “depth” of any terminal cells reaches dmax, where “depth” refers to the number of 
cell divisions a terminal cell undergoes since the zygote. This procedure gives rise to a CLT, where 
the terminal cell types are defined by S(tmax) (Fig. 2A). Note that tmax and dmax do not necessarily 
indicate the end but rather a “cross-section” of the full developmental process.  

We performed 1,000 tree simulations for each condition and performed self-alignment using a 
scoring matrix defined by the number of genes with identical gene expression on/off states between 
a pair of cell types and a pruning cost of 1.25𝑁. In the main text, we showed results for a = 100, N 
= 16, K = 2, tmax = 50 and dmax = 6. We tried various settings (Figure S2B) and found our observation 
of DELTA’s capability of associating CLTs with gene expression similarity to be robust for 
different settings. For example, most of the aligned sub-CLTs have very small P values (Figure 
S2C), which means that this DELTA score is much higher than that between two random trees. 
Additionally, the log10(P value) is highly correlated with the match length (Figure S2C) and 
alignment scores (Figure S2D) of the subtrees, indicating that the more complex two subtrees are, 
the lower the chance that the alignments can be generated by chance. 

The CLTs of other species might not be fully autonomous and deterministic, in contrast to 
those of C. elegans, and experimentally determined CLTs might not capture all terminal cells. We 
modeled these issues as two types of perturbations in the CLT simulation. On the one hand, the 
expression of each gene has a 5% probability of being negated at every time point in every cell. On 
the other hand, 35% of terminal cells were randomly removed, and an apparent CLT was 
reconstructed following the topology of the actual underlying CLT. In other words, any internal 
cells that lost all of their descendant leaves were also removed, and those that lost one of their 
daughter cells were replaced by the remaining daughter. We also tried various other loss 
probabilities (5%, 10%, 20%, 50% and 90%) of terminal cells in the simulation (Figure S3). 

 



 

 

Experimentally determined cell lineage trees 

The developmental CLT of wild-type C. elegans as determined by Sulston et al. (Sulston et al., 
1983) and that of P. marina as determined by Houthoofd et al. (Houthoofd et al., 2003) were 
retrieved from previous publications (Azevedo et al., 2005; Yang et al., 2014). Briefly, the 671 
terminal cells in C. elegans cell lineage (up to hermaphrodite embryogenesis) were categorized by 
standard anatomical descriptions (Sulston et al., 1983) as follows: 39 blast, 113 death, 93 epithelial 
(arcade, hypodermal, pharyngeal structural, rectal, and valves), 2 germ, 13 gland (coelomocytes, 
excretory system, and pharyngeal glands), 20 intestinal, 123 muscle (including the head 
mesodermal cell), 46 neural structural, and 222 neural cells. A DELTA comparison between C. 
elegans CLTs with anatomically defined terminal cell types was carried out using a scoring matrix 
where the cell pairs of identical types were scored as 10 and other pairs as -2, and the pruning cost 
was 1. For P. marina, the cell lineage with 638 terminal cells (up to muscle contraction) was 
classified as follows: 81 body muscle, 67 death, 2 germ, 131 hypodermal, 20 intestinal, 195 nervous 
system, 112 pharynx, and 30 other-fate cells (Houthoofd et al., 2003). Bilaterally symmetric 
sub-CLTs in C. elegans were extracted from previous reports (Sulston et al., 1983). 

For gene expression along the C. elegans lineage tree, we downloaded the EPIC data (Murray 
et al., 2012). For genes with more than one biological replicate, only the one used as examples on 
the website was used. We further averaged the expression of each gene across the whole lifespan of 
each cell to generate its expression level for the individual cell. Each cell was then represented by 
the expression of all 130 genes recorded in the EPIC dataset, and one Pearson’s correlation 
coefficient was calculated between concatenated expressions from all aligned cells in one CLT and 
that from the other CLT in the alignment. Since different CLT alignments involve different numbers 
of aligned cells, Pearson’s correlation coefficients (R) were standardized by 𝑧 =  𝑅�(𝑛 − 3)/1.06 
(Fisher’s r-to-z transformation) before being compared (Fig. 4). 

To evaluate the capability of DELTA to associate phenotypic changes in a CLT with their 
underlying genetic changes, we downloaded the CLT of C. elegans where 204 conserved genes 
were individually knocked down from the Digital Development database (Santella et al., 2016). The 
downloaded data contain the gene expression state (“ON” or “OFF”) of three tissue markers, 
namely, cnd-1 (a subset of neurons), pha-4 (pharynx and gut), and nhr-25 (HYP). Assuming cells 
with the same lineal name in different experiment are cells with the same identity, we further 
combined the experimental replicates for the same mutant CLT by a simple majority rule. That is, 
the gene expression state of this marker in a specific cell is considered “ON” if it is supported by the 
majority (>50%) of the experimental replicates of the specific mutant strain. With the gene 
expression status of the three markers, each terminal cell was categorized into one of eight (23) types. 
To construct a scoring matrix as a DELTA parameter, the matching score between two cell types 
was defined as 10𝑥 − 𝑦, where x and y are the number of markers with the same and opposite gene 
expression status, respectively, in the two cell types (Fig. 5A). The pruning parameter was set to 1. 
During DELTA comparison between two CLTs, it is possible for some terminal cells from one CLT 
to become internal in the other CLT. To ensure the comparability of CLTs, we removed cells that 
were recorded in only one of the two CLTs based on their lineal names and used the remaining 
ancestral internal cells (mother of the removed cells) as terminal. The previously discovered 
homeotic transformations were manually retrieved from the original report (Du et al., 2015). Note 
that four knockdown strains in the dataset did not contain information for all three tissue markers. 
The 18 homeotic transformation events derived from these four knockdown strains were excluded 



 

 

from our analysis (Table S3).  
 

Genomic and comparative genomic data 

The expression level of C. elegans protein-coding genes and the number of synonymous (dS) 
and nonsynonymous (dN) substitutions between one-to-one orthologs in C. elegans and 
Caenorhabditis briggsae were obtained as previously described (Zhang and Yang, 2015). The 
confidence scores for experimentally determined protein-protein interactions and gene 
coexpression among C. elegans genes were extracted from the STRING database v10.5 (Szklarczyk 
et al., 2017). 

 

Optimizing the scoring matrix between cell types from two CLTs 

To find the proper scoring matrix for alignment between CLTs of two species, such that 
correspondence between subjectively defined cell types can be inferred from DELTA, we employed 
an expectation maximization algorithm to optimize the scoring matrix between cell types from two 
CLTs. The basic logic behind this algorithm is that a biologically meaningful scoring matrix should 
maximize ∆𝑤 = 𝑤 −𝑤� , where w is the DELTA score from global alignment between the two 
CLTs being compared using a specific scoring matrix, and 𝑤�  is the expected DELTA score when 
the same pair of CLTs is being compared using a scoring matrix where cell types (labels of rows and 
columns in the scoring matrix) are randomly shuffled (Fig. 7A). For alignment between two CLTs 
with different cell types, e.g., x and y, there are x * y matching scores to be optimized. We employed 
a greedy grid search strategy to reduce the computational time of this optimization (Figure S4). 
Briefly, the scoring matrix was initialized by assigning 0 to all elements, and the scoring matrix was 
then optimized by four rounds of grid searches with increasing precision. Each round of grid 
searching was finished by progressively optimizing multiple groups of 4 elements, with elements 
associated with more cells optimized first (Figure S4). 

The details of the optimization are as follows. In the first grid searching round, for the first four 
elements in the scoring matrix, we assigned -1 or 1 to each of the four elements, giving rise to 24 
different scoring matrices, and calculated ∆𝑤 = 𝑤 −𝑤�  for each matrix, where 𝑤�  is the averaged 
DELTA score between the two CLTs based on all the scoring matrices generated by permutating the 
cell types (column and row labels of the matrix) associated with the four elements being optimized 
(i.e., the maximum number of permutations is 4! * 4! - 1= 575) (Figure S4A). The one out of 24 

scoring matrices with the largest ∆𝑤 was chosen. The next four elements were then optimized 
similarly. The whole scoring matrix was optimized by progressively optimizing groups of 4 
elements until all elements were scanned once (Figure S4B). In the second round of optimization, 
the elements assigned -1 and 1 were further optimized for a choice between -2 or -1 and 1 or 2, 
respectively, using a method similar to that used in the first round. The third round then continued, 
resulting in a scoring matrix with elements representing were one of (-4,-3,-2,-1,1,2,3,4), where -4 
and -3 were from elements valued -2 in the previous round, -2 and -1 were from those valued -1, and 
so on. The final round of optimization gave rise to a scoring matrix with elements representing one 
of (-8,-7, -6,-5,-4,-3,-2,-1,1,2,3,4,5,6,7,8) (Figure S4C). The pruning cost was fixed at 10 times the 
maximal possible matching score during this process. In other words, the pruning cost was 10, 20, 



 

 

40 and 80 for round 1, 2, 3 and 4, respectively. A high matching score between two cell types in this 
final scoring matrix indicates that the two cell types are closely related, as suggested by the DELTA 
alignment between CLTs. 
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Algorithmic details of DELTA 

A cell lineage tree (CLT), as used in the current study, can be described as a directed, acyclic, 
connected graph 𝑇 = (𝑉,𝐸), where V and E are collections of all nodes (vectors) and edges in the 
tree, respectively. Each node 𝑣 ∈ 𝑉 represents one single cell, and each edge 𝑒 ∈ 𝐸 represents a 
descendant relationship from a mother cell to one of its daughter cells. The number of edges 
attached to a node (regardless the direction) is called the degree of the node, denoted by dv. The root 
node of the CLT has dv = 2, indicating the common ancestor of all the cells in the CLT, e.g. the 
zygote that gives rise to the whole C. elegans CLT. An internal node of the CLT has dv = 3, 
indicating non-root cells that undergofurther division recorded by the CLT. Note that we consider 
CLT as an unordered tree, which means that swapping the two daughters of an internal node, along 
with their descendant subtrees, does not change the tree. A terminal node of the CLT has dv = 1, 
which represents a terminal cell recorded by the CLT, but not necessarily the terminal of 
development (i.e., further divisions of the “terminal” cells are just not recorded as part of the CLT). 
All terminal nodes are labeled by their cell types, which could be anatomically defined as, for 
example, muscle, neural cells, or epigenetically defined such as CD4+ cells. 

DELTA finds alignments between two trees with necessary pruning of some subtrees. For a 
tree 𝑇 = (𝑉,𝐸), a subtree 𝑇𝑣𝑢 is a connected subgraph of T. 𝑇𝑣𝑢 contains all nodes 𝑣′ ∈ 𝑉 such 
that the path between u and v’ starts with the edge (𝑢 → 𝑣), as well as all the edges attached to these 
nodes except (𝑢 → 𝑣). A pruning of subtree 𝑇𝑣𝑢 includes three steps. First, remove all the nodes 
and edges in 𝑇𝑣𝑢; second, if u has two remaining neighbors attached to it by (𝑢′ → 𝑢) and 
(𝑢 → 𝑢′′), connect them by a new edge (𝑢′ → 𝑢′′); third, remove u and all edges attached to it. 

Given a pair of trees 𝑄 = (𝑉,𝐸) and 𝑆 = (𝑉′,𝐸′), an isomorphic alignment is a bijection A : 
𝑉 ⟷ 𝑉′, such that for every pair of nodes with 𝑣,𝑢 ∈ 𝑉, we have (𝑣,𝑢) ∈ 𝐸 ⇔ �𝐴(𝑣),𝐴(u)� ∈
𝐸’. A homeomorphic subtree alignment A between Q and S is defined as an isomorphic alignment 
between 𝑄′ and S′’, where 𝑄′ is the result of zero or more pruning of subtrees in Q, and 𝑆′ is the 
result of zero or more pruning of subtrees in S. Here all the subtree pruning in Q and S are 
collectively denoted as 𝜋(𝐴). If we further denote the alignment score between two nodes 𝑣 ∈ 𝑉 
and 𝑣′ ∈ 𝑉′ as 𝑎(𝑣, 𝑣′), and the cost for pruning a subtree 𝑇�  as 𝑝�𝑇��. The score of a 
homeomorphic subtree alignment A between Q and S can then be expressed as 

𝑤(𝑄, 𝑆,𝐴) = � 𝑎(𝑣,𝑣′)
(𝑣,𝑣′)∈𝐴

− � 𝑝�𝑇��
𝑇�∈𝜋(𝐴)

 

Given two CLTs, a scoring matrix M and a pruning coefficient q (>0), the DELTA algorithm 
finds the optimal A (with optimal/highest possible w) by dynamic programming (detailed below). 
Here, 𝑝�𝑇�� equals to q times the number of terminal nodes in 𝑇� . If 𝑣 and 𝑣′ are internal nodes, 
𝑎(𝑣, 𝑣′) equals 0, or if 𝑣 and 𝑣′ are terminal nodes, 𝑎(𝑣, 𝑣′) equals to 𝑀(𝑓𝑣,𝑓𝑣′), with 𝑓𝑣 and 𝑓𝑣′ 
representing the cell type of 𝑣 and 𝑣′. To find the optimal w, DELTA employs a modified 
implementation of previously described HSA algorithm (Milo et al., 2013) that was used to aligned 



 

 

RNA structure trees, with simplifications tailored for the alignment of CLT. 
The dynamic programming (DP) procedure by which DELTA finds the optimal alignment 

between two CLTs (Q and S) by recursively finding the optimal alignment between their subtrees. It 
starts from constructing a DP matrix with 𝑁𝑄 row and 𝑁𝑆 column, where 𝑁𝑄 and 𝑁𝑆 are the total 
number of nodes in Q and S, respectively. Each cell of the matrix will store the optimal w between 
the nodes/subtrees represented by the row and the column. For simplicity, we will hereinafter refer 
to optimal w between CLT Q and S as w(Q,S), with the optimal homeomorphic subtree alignment A 
implicitly indicated. To fill up the matrix, the w between terminal nodes are first directly determined 
by the scoring matrix of the terminal cell types. To calculate w between (i.e. to align) one leaf v and 
one internal node u with two daughter cells l and r (which could be internal nodes or leaves), one of 
the two subtrees (𝑇𝑙𝑢 or 𝑇𝑟𝑢) need to be pruned. Thus, we have 𝑤(𝑣,𝑢) =  max�𝑤(𝑣, 𝑙) − 𝑝(𝑇𝑟𝑢),
𝑤(𝑣, 𝑟) − 𝑝(𝑇𝑙𝑢)�, where the optimal choice (indicating how should v and u be aligned) was stored 
for later traceback (Fig. 1D, top panel). For the DELTA score between two internal nodes v and u, 
with children that are respectively l/r and l’/r’, we have 

𝑤(𝑣,𝑢) = max

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑤(𝑙, 𝑙′) + 𝑤(𝑟, 𝑟′)
𝑤(𝑙, 𝑟′) + 𝑤(𝑟, 𝑙′)
𝑤(𝑣, 𝑙′)− 𝑝(𝑇𝑟′𝑢)
𝑤(𝑣, 𝑟′)− 𝑝(𝑇𝑙′𝑢)
𝑤(𝑙,𝑢) − 𝑝(𝑇𝑟𝑣)
𝑤(𝑟,𝑢) − 𝑝(𝑇𝑙𝑣)

 

Again, the optimal choice was stored for later traceback (Fig. 1D, middle panel). This process 
went recursively until the whole DP matrix was filled. For the global alignment between Q and S, 
the traceback procedure starts from w(Q,S), i.e., the one DP matrix cell representing the alignment 
between the roots of Q and that of S. The optimal alignment for each node was then determined by 
the optimal choice recorded in each DP matrix cell along the (branched) route of recursive traceback. 
For the local alignment, the one DP matrix cell with the highest w (not necessarily involving the root 
of CLT) was located, and the local alignment was extracted by recursive traceback starting from this 
very DP matrix cell. All the DP matrix cells on the route of back tracing were marked as “used”, and 
the highest w in the unused DP matrix cells will similarly be used to extract the second local 
alignment result. More local alignments can be found by repetitively locating the highest w in the 
progressively smaller sets of unused DP matrix cells. 

In assessing the statistical significance of a global or local alignment, the two aligned CLTs (or 
subtrees, in case of local alignment) were individually randomized and realigned by DELTA for 
1,000 times. The 1,000 resulting DELTA scores were used to estimate a P value for the actual 
DELTA score by Z-test. The randomization of an individual CLT is conducted as follows. First, all 
the terminal cells of the original CLT were extracted from the tree to form a list of cells. Second, two 
cells were randomly chosen from the list and paired up as sister cells, creating a subtree represented 
by their (arbitrarily constructed) mother cell. Third, these two chosen cells were then removed from 
the list and replaced by their mother cell. Fourth, the second and their steps were repeated until only 
one cell is left in the list, thus creating a randomized CLT with the same terminal cells as the original 
CLT. The distribution of DELTA score assessed by these randomized CLTs thus controls both the 
sizes of the CLT, as well as the composition of the terminal cells. 
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