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Esophagogastroduodenoscopy (EGD) has been widely applied for gastrointestinal (GI) examinations. However, there is a lack of mature
technology to evaluate the quality of the EGD inspection process. In this Letter, the authors design a multi-task anatomy detection
convolutional neural network (MT-AD-CNN) to evaluate the EGD inspection quality by combining the detection task of the upper
digestive tract with ten anatomical structures and the classification task of informative video frames. The authors’ model is able
to eliminate non-informative frames of the gastroscopic videos and detect the anatomies in real time. Specifically, a sub-branch is
added to the detection network to classify NBI images, informative and non-informative images. By doing so, the detected box will be
only displayed on the informative frames, which can reduce the false-positive rate. They can determine the video frames on which
each anatomical location is effectively examined, so that they can analyse the diagnosis quality. Their method reaches the performance
of 93.74% mean average precision for the detection task and 98.77% accuracy for the classification task. Their model can
reflect the detailed circumstance of the gastroscopy examination process, which shows application potential in improving the quality of
examinations.
1. Introduction: Since gastroscopy is able to observe the interior
of the gastrointestinal (GI) tract directly, it has been widely
used for GI examinations [1]. The conventional gastroscopy
procedure usually needs the clinicians to comprehensively
observe the anatomies of the upper digestive tract of the patients,
including oesophagus, stomach and duodenum, to make a
diagnosis. Due to operating habits, many doctors tend to miss
some mucosal areas or fail to observe some physiological,
anatomical structures during examinations, resulting in missed
diagnosis [2]. Furthermore, for inexperienced doctors, they may
tend to over-close the lens to gastric mucosa, which may cause
a large number of non-informative frames and affects the quality
of the gastroscopy. However, there is currently no effective
method to supervise and evaluate the quality of the gastroscopy,
and there is no quantitative assessment to determine whether the
doctor has performed an efficient examination of each anatomy.

Recently, deep learning, especially the convolutional neural
network (CNN) has been applied in the medical domain [3] and
has demonstrated success in diverse medical image analysis tasks
[4, 5]. Endoscopy is one of them [6, 7], including the classification
and detection of precancerous diseases [8, 9] and early gastric
cancer screening under conventional endoscopy [10, 11]. When
we find or depict a lesion, it is necessary to identify the anatomical
locations. However, most researchers focus on using computer
vision techniques to detect lesions under endoscopy. Few studies
focus on the recognition of the anatomies, which is the first
crucial step for GI diseases. Without learning these normal anatom-
ical features, it is very difficult to recognise abnormalities and to
diagnose diseases properly. In [12], a CNN-based diagnostic
program was constructed to classify four major anatomical loca-
tions (larynx, oesophagus, stomach and duodenum) and three sub-
sequent sub-classifications. However, the division of the stomach
is relatively rough, which may not suitable for real clinical situa-
tions. In [13], researchers tried to train the deep CNN to classify
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gastric locations into 10 or 26 parts, with the accuracy of 90 and
65.9%, respectively. However, the accuracy of 26 parts is not out-
standing and classifying anatomies cannot ensure the lesions’
location.

To solve the problems mentioned above, we propose a real-time
multi-task anatomy detection network (MT-AD) based on CNN
for gastroscopy inspection. MT-AD can perform two tasks
simultaneously. (i) Classify three image types, including inform-
ative and non-informative images under white-light gastroscopy
and narrow-band imaging (NBI) [14]. Non-informative images
are images with a large area of specific artefacts including motion
blur, defocus, specular reflections and bubbles. (ii) Detect ten
gastric anatomies in real time, including oesophagus, dentate line,
cardia (observed from the inside of the stomach), fundus, body,
antrum, angle, pylorus, duodenal bulb (DB) and duodenal descend-
ing part (DDP). The specific workflow of MT-AD is shown in
Fig. 1. When a video is fed into MT-AD, it performs one forward
calculation for each frame. If the classification result shows that
the frame is not informative, the detection results will not be
displayed on the related frame. Consequently, we can count the
number of frames of specific anatomy appearing in an examination,
and thus the precise time at which each anatomy is effectively
examined can be determined. This will help reflect the quality of
the gastroscopy inspection process and assist the clinicians in
screening the areas that are easily missed during the examinations,
and therefore decreasing the rate of missed diagnosis.

The main contributions of this Letter are as follows:

(i) We construct a CNN-based gastric anatomy detection network
called MT-AD for evaluating the quality of gastroscopy for the
first time. By detecting anatomies, it is also promising to help
doctors understand the lesions further.
(ii) The MT-AD model can not only detect the anatomies, but also
identify whether the target image is informative.
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Fig. 1 Workflow of the proposed method
(iii) We figure out the ratio of the informative frames to the non-
informative frames in a gastric video and we obtain the number
of informative frames that each anatomy is checked. These
indicators can reflect the quality of gastric videos and show
the potential to help the clinician improve operating gastroscopy
skills.
Fig. 3 Difference between MTL and the conventional approach
2. Related works
2.1. Object detection networks: Object detection involves locating
and classifying objects. In the deep learning era, powered by
CNN, object detection approaches can be roughly categorised
into two main types of pipelines, namely, two-stage approaches
[15, 16] and one-stage approaches [17]. Two-stage approaches
divide the object detection task into two stages: extract regions of
Interest (ROI), then classify and regress ROI. One-stage
approaches remove ROI extraction process and directly classify
and regress the candidate anchor boxes, including Single Shot
MultiBox Detector (SSD) [18], which uses features from different
convolutional layers to regress and classify the anchor boxes to
get high performance. Although one-stage approaches perform
not as good as two-stage approaches on small object detection,
they have advantages on-time performance.
As shown in Fig. 2, most of the classes belong to large objects in

pixel level. We finally choose SSD as the network for the detection
task in MT-AD. Although there are many detection networks,
Fig. 2 Examples of the labelled images for each class
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which can achieve higher precisions, they usually use more
complex modules [19], deepen or widen the networks [20],
increase the models’ parameters [21], increase the input size [22]
and sacrifice time performance [19]. However, we aim to
construct a real-time detection network and time performance is
paramount.
2.2. Multi-task learning (MTL) networks: MTL is a form of
inductive transfer. The inductive transfer can help improve a
model by introducing an inductive bias, which causes a model to
prefer some hypotheses over others. MTL usually shares the same
backbone of convolutional layers, while learning task-specific
layers [23].

Suppose we have two related tasks A and B to solve. The conven-
tional approach is to train a model for each task (see Fig. 3
‘Solution 1’), while MTL enables the tasks to share the same back-
bone (see Fig. 3 ‘Solution 2’). Compared with the conventional
approach, MTL can reduce model complexity, decrease the
computation and improve time performance [24]. However,
conventional MTL networks usually combine multiple ‘losses’
together for optimisation. Our MT-AD networks only introduce
Fig. 4 Architecture of the MT-AD
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Table 3 Dataset of the classification task

Training Testing

informative images 10,053 2000
non-informative images 10,138 2000
NBI images 13,954 2000
total images 34,145 6000

Fig. 5 P–R curves of the detection task

Table 2 Images for each class of the detection dataset

Class Training Testing

oesophagus 6851 1766
dentate line 4951 1356
cardia 3955 1054
fundus 5684 1503
body 10,723 2932
antrum 7209 1916
angle 5050 1357
pylorus 5930 1597
DB 4832 1175
DDP 4328 1106
total 59,513 15,762

Table 1 Dataset of the detection task

Training Testing

patients 2932 843
images 47,623 12,600
labelled boxes 59,513 15,762
a similar architecture from MTL. The training strategies are
essentially different from each other (see Section 3.2).

3. Methods:We design a multi-task neural network called MT-AD
to realise gastric image classification and anatomy detection at
the same time (see Fig. 4). The blue part depicts detection
architecture, which is introduced from SSD [18] without any
modification. The green part depicts the classification architecture
to classify NBI images, informative images and non-informative
images under conventional endoscopy. We set the output of
‘Conv4_3 layer’, which is one of the SSD layers, as the input of
classification architecture.

3.1. Classification architecture: Fig. 4 shows the classification
network. There are seven convolutional layers, one max-pooling
layer and one fully connected layer. For convolutional layers, the
parameters include the kernel size, the output feature channel and
the stride. The kernel size of the max-pooling layer is set as 5 × 5.
The output channel of the fully connected layer is set as 3, which
is the same as the classes of the classification task. It shares
the same backbone with the detection task. The input of the
classification network is the output of the Conv4_3, which is one
of the SSD layers.

3.2. Training strategies: Since the detection task is more complex
than the classification task, we first fix the parameters of the
classification network to train the SSD network. After that, we fix
the parameters of SSD (including the backbone network
parameters) to train the classification network. The proposed
networks were implemented using Python on the Pytorch [25]
package based on the GeForce RTX 2080Ti.

3.2.1 Training SSD: We apply the pre-trained model, which was
downloaded from SSD’s GitHub (https://github.com/weiliu89/
caffe/tree/ssd) to initialise model parameters. The input image
size of the proposed network is 300 × 300. The batch size is set
as 8. The basic learning rate is 0.0005. The training undergoes
120,000 iterations and the learning rate decays after 80,000
and 100,000 iterations. Other hyper-parameters keep the same as
conventional SSD.

3.2.2 Training classification network: We randomly initialise the
parameters of the classification network. The input image size of
the classification network is also 300 × 300. The batch size is set
as 8. The basic learning rate is 0.001. The training undergoes
25 epochs. The learning rate decays after 10 and 20 epochs. The
momentum is 0.9 and the weight decay is 0.0001. we adopt cross
entropy to compute training loss and stochastic gradient descent
to update model parameters.

4. Experiments and results
4.1. Dataset preparing: We invited two experienced endoscopists to
label 60,233 gastric images (see the examples of the labelled images
in Fig. 2) for the detection task and 40,145 gastric images for
the classification task. The datasets for detection and classification
are independent and do not overlap with each other. For detection
dataset, the training images were collected from 1 May to
15 June 2015. The testing images were collected from 16 to 30
June 2015. The details of the datasets are shown in Tables 1–3.
All the images were taken from OLYMPUS EVIS LUCERA
ELITE CLV-290SL or OLYMPUS EVIS LUCERA ELITE
CLV-260SL, which is the model name of the endoscope device
from the same hospital.

4.2. Performance of the detection network: We adopt the PASCAL
VOC metric of 2010 as the evaluation method. The mean Average
Precision (mAP) of the ten anatomies’ detection is 93.74% when
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we set the confidence threshold as 0.5. The precision–recall
(P–R) curve is shown in Fig. 5.

From Fig. 5 and Table 4, we can find that only the average
precision (AP) of the dentate line is 84.93%; other anatomies’
APs are higher than 90%, which means that our MT-AD performs
excellently on detecting anatomies.

4.3. Performance of classification network: The classification
task aims to classify informative images, NBI images, and non-
informative images. The confusion matrix of the classification
results is shown in Fig. 6. We can figure out that the accuracy of
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Fig. 7 Examples of MT-AD’s detection results

Fig. 6 Heatmap of confusion matrix from the classification task

Table 4 Average precision of each anatomy

Method mAP Oesophagus Cardia Dentate line Fundus Body Antrum Angle Pylorus DB DDP

MT-AD,% 93.74 94.04 94.76 84.93 95.95 95.39 93.38 95.52 93.92 94.42 95.12
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the classification is 98.77%. Each class’s F1 score is 99.01, 99.13
and 98.18%. The high accuracy of the classification task is a
prerequisite for the high reliability of the final video statistical
results of MT-AD.

4.4. Video statistical results from MT-AD: We totally collected 83
gastric videos from a hospital. All the videos which were taken from
OLYMPUS EVIS LUCERA ELITE CLV-290SL with 25 FPS were
operated by the same doctor. MT-AD can detect these videos in real
time with 30.8 FPS, which is promising for clinical application.
Fig. 7 shows examples of MT-AD’s performance. The first row
denotes the input images. The second row shows the results
generated by MT-AD. And the classification results determine
whether display detection results in the images. This method can
reduce false positives to some extent.

Fig. 8 shows the statistical results processed by MT-AD. We can
find out that the ratio of informative frames and non-informative
frames is about 7:3. From Fig. 9, we can also figure out that the
doctor takes more time to check the body of the stomach. On the
contrary, the time for checking the cardia and the dentate line is
relatively short.

All the indicators mentioned in this Letter can reflect the detailed
circumstance of the gastroscopy examination process to some
degree. These indicators prove that our model has great application
potential value for improving the quality of examinations.
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Fig. 9 Statistical results from 83 gastric videos. Y-axis denotes the ratio of the
time at which the specific anatomy is examined to the valid time of this video

Fig. 8 Statistical results from 83 gastric videos. Y-axis denotes the ratio of
the valid time to the total time of the video (exclude NBI)
5. Conclusion: In this Letter, we constructed MT-AD based on
CNN. Our network can recognise informative frames of the
gastroscopic videos and detect the anatomies in real time.
The model reaches the performance of 93.74% mAP for the
detection task and 98.77% accuracy for classification tasks.

Furthermore, we performed a statistical analysis of the classifica-
tion and detection results from MT-AD to do a rough evaluation of
the inspection quality by using indictors including the ratio of the
valid time to the total gastroscopy time (exclude NBI), the ratio
of the time at which the specific anatomy is examined to the
valid time of this video. The proposed model shows application
potential to help the doctor improve the quality of gastroscopy.

However, there are some problems need to be solved in the
future. First, the proposed model is not capable of detecting
gastric anatomy in narrow-band images. In the future, we will
make up for this deficiency. Second, we only give some descriptive
statistics on analysing the gastric videos in this Letter. In the future,
we will be committed to concluding the reasonable inspection
time for each anatomy with clinicians. Third, we will combine
the detection of diseases and anatomies in gastroscopy for
automatic generation of structured endoscopy examination
reports, which will reduce the burdens on doctors.
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