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Abstract: In this paper, we consider decision trees that use both conventional queries based on one
attribute each and queries based on hypotheses of values of all attributes. Such decision trees are
similar to those studied in exact learning, where membership and equivalence queries are allowed.
We present greedy algorithm based on entropy for the construction of the above decision trees
and discuss the results of computer experiments on various data sets and randomly generated
Boolean functions.
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1. Introduction

Decision trees are well known as means for knowledge representation, as classifiers,
and as algorithms to solve various problems of combinatorial optimization, computational
geometry, etc. [1–3].

Conventional decision trees have been studied in different theories, in particular,
in rough set theory initiated by Pawlak [4–6] and in test theory initiated by Chegis and
Yablonskii [7]. These trees use simple queries based on one attribute each.

In contrast to these theories, exact learning initiated by Angluin [8,9] studied not only
membership queries that correspond to attributes from rough set theory and test theory,
but also so-called equivalence queries. Relations between exact learning and probably
approximately correct (PAC) learning proposed by Valiant [10] were discussed in [8].

In this paper, we add the notion of a hypothesis to the model that has been considered
in rough set theory as well in test theory. This model allows us to use an analog of
equivalence queries.

Let T be a decision table with n conditional attributes f1, . . . , fn having values from
the set ω = {0, 1, 2, . . .} in which rows are pairwise different and each row is labeled with
a decision from ω. For a given row of T, we should recognize the decision attached to
this row. To this end, we can use decision trees based on two types of queries. We can ask
about the value of an attribute fi ∈ { f1, . . . , fn} on the given row. We will obtain an answer
of the kind fi = δ, where δ is the number in the intersection of the given row and the
column fi. We can also ask if hypothesis f1 = δ1, . . . , fn = δn is true, where δ1, . . . , δn are
numbers from the columns f1, . . . , fn, respectively. Either this hypothesis will be confirmed
or we will obtain a counterexample in the form fi = σ, where fi ∈ { f1, . . . , fn} and σ is a
number from the column fi different from δi. The considered hypothesis is called proper
if (δ1, . . . , δn) is a row of the table T.

In this paper, we consider two cost functions that characterize the time and space
complexity of decision trees. We consider the depth of a decision tree as its time complexity,
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which is equal to the maximum number of queries in a path from the root to a terminal
node of the tree. As the space complexity of a decision tree, we consider the number of its
realizable, relative to T, nodes. A node is called realizable relative to T if for a row of T and
some choice of counterexamples the computation in the tree passes through this node.

Decision trees using hypotheses can be essentially more efficient than the decision
trees using only attributes. Let us consider an example, the problem of computation of
the conjunction x1 ∧ · · · ∧ xn. The minimum depth of a decision tree solving this problem
using the attributes x1, . . . , xn is equal to n. The minimum number of realizable nodes in
such decision trees is equal to 2n + 1. However, the minimum depth of a decision tree
solving this problem using proper hypotheses is equal to 1: it is enough to ask only about
the hypothesis x1 = 1, . . . , xn = 1. If it is true, then the considered conjunction is equal to 1.
Otherwise, it is equal to 0. The obtained decision tree contains n + 2 realizable nodes.

In this paper, we consider the following five types of decision trees:

1. Decision trees that use only attributes.
2. Decision trees that use only hypotheses.
3. Decision trees that use both attributes and hypotheses.
4. Decision trees that use only proper hypotheses.
5. Decision trees that use both attributes and proper hypotheses.

There are different ways to construct conventional decision trees, including algorithms
that can construct optimal decision trees for medium-sized decision tables [11–15]. In
particular, in [16,17], we proposed dynamic programming algorithms for the minimization
of the depth and number of realizable nodes in decision trees with hypotheses. However,
the most common way is to use greedy algorithms [1,18].

In this paper, we propose a greedy algorithm based on entropy that, for a given
decision table and type of decision trees, constructs a decision tree of the considered type
for this table. The goal of this paper is to understand which type of decision tree should
be chosen if we would like to minimize the depth and which type should be chosen if
we would like to minimize the number of realizable nodes. To this end, we compare the
parameters of the constructed decision trees of five types for 10 decision tables from the
UCI ML Repository [19]. We do the same for randomly generated Boolean functions with n
variables, where n = 3, . . . , 6. From the obtained experimental results, it follows that we
should choose decision trees of the type 3 if we would like to minimize the depth and
decision trees of the type 1 if we would like to minimize the number of realizable nodes.

The main contributions of the paper are (i) the design of the extended entropy-based
greedy algorithm that can work with five types of decision trees and (ii) the understanding
of which type of decision trees should be chosen when we would like to minimize the
depth or the number of realizable nodes.

The rest of the paper is organized as follows. In Sections 2 and 3, we consider the main
notions and in Section 4, the greedy algorithm for the decision tree construction. Section 5
contains the results of the computer experiments and Section 6, short conclusions.

2. Decision Tables

A decision table is a rectangular table T with n ≥ 1 columns filled with numbers from
the set ω = {0, 1, 2, . . .} of non-negative integers. Columns of this table are labeled with
the conditional attributes f1, . . . , fn. Rows of the table are pairwise different. Each row
is labeled with a number from ω that is interpreted as a decision. Rows of the table are
interpreted as tuples of values of the conditional attributes.

A decision table T is called empty if it has no rows. The table T is called degenerate if
it is empty or all rows of T are labeled with the same decision.

We denote F(T) = { f1, . . . , fn} and denote by D(T) the set of decisions attached to
the rows of T. For any conditional attribute fi ∈ F(T), we denote by E(T, fi) the set of
values of the attribute fi in the table T.
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A system of equations over T is an arbitrary equation system of the following kind:

{ fi1 = δ1, . . . , fim = δm},

where m ∈ ω, fi1 , . . . , fim ∈ F(T), and δ1 ∈ E(T, fi1), . . . , δm ∈ E(T, fim) (if m = 0, then the
considered equation system is empty).

Let T be a nonempty table. A subtable of T is a table obtained from T by the removal
of some rows. We correspond to each equation system S over T a subtable TS of the table T.
If the system S is empty, then TS = T. Let S be nonempty and S = { fi1 = δ1, . . . , fim = δm}.
Then TS is the subtable of the table T containing the rows from T, which in the intersection
with the columns fi1 , . . . , fim have numbers δ1, . . . , δm, respectively.

3. Decision Trees

Let T be a nonempty decision table with n conditional attributes f1, ..., fn. We consider
the decision trees with two types of queries. We can choose an attribute fi ∈ F(T) =
{ f1, . . . , fn} and ask about its value. This query has the set of answers A( fi) = {{ fi = δ} :
δ ∈ E(T, fi)}. We can formulate a hypothesis over T in the form of H = { f1 = δ1, . . . , fn =
δn}, where δ1 ∈ E(T, f1), . . . , δn ∈ E(T, fn), and ask about this hypothesis. This query has
the set of answers A(H) = {H, { f1 = σ1}, . . . , { fn = σn} : σ1 ∈ E(T, f1) \ {δ1}, . . . , σn ∈
E(T, fn) \ {δn}}. The answer H means that the hypothesis is true. Other answers are
counterexamples. The hypothesis H is called proper for T if (δ1, . . . , δn) is a row of the
table T.

A decision tree over T is a marked finite directed tree with the root in which the
following is true:

• Each terminal node is labeled with a number from the set D(T) ∪ {0}.
• Each node, which is not terminal (such nodes are called working), is labeled with an

attribute from the set F(T) or with a hypothesis over T.
• If a working node is labeled with an attribute fi from F(T), then for each answer from

the set A( fi), there is exactly one edge labeled with this answer, which leaves this
node and there are no any other edges that leave this node.

• If a working node is labeled with a hypothesis H = { f1 = δ1, . . . , fn = δn} over T,
then for each answer from the set A(H), there is exactly one edge labeled with this
answer, which leaves this node and there are no any other edges that leave this node.

Let Γ be a decision tree over T and v be a node of Γ. We now define an equation system
S(Γ, v) over T associated with the node v. We denote by ξ the directed path from the root
of Γ to the node v. If there are no working nodes in ξ, then S(Γ, v) is the empty system.
Otherwise, S(Γ, v) is the union of equation systems attached to the edges of the path ξ.

A decision tree Γ over T is called a decision tree for T if for any node v of Γ, the
following is true:

• The node v is terminal if and only if the subtable TS(Γ, v) is degenerate.
• If v is a terminal node and the subtable TS(Γ, v) is empty, then the node v is labeled

with the decision 0.
• If v is a terminal node and the subtable TS(Γ, v) is nonempty, then the node v is

labeled with the decision attached to all rows of TS(Γ, v).

A complete path in Γ is an arbitrary directed path from the root to a terminal node in Γ.
As the time complexity of a decision tree, we consider its depth, which is the maximum
number of working nodes in a complete path in the tree, or which is the same—the
maximum length of a complete path in the tree. We denote by h(Γ) the depth of the
decision tree Γ.

As the space complexity of the decision tree Γ, we consider the number of its realizable
relative to T nodes. A node v of Γ is called realizable relative to T if and only if the subtable
TS(Γ, v) is nonempty. We denote by L(T, Γ) the number of nodes in Γ that are realizable
relative to T.
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In this paper, we consider the following five types of decision trees:

1. Decision trees that use only attributes.
2. Decision trees that use only hypotheses.
3. Decision trees that use both attributes and hypotheses.
4. Decision trees that use only proper hypotheses.
5. Decision trees that use both attributes and proper hypotheses.

4. Greedy Algorithm Based on Entropy

Let T be a nonempty decision table with n conditional attributes f1, . . . , fn and Θ be a
subtable of the table T. We define entropy of Θ (denoted ent(Θ)) as follows. If Θ is empty,
then ent(Θ) = 0. Let Θ be nonempty. For any decision t ∈ D(Θ), we denote by Nt(Θ) the
number of rows in Θ labeled with the decision t and by pt the value Nt(Θ)/N(Θ), where
N(Θ) is the number of rows in Θ. Then,

ent(Θ) = − ∑
t∈D(T)

pt log2 pt.

We now define the impurity of a query for the table Θ. The impurity of the query
based on an attribute fi ∈ F(T) (impurity of query fi) is equal to I( fi, Θ) = max{ent(ΘS) :
S ∈ A( fi)}. The impurity of the query based on a hypothesis H over T (impurity of query
H) is equal to I(H, Θ) = max{ent(ΘS) : S ∈ A(H)}.

We can find by simple search among all attributes from F(T) an attribute fi with
the minimum impurity I( fi, Θ). We can also find by simple search among all proper
hypotheses over T a proper hypothesis H with the minimum impurity I(H, Θ). It is not
necessary to consider all hypotheses over T to find a hypothesis with the minimum impurity.
For i = 1, . . . , n, we denote by δi a number from E(T, fi) such that ent(Θ{ fi = δi}) =
max{ent(Θ{ fi = σ}) : σ ∈ E(T, fi)}. Then, the hypothesis H = { f1 = δ1, . . . , fn = δn} has
the minimum impurity I(H, Θ) among all hypotheses over T.

We now describe a greedy algorithm E based on entropy that, for a given nonempty
decision table T and k ∈ {1, . . . , 5}, constructs a decision tree of the type k for the table T.

The considered algorithm is similar to standard top-down induction of decision
trees [20,21]. The main peculiarity of this algorithm is step 5 in which, depending on the
value of k, we choose an appropriate set of queries. Every time, the algorithm chooses a
query from this set with the minimum impurity.

For a given nonempty decision table T and number k ∈ {1, . . . , 5}, the algorithm 1 E
constructs a decision tree of the type k for the table T. We denote by h(k)E (T) the depth of

this decision tree and by L(k)
E (T), we denote the number of realizable relative to T nodes in

this tree.
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Algorithm 1 E .
Input: A nonempty decision table T and a number k ∈ {1, . . . , 5}.
Output: A decision tree of the type k for the table T.

1. Construct a tree G consisting of a single node labeled with T.
2. If no node of the tree G is labeled with a table, then the algorithm ends and returns

the tree G.
3. Choose a node v in G, which is labeled with a subtable Θ of the table T.
4. If Θ is degenerate, then instead of Θ, we label the node v with 0 if Θ is empty and

with the decision attached to each row of Θ if Θ is nonempty.
5. If Θ is nondegenerate, then depending on k, we choose a query X (either attribute or

hypothesis) in the following way:

(a) If k = 1, then we find an attribute X ∈ F(T) with the minimum impurity
I(X, Θ).

(b) If k = 2, then we find a hypothesis X over T with the minimum impurity
I(X, Θ).

(c) If k = 3, then we find an attribute Y ∈ F(T) with the minimum impurity
I(Y, Θ) and a hypothesis Z over T with the minimum impurity I(Z, Θ). Be-
tween Y and Z, we choose a query X with the minimum impurity I(X, Θ).

(d) If k = 4, then we find a proper hypothesis X over T with the minimum
impurity I(X, Θ).

(e) If k = 5, then we find an attribute Y ∈ F(T) with the minimum impurity
I(Y, Θ) and a proper hypothesis Z over T with the minimum impurity I(Z, Θ).
Between Y and Z, we choose a query X with the minimum impurity I(X, Θ).

6. Instead of Θ, we label the node v with the query X. For each answer S ∈ A(X), we
add to the tree G a node v(S) and an edge e(S) connecting v and v(S). We label the
node v(S) with the subtable ΘS and label the edge e(S) with the answer S. We then
proceed to step 2.

5. Results of Experiments

We make experiments with 10 decision tables from the UCI ML Repository [19].
Table 1 contains the information about each of these decision tables: its name, the number
of rows, and the number of conditional attributes.

Table 1. Decision tables from [19] used in experiments.

Decision Number of Number of
Table Rows Attributes

BALANCE-SCALE 625 5
BREAST-CANCER 266 10

CARS 1728 7
HAYES-ROTH-DATA 69 5

LYMPHOGRAPHY 148 18
NURSERY 12,960 9

SOYBEAN-SMALL 47 36
SPECT-TEST 169 22

TIC-TAC-TOE 958 10
ZOO-DATA 59 17

The results of the experiments are represented in Tables 2 and 3. The first column of
Table 2 contains the name of the considered decision table T. The last five columns contain
values h(1)E (T), . . . , h(5)E (T) (minimum values for each decision table are in bold).
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Table 2. Experimental results for decision tables from [19] (depth).

Decision Table T h(1)
E (T) h(2)

E (T) h(3)
E (T) h(4)

E (T) h(5)
E (T)

BALANCE-SCALE 4 4 4 4 4
BREAST-CANCER 9 9 9 8 9

CARS 6 6 6 6 6
HAYES-ROTH-DATA 4 4 4 4 4

LYMPHOGRAPHY 11 11 9 13 10
NURSERY 8 8 8 8 8

SOYBEAN-SMALL 2 6 2 8 2
SPECT-TEST 20 5 5 14 11

TIC-TAC-TOE 7 8 7 8 7
ZOO-DATA 8 6 5 8 5

Average 7.9 6.7 5.9 8.1 6.6

The first column of Table 3 contains the name of the considered decision table T. The
last five columns contain values L(1)

E (T), . . . , L(5)
E (T) (minimum values for each decision

table are in bold).

Table 3. Experimental results for decision tables from [19] (number of realizable nodes).

Decision Table T L(1)
E (T) L(2)

E (T) L(3)
E (T) L(4)

E (T) L(5)
E (T)

BALANCE-SCALE 556 5234 4102 5234 4102
BREAST-CANCER 255 446,170 304 10,3642 266

CARS 1136 65,624 3944 65,624 3944
HAYES-ROTH-DATA 73 72 72 367 72

LYMPHOGRAPHY 123 6,653,366 162 8,515,841 153
NURSERY 4460 12,790,306 14,422 12,790,306 14,422

SOYBEAN-SMALL 7 10,029 7 157,640 7
SPECT-TEST 123 6983 5495 398,926 1116

TIC-TAC-TOE 648 864,578 200,847 946,858 940
ZOO-DATA 33 2134 35 13,310 35

Average 741.4 2,084,449.6 22,939 2,299,774.8 2505.7

For n = 3, . . . , 6, we randomly generate 100 Boolean functions with n variables. We
represent each Boolean function with n variables as a decision table with n columns labeled
with these variables and with 2n rows that are all possible n-tuples of values of the variables.
Each row is labeled with the decision that is the value of the function on the corresponding
n-tuple.

For each function, using its decision table representation and the algorithm E , we con-
struct a decision tree of the type k computing this function, k = 1, . . . , 5. For each Boolean
function, each hypothesis over the decision table representing it is proper. Therefore, for
each Boolean function, h(2)E = h(4)E , h(3)E = h(5)E , L(2)

E = L(4)
E , and L(3)

E = L(5)
E .

The results of the experiments are represented in Tables 4 and 5. The first column in
Table 4 contains the number of variables n in the considered Boolean functions. The last
five columns contain information about values h(1)E , . . . , h(5)E in the format minAvgmax.
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Table 4. Experimental results for Boolean functions (depth).

Number of Variables n h(1)
E h(2)

E h(3)
E h(4)

E h(5)
E

3 02.943 02.023 01.863 02.023 01.863
4 44.004 23.054 22.973 23.054 22.973
5 55.005 44.115 33.994 44.115 33.994
6 66.006 55.096 55.005 55.096 55.005

The first column in Table 5 contains the number of variables n in the considered
Boolean functions. The last five columns contain information about values L(1)

E , . . . , L(5)
E in

the format minAvgmax.

Table 5. Experimental results for Boolean functions (number of realizable nodes).

Number of Variables n L(1)
E L(2)

E L(3)
E L(4)

E L(5)
E

3 19.6015 112.3322 19.6115 112.3322 19.6115
4 1521.0229 1444.7570 1127.6958 1444.7570 1127.6958
5 3142.5451 125218.05292 2570.19176 125218.05292 2570.19176
6 6986.30101 6491171.031538 75292.99807 6491171.031538 75292.99807

From the obtained experimental results, it follows that, using hypotheses, we can
decrease the depth of the constructed decision trees. However, at the same time, the
number of realizable nodes usually grows. Depending on our goals, we should choose
decision trees of type 3 if we would like to minimize the depth and decision trees of type 1
if we would like to minimize the number of realizable nodes.

6. Conclusions

In this paper, we studied modified decision trees that use both queries based on one
attribute each and queries based on hypotheses about the values of all attributes. We
proposed an entropy-based greedy algorithm for the construction of such decision trees
and considered the results of computer experiments. The goal of this paper is to understand
which type of decision tree should be chosen if we would like to minimize the depth and
which type should be chosen if we would like to minimize the number of realizable nodes.
From the obtained experimental results, it follows that we should choose decision trees of
type 3 if we would like to minimize the depth and decision trees of type 1 if we would like
to minimize the number of realizable nodes. The comparison of different greedy algorithms
based on various uncertainty measures will be done in future papers.
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