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Metabolomic profiles differ among 
unique genotypes of a threatened 
Caribbean coral
Kathryn E. Lohr 1, Ram B. Khattri2, Joy Guingab-Cagmat3, Emma F. Camp   4, 
Matthew E. Merritt2, Timothy J. Garrett3 & Joshua T. Patterson   1,5

Global threats to reefs require urgent efforts to resolve coral attributes that affect survival in a changing 
environment. Genetically different individuals of the same coral species are known to exhibit different 
responses to the same environmental conditions. New information on coral physiology, particularly 
as it relates to genotype, could aid in unraveling mechanisms that facilitate coral survival in the face 
of stressors. Metabolomic profiling detects a large subset of metabolites in an organism, and, when 
linked to metabolic pathways, can provide a snapshot of an organism’s physiological state. Identifying 
metabolites associated with desirable, genotype-specific traits could improve coral selection for 
restoration and other interventions. A key step toward this goal is determining whether intraspecific 
variation in coral metabolite profiles can be detected for species of interest, however little information 
exists to illustrate such differences. To address this gap, we applied untargeted 1H-NMR and LC-MS 
metabolomic profiling to three genotypes of the threatened coral Acropora cervicornis. Both methods 
revealed distinct metabolite “fingerprints” for each genotype examined. A number of metabolites 
driving separation among genotypes were identified or putatively annotated. Pathway analysis 
suggested differences in protein synthesis among genotypes. For the first time, these data illustrate 
intraspecific variation in metabolomic profiles for corals in a common garden. Our results contribute to 
the growing body of work on coral metabolomics and suggest future work could identify specific links 
between phenotype and metabolite profile in corals.

The global decline of coral reefs demands novel tools to understand these ecosystems and their ability to persist 
under present and future environmental conditions1–3. Ongoing threats to the survival of coral reefs include 
increasing global sea temperature4,5, prevalence of diseases6, and frequency and intensity of tropical storms7,8. 
Importantly, there is growing evidence to indicate intraspecific differences in the ability of corals to withstand 
these stressors9–11. Additional data on the physiological mechanisms underlying within-species variability in coral 
performance could aid in understanding how corals respond to such threats, and can inform conservation strate-
gies such as selective breeding, transplantation, assisted gene flow, and coral restoration2,3. Metabolomic profiling 
is a technique that provides a snapshot of an organism’s physiological state at a given point in time12. Changes in 
metabolomic profiles can be a result of altered gene expression13,14, but may also be due to post-transcriptional 
processes12. Although metabolomics approaches have only recently been applied to the reef-building coral holo-
biont13,15–17, they have clear applications for studies of these organisms.

Physiological responses in corals can be particularly complex, given that corals are holobionts, comprised of 
the host organism, photosynthetic dinoflagellate symbionts, and an associated microbial community18. Each of 
these components is known to play a significant physiological role18,19, and therefore physiological studies that 
consider the complete holobiont are valuable. A recent study compared entire-holobiont metabolomic profiles 
among four coral species, indicating distinct profiles for each taxon13. Similarly, metabolomics has been used to 
explore shifts in the holobiont metabolome in response to contact with competitive algae17. The metabolomes of 
individual holobiont components have also been considered separately. For example, metabolomic profiling has 
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been used to explore the role of dinoflagellate symbiont and microbial communities in cnidarian biology and 
physiology20–22. The cnidarian metabolome has also been shown to change in response to external stimuli, such as 
exposure to abiotic conditions consistent with predicted climate change23,24. Although metabolomic profiling has 
provided a range of new information on coral physiology, no study has yet illustrated intraspecific variation in the 
metabolome of any coral species. Given the strong linkages between genome and metabolome12 and our under-
standing that genetically distinct individuals can respond differently to the same environment25,26, it is reasonable 
to anticipate that genetically unique corals in a common garden will exhibit differing suites of metabolites.

The link between genotype and metabolome has been explored in a variety of organisms. For example, high 
intraspecific metabolomic variability was found for the model bacterium species Myxococcus xanthus27. Similarly, 
unique metabolomic profiles were found for genetically distinct populations of Arabidopsis lyrata ssp. petraea, and 
these differences were associated with the ability of each population to withstand low temperatures28. Intraspecific 
variation in metabolomic profiles was also found among barley genotypes, with implications for disease resist-
ance29. Variation in metabolomic profiles among genotypes is prerequisite to screen for desirable traits like disease 
resistance using specific metabolite biomarkers29. Such strategies could also extend to corals, which have been 
shown to possess intraspecific variation in key traits that could affect fitness9,10,25,26,30,31. However, no study has yet 
demonstrated that metabolomic profiles differ among genetically distinct corals of the same species in a common 
garden, a key first step toward linking metabolome and phenotype in corals.

We employed proton-nuclear magnetic resonance spectroscopy (1H-NMR) and liquid chromatography-mass 
spectrometry (LC-MS) to identify and compare metabolomic profiles for three unique genotypes of the threat-
ened staghorn coral Acropora cervicornis in a common garden coral nursery. While 1H-NMR is less sensitive than 
LC-MS, it is ideal for quantifying and identifying the structure of unknown compounds32. 1H-NMR is therefore 
useful for untargeted metabolomic studies33, particularly of organisms such as corals that lack extensive databases 
for compound identification. However, LC-MS is far more sensitive, and can therefore resolve a higher number 
of metabolites, particularly less abundant compounds like secondary metabolites33. Application of both 1H-NMR 
and LC-MS in tandem therefore improves coverage of the metabolome and enhances both metabolite resolution 
and identification. This exploratory work builds upon a previous study in which growth and thermotolerance 
were characterized among these A. cervicornis genotypes at the same nursery25. We hypothesized that each of 
the three genotypes tested would have unique metabolomic profiles. These data increase our basic knowledge of 
the coral metabolome and represent an important step toward linking genotype, phenotype, and metabolome in 
reef-building corals.

Results
During sample collection (~2 hours), temperature at the depth of the nursery trees was 26.5–26.6 °C. Mean daily 
temperature ranged from 24.8–30.9 °C during the months preceding sample collection (i.e. Jul–Dec).

1H-NMR Profiling.  A False Discovery Rate (FDR) corrected analysis of variance (ANOVA) model found 59 
chemical shifts, representing signals derived from coral metabolites that differed significantly among genotypes 
(p < 0.05). Principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) were 
used to assess metabolomic data. PCA is an unsupervised dimension reduction method that seeks to explain the 
maximum variation in a multivariate dataset without a priori information on sample groups34. PCA therefore 
provides an overview of variation in datasets, but principal components may not identify variables driving max-
imum separation among groups, as treatments/classes are not accounted for in the PCA algorithm34. In contrast, 
PLS-DA is a supervised method that seeks to maximize separation among known groups34 (i.e. genotypes in the 
present study). PLS-DA models maximum covariance between variables (i.e. metabolites) and treatment groups 
(i.e. genotypes) to best understand factors driving separation34. Thus, use of both PCA and PLS-DA provides a 
more comprehensive analysis of patterns in metabolomic profiles among genotypes. Combined, PCA compo-
nents 1 and 2 explained 71.6% of the total variance among genotypes. PCA indicated relatively separate clustering 
for genotypes U25 and U44, however U41 had greater within-group variability compared to the other two geno-
types, and overlapped with both (Fig. 1). The PLS-DA model was well-validated using a permutation test and had 
Q2 > 0.6. PLS-DA revealed separate clustering of all three genotypes, and components 1 and 2 explained 70.8% of 
the total variance among genotypes (Fig. 2). Genotype U41 had a greater spread across components 1 and 2 com-
pared to the other two genotypes, again suggesting relatively greater within-group variability. Compounds driving 
separation in the PLS-DA model (with a VIP score > 2) are presented in Table 1. Compounds were identified and 
quantified from 1H-NMR spectra using Chenomx NMR Suite 8.2 (Chenomx, Inc.). A full list of compounds iden-
tified by 1H-NMR, including putative metabolite identifications, is provided as Supplementary Data.

LC-MS Global Metabolomics.  LC-MS detected a total of 1763 mass features in the positive mode and 718 
mass features in the negative mode. ANOVA identified metabolites that differed significantly among genotypes 
(p < 0.05) in the positive ion mode (n = 354) and in the negative ion mode (n = 162). A full list of features identi-
fied by ANOVA are presented as Supplementary Data, and Fig. 3 illustrates variation in a subset of these features 
among genotypes. U41 displayed greater variability in metabolite concentration among replicates compared to 
genotypes U25 and U44, but this variability did not appear to relate to donor colony (A versus B; Fig. 3). PCA 
components 1 and 2 described 43.6% (positive ion mode) and 44.6% (negative ion mode) of the total variance 
among genotypes. In PCA models derived from both the positive and negative ion mode, U44 clustered sepa-
rately from both U25 and U41, however U41 had greater within-group variability compared to the other two 
genotypes, resulting in overlap with U25 (Fig. 4). A PLS-DA model was not well-validated, and was therefore 
not used to assess data derived from LC-MS. Features were identified by searching against an internal retention 
time metabolite library of 1100 compounds as well as the Kyoto Encyclopedia of Genes and Genomes data-
base (https://www.genome.jp/kegg). A full list of compounds resolved by LC-MS, primarily consisting of level 1 

https://doi.org/10.1038/s41598-019-42434-0
https://www.genome.jp/kegg


3Scientific Reports |          (2019) 9:6067  | https://doi.org/10.1038/s41598-019-42434-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

(confirmed structure), level 3 (tentative candidates), and level 5 identifications (exact mass, m/z)35, is provided as 
Supplementary Data.

Mummichog pathway enrichment analysis36 was used to identify the metabolic pathways that differed in activ-
ity among genotypes. Mummichog software finds all possible metabolite matches corresponding to m/z features 
resolved by LC-MS and compares these against a reference metabolic network in order to compute the most 
probable pathways driving separation among groups36. Aminoacyl-tRNA biosynthesis was identified as a pathway 
that varied substantially among genotypes using LC-MS data from both the positive and negative mode. Lysine 
biosynthesis (positive mode), as well as phenylalanine, tyrosine, and tryptophan biosynthesis (negative mode) 

Figure 1.  Principal component analysis model comparing 1H-NMR metabolomic profiles among three unique 
genotypes of A. cervicornis: U25 (red), U41 (green), and U44 (blue). The amount of variance explained is shown 
in parentheses on each axis.

Figure 2.  Partial least square discriminant analysis model comparing 1H-NMR metabolomic profiles among 
three unique genotypes of A. cervicornis: U25 (red), U41 (green), and U44 (blue). The amount of variance 
explained is shown in parentheses on each axis.
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differed based on genotype. In addition, metabolism of the amino acids arginine, proline, cysteine and methio-
nine (positive mode) as well as glycine, serine, and threonine (negative mode) varied among genotypes. Purine 
(positive mode) and pyrimidine (negative mode) metabolism were also identified as important metabolic path-
ways driving separation among genotypes. A full list of metabolic pathways identified by Mummichog is provided 
as Supplementary Data.

Discussion
As threats to coral reefs grow, interest in better understanding intraspecific differences in coral survival and 
performance is increasing. A number of studies have documented genotype-specific differences in growth, stress 
tolerance, and/or survival9,25,26,30,37,38. Metabolomic profiling has the potential to provide insight into the physio-
logical drivers of these intraspecific differences. As a first step toward this goal, we tested whether metabolomic 
profiles vary among unique genotypes of the staghorn coral A. cervicornis in a common garden. Using both 
1H-NMR and LC-MS approaches, we show that metabolomic profiles indeed varied among the genotypes sam-
pled. However, within-group variability in the metabolome for genotype U41 contributed to varying degrees of 
overlap with metabolomic profiles for the other two genotypes in PCA models. Although within-genotype vari-
ability could complicate intraspecific metabolomic profiling, this study demonstrates that distinct metabolomic 
profiles can be resolved for some genotypes of the same coral species in a common garden setting.

Spectra 
Bin Metabolite Metabolite Class

Peak 
pattern U25 U41 U44

3.23 Trimethylamine N-oxide Organic compound s

2.95 Unknown Unknown s

2.99 Unknown Aliphatic s

2.70 Unknown Carbohydrate m

3.27 Unknown Carbohydrate m

3.54 Unknown Carbohydrate t

3.47 Unknown Carbohydrate s

3.39 Unknown Carbohydrate d

3.19 Choline Aliphatic s

3.11 Malonate Aliphatic s

3.15 N-Nitrosodimethylamine Aliphatic s

2.75 Unknown Aliphatic s

2.59 Methylamine Aliphatic s

2.03 Homoserine Aliphatic m

2.83 Unknown Aliphatic s

Table 1.  Chemical shifts driving separation of 1H-NMR metabolomic profiles among genotypes determined by 
partial least square discriminant analysis. For peak pattern, s = singlet, d = doublet, t = triplet, m = multiplet. 
Circle size illustrates the relative concentration of each metabolite compared to other genotypes (smallest 
circles = low, largest circles = high).
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Interestingly, the genotypes compared in the present study were previously found to have unique growth and 
stress tolerance phenotypes25. Links between phenotype and metabolomic profile have been found in previous 
studies of plant systems39,40. For some agricultural species, metabolite biomarkers associated with desirable traits 
have been discerned41,42. Our findings of distinct metabolite profiles among unique genotypes support the idea 
that future studies could identify metabolite biomarkers for key A. cervicornis traits, including, but not limited to, 
disease resistance10 and thermotolerance9,25,30. This concept is also supported by a previous study of the soft coral 
Sinularia, which documented distinct sesquiterpene signatures among species with different morphological and 
anatomical traits, indicating a possible link between phenotype and metabolome in corals43. At present, identifi-
cation of coral genotypes that possess traits of interest can involve painstaking repeated measurements in situ25,44 
or long-term manipulative experiments10,45, which are time-consuming and costly. Recent attempts to identify 
transcriptomic biomarkers for thermotolerance and other traits of interest in A. cervicornis were complicated 

Figure 3.  Heat map showing differences in concentrations among genotypes for 50 significant features 
identified via analysis of variance from LC-MS in the positive (left) and negative (right) ion modes. The scale 
bar represents normalized intensity of features. This figure illustrates a subset of metabolites that varied among 
genotypes, but does not depict the full list of features that varied significantly among genotypes. A full list of 
metabolites that varied among genotypes is provided as Supplementary Data.

Figure 4.  Principal component analysis model comparing LC-MS metabolomic profiles for the positive (left) 
and negative (right) mode among three unique genotypes of A. cervicornis: U25 (red), U41 (green), and U44 
(blue). The amount of variance explained is shown in parentheses on each axis.
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by high within-genotype variability in gene expression46. The present study suggests that metabolite biomarkers 
could be easier to distinguish for some A. cervicornis genotypes, and this could therefore be a productive area for 
future study.

While host genotype is a key factor in determining metabolite profile, the coral holobiont metabolome ulti-
mately reflects the physiological activity of multiple symbiotic partners. These partners include the coral host, in 
hospite Symbiodiniaceae, and the coral-associated microbial community18. Our study was limited to a compari-
son of holobiont samples with host genotype as a factor. Future analyses should consider incorporating data on 
host genotype, Symbiodiniaceae strain, and microbiome community structure in order to gain a fuller under-
standing of the physiological role of each partner and their individual contributions to the metabolome. Although 
A. cervicornis is known to associate almost exclusively with the dinoflagellate taxon Symbiodinium ‘fitti’ nomen 
nudum (ITS-2 type A3)38,46–49, this taxon encompasses a number of genotypes, or strains, that can have different 
physiological characteristics19. The complex interplay of host genotype and symbiont strain ultimately drives a 
number of phenotypes in corals19,50, and it is therefore likely that both partners influence the holobiont metab-
olome. Similarly, the microbiome is increasingly understood as a key factor affecting host physiology, and is 
also known to drive differences in the coral metabolome21. Incorporating data on Symbiodiniaceae identity and 
microbial community structure in future coral metabolomics studies could improve understanding of the role 
of these symbionts in coral physiology, and help clarify the scope of each partner’s contribution to the holobiont 
metabolome.

Although the identity of the coral host and symbiotic partners are highly important in driving physio-
logical differences among corals, the environment also plays a key role. The present study was conducted in 
a common garden to control for the effect of environment in order to isolate differences among genotypes. 
Coral nurseries can be valuable tools for such studies25,26,31. Additionally, a number of studies have examined 
genotype-environment interactions51,52 during outplanting and found considerable phenotypic plasticity across 
varying sites9,53. Although little information is available regarding genotype-environment effects on the coral 
metabolome, environmental conditions are known to play a key role in determining metabolomic profile in 
other organisms54–56. Future studies of corals should consider plasticity in metabolite profiles among diverse sites. 
Because corals are sessile organisms, they could be useful for investigating metabolomic shifts following trans-
plantation to differing sites from a common garden. Such information could provide insight into site selection 
for restoration activities.

In addition to spatial variation, temporal changes in abiotic conditions within a site can occur and potentially 
affect the metabolome. Temperature data suggest low thermal stress in 2016 compared to 2015. Daily mean tem-
perature exceeded 31 °C for two 10-day periods in late summer 2015, inducing sub-lethal bleaching25, but daily 
mean temperature did not exceed this threshold in 2016. Because samples in this study were not collected during 
a period of thermal stress, key metabolites involved in physiological responses to elevated temperature may not be 
present in metabolomic profiles reported here. Recent studies have demonstrated metabolomic shifts in cnidar-
ians, including corals, in response to thermal stress20,24,57 and combined thermal and chemical stress23. Thus, 
differences in metabolomes among genotypes could be more or less apparent depending on abiotic conditions at 
the time of sampling. To better capture the full range of metabolites associated with a particular genotype, time 
series designs could be incorporated into future studies. In particular, sampling points during periods of high and 
low thermal stress could be useful in identifying metabolites associated with thermotolerance.

Although we were able to resolve distinct differences in metabolite profiles for all three genotypes when 
1H-NMR data were assessed using PLS-DA, higher within-genotype variability in metabolite profile was found 
for genotype U41. When metabolomic profiles were examined using PCA, this variability resulted in overlap of 
profiles between U41 and one or both of the other two genotypes based on LC-MS and 1H-NMR, respectively. 
ANOVA also indicated varying concentrations of key metabolites among U41 replicates, with no apparent pattern 
based on the specific colony sampled. Together, these results may indicate intracolonial variability in the metab-
olome for genotype U41. Interestingly, U41 was found to have within-genotype differences in linear extension in 
our previous study25. Within-colony differences in metabolic processes related to linear extension could explain 
variability in the metabolome for genotype U41. Together, observations of within-genotype differences in growth 
and intracolonial variability in metabolomic profile for genotype U41 could indicate intracolonial variation in 
genotype58. Potential intracolonial variation in genotype in A. cervicornis, and particularly in genotype U41, 
warrants further study.

In addition to possible intracolonial variation in genotype, our study was also complicated by a lack of metab-
olite databases for A. cervicornis and other coral species13. Regardless of this challenge, we were able to identify 
a number of putative compounds that varied among genotypes. Few significantly different putative metabolites 
were identified using both 1H-NMR and LC-MS approaches; these include threonine, homoserine, leucine, cre-
atine, and isoleucine (see Supplementary Data). The differences in the number and identity of putative metabo-
lites resolved by 1H-NMR and LC-MS may highlight the varying strengths of each method. For example, LC-MS 
has higher sensitivity compared to 1H-NMR, and can therefore detect a higher number of mass features, includ-
ing very rare compounds33. However, the types of features detected may be dependent on the chromatography 
technique applied. 1H-NMR captures a smaller number of metabolites, but is less susceptible to matrix effects, 
produces quantitative estimates of concentration without standards curves, and is therefore highly reproducible 
across labs, making it a valuable tool for untargeted metabolomics33. Application of both methods in the present 
study therefore provides a more comprehensive metabolomic profile of A. cervicornis compared to the use of 
either technique alone.

1H-NMR identified 15 chemical shifts highly important in driving separation among the three genotypes 
compared in this study (VIP > 2; Table 1). These chemical shifts are primarily classified as carbohydrates and ali-
phatic compounds, however our solvent likely extracted more polar entities compared to non-polar compounds, 
such as fatty acids. Regardless of this limitation, 1H-NMR was able to putatively identify trimethylamine N-oxide 

https://doi.org/10.1038/s41598-019-42434-0


7Scientific Reports |          (2019) 9:6067  | https://doi.org/10.1038/s41598-019-42434-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

(TMAO) as the compound with the most variability among genotypes. In many marine organisms, TMAO is 
well-known as an important osmolyte that prevents the damaging effects of urea buildup59,60 and hydrostatic pres-
sure61 on proteins. The function of TMAO in the coral holobiont is less clear, however synthesis of this compound 
has been linked to protection against hydrostatic protein damage in other cnidarians62. Metabolomic studies of 
other acroporids were also consistent with our putative identification of choline and malonate63 as well as homo-
serine20 in A. cervicornis in the present study. Unfortunately, there is currently a lack of published information 
to link these or any other highly significant metabolites in our study with potential physiological roles in the A. 
cervicornis holobiont.

A number of important mass features driving separation of profiles for the three genotypes examined were 
also resolved by LC-MS. In contrast to 1H-NMR results, very few carbohydrates were resolved by LC-MS. 
Carbohydrates are known to fragment readily using MS-based techniques, and can therefore be more difficult 
to resolve64. Despite these challenges, a number of metabolites were identified or putatively identified based on 
LC-MS data from the positive and negative modes (see Supplementary Data). One such metabolite was catechin, 
a well-studied flavonoid known for its antioxidant properties65. Interestingly, a recent study found that addition 
of catechin in the laboratory could prevent bleaching in thermally-stressed Porites astreoides66. Targeted metab-
olomics studies could confirm the presence of catechin in A. cervicornis, and also strive to better understand its 
potential role in coral thermotolerance. A number of other organic compounds common in many metabolic 
processes also varied among genotypes. Additional studies could reveal more about specific roles of these metab-
olites in coral physiology and shed light on why they vary among genotypes. Interestingly, compounds associ-
ated with human activity, such as coronene and flusilazole were also identified by LC-MS. Although corals are 
known to absorb pollutants from the marine environment67–69, it is unclear why absorption of such compounds 
would vary among genotypes in a common garden. It is also possible these compounds were misidentified during 
LC-MS analysis or unintentionally introduced during sampling. This question could be resolved in the future by 
performing MS/MS to identify putative metabolites of interest with a higher level of certainty compared to the 
present study.

A number of metabolic pathways were found to drive separation of metabolite profiles among genotypes in 
both the positive and negative mode for LC-MS. Both datasets identified biosynthesis of aminoacyl-tRNA, a criti-
cal component of translation and protein synthesis70, as the most important pathway driving separation. Pathways 
for the synthesis and metabolism of a variety of amino acids as well as purine and pyrimidine metabolism varied 
based on genotype, potentially also suggesting differences in transcriptional and translational activity among the 
three coral genotypes. Future transcriptomic and proteomic analyses of these genotypes could aid in identifying 
specific gene activity and proteins driving separation among genotypes, as well as their physiological role within 
the holobiont.

Metabolomics is an emerging technology in coral reef science, and clearly linking individual metabolites to 
physiological processes in corals is an important next step in this field. Better understanding of metabolomic 
variation in corals can assist with future efforts to identify key physiological processes related to growth and stress 
tolerance, and potentially support selection of robust genotypes for restoration and other interventions2,3. Future 
research on the metabolome of A. cervicornis and other coral species can aid in building databases to improve 
metabolite identification. Additional work and improvements in coral bioinformatics are needed to begin linking 
specific metabolites to the physiological processes and identifying possible biomarkers for traits of interest.

Methods
Sample Collection and Extraction.  Corals used in this study were collected from an established coral 
nursery operated by the Coral Restoration Foundation (CRF) and located four miles offshore of Tavernier, FL. All 
Acropora cervicornis genotypes in this nursery were previously determined to be unique via microsatellite gen-
otyping performed by the Baums lab at Penn State University (unpublished data). Associated Symbiodiniaceae 
were not genotyped during this study.

In December 2016, two colonies from each of three genotypes (U25, U41, and U44) were removed from 
grow-out structures at a depth of approximately 8 m in the nursery and brought to the surface intact. Corals 
remained submerged during sample collection to minimize stress. Diagonal pliers were used to clip ~3 cm actively 
growing branch tips on each colony. A total of five replicate holobiont samples were collected from genotypes U25 
and U44, with three tips collected from the first replicate colony (A) and two collected from the second replicate 
colony (B). Six replicate tips were collected from genotype U41, with four tips collected from the first replicate 
colony (A) and two collected from the second replicate colony (B). Tips were placed in 20 mL scintillation vials 
containing 10 mL of 100% methanol <5 seconds following removal from each colony, and vials were immediately 
placed on ice in a cooler. Immersion in methanol has been shown to be an effective method for quenching meta-
bolic activity71,72, and was more conducive to offshore field collections compared to snap freezing in liquid nitro-
gen. Following sample collection, colonies were returned to the nursery and an existing logger (HOBO Pendant® 
UA-002-64, Onset Corporation) was downloaded to determine temperature from July–December 2016, inclusive 
of the sample collection period. Samples were transported to shore and stored at −20 °C overnight. Samples were 
transported back to the laboratory on ice and were again stored at −20 °C overnight.

The next day, vials containing intact holobiont fragments in methanol were placed in a single rack and shaken 
for 5 minutes, then individually vortexed for 30 seconds per sample. Holobiont samples were allowed to settle for 
one hour at −20 °C. One mL of extract from each sample was transferred to clean 1.5 mL microcentrifuge tubes 
and centrifuged at 20,000 g for 5 minutes. The supernatant was then transferred to a new 1.5 mL microcentrifuge 
tube and stored at −80 °C until processing.

1H-NMR Profiling.  All metabolomic analyses were performed at the Southeast Center for Integrated 
Metabolomics (SECIM) at the University of Florida. Coral holobiont extract (in methanol) was added to double 

https://doi.org/10.1038/s41598-019-42434-0


8Scientific Reports |          (2019) 9:6067  | https://doi.org/10.1038/s41598-019-42434-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

distilled water (1:2 v/v of sample to water), then flash freeze lyophilized (Labconco) until dry. Lyophilized dry 
powder was re-suspended in phosphate buffer in deuterium oxide (D2O) at pH 7. The final volume for the 
1H-NMR samples was 60 μL (in a 1.5 mm tube) with 90% (v/v) of deuterated 50 mM sodium phosphate buffer 
(pH 7) with 2 mM of ethylene diamine tetra-acetic acid (EDTA). The remaining 10% (v/v) was occupied by 
an internal standard [5 mM D6−4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS-D6) and 0.2% sodium azide 
(NaN3) in D2O; Chenomx, Inc.].

All 1H-NMR spectra were collected with a 14.1 T NMR system, equipped with a CP TXI CryoProbe and 
Avance II Console (Bruker Biospin). The first slice of a NOESY pulse sequence (tnnoesy)73 was used to acquire 
proton spectra consisting of 1 s relaxation delay (d1), 64 scans (nt), 100 ms mixing time, with 4 s acquisition time 
over a spectral window (sw) of 7211.54 Hz. Samples were acquired at room temperature (25 °C). Before Fourier 
transformation, acquired spectra were further processed with a line-broadening factor of 0.5 Hz and zero fill-
ing to 65,536 points. MestReNova 11.0.0-17609 (Mestrelab Research S.L.) was utilized to process the spectra. 
Identification and quantification of the metabolites from the 1H-NMR spectra was done using Chenomx NMR 
Suite 8.2 (Chenomx, Inc.).

LC-MS Global Metabolomics.  LC-MS global metabolomics samples were prepared by protein precipita-
tion. Briefly, 5 µL of internal standard mixture prepared in-house consisting of labeled amino acids were spiked 
into each 25 µL sample. Extraction was done by adding 200 µL of 8:1:1 Acetonitrile:Methanol:Acetone to the sam-
ple. Samples were held at 2–8 °C for 30 min to allow protein precipitation. Samples were centrifuged at 20,000 × g 
for 10 minutes at 4 °C. From each sample, 190 µL supernatant were collected and dried completely under nitrogen 
at 30 °C. Samples were reconstituted with 25 µL of reconstitution solution containing injection standards. Samples 
were mixed thoroughly, held at 2–8 °C for 10 min, and centrifuged at 20,000 × g for 10 min at 4 °C. Supernatants 
were transferred to vials for LC-MS analysis.

Global metabolomics profiling was performed on a Q Exactive Orbitrap mass spectrometer with UltiMate 
3000 UHPLC (Thermo Fisher Scientific). All samples were analyzed in positive and negative heated electrospray 
ionization with a mass resolution of 35,000 at m/z 200 as separate injections. Separation was achieved on an ACE 
18-PFP 100 × 2.1 mm, 2 µm column (MAC-MOD Analytical) with mobile phase A as 0.1% formic acid in water 
and mobile phase B as acetonitrile. This is a polar embedded stationary phase that provides comprehensive cov-
erage, but does have some limitation in the coverage of very polar species. The flow rate was 350 µL/min with a 
column temperature of 25 °C. 4 µL were injected for negative ions and 2 µL for positive ions.

MSConvert (ProteoWizard 3.0) was used to convert raw files to open format. MZmine 2 was used to identify 
features, deisotope, align features, and perform gap filling to fill in any features that may have been missed in the 
first alignment algorithm. All adducts and complexes were identified and removed from the data set. The data 
were searched against SECIM’s internal retention time metabolite library of 1100 compounds and subsequently 
searched against KEGG for putative identification.

Mummichog, a program available on metaboanalyst.ca, was used to identify metabolic pathways driving sepa-
ration among genotypes. The p-value and t.score along with the m/z value were used for pathway searching with 
a p-value cutoff of 0.01 and mass accuracy of 5 ppm in positive mode and 10 ppm in negative mode. A metabolic 
pathway reference library for the model species Arabidopsis thaliana was used in this analysis, as no coral libraries 
were available.

Statistical analysis.  All statistical tests were conducted at a significance level of α = 0.05. 1H-NMR spec-
tra were pre-processed in MestReNova 11.0.0-17609 (Mestrelab Research S.L.) before extracting data for the 
Metaboanalyst analysis. Fourier transformation, calibration with respect to an internal standard (DSS) peak at 
zero ppm, phase correction, base-line correction (using the Spline method), removal of inconsistent lipid/pro-
teins regions and the water peak, and local alignment of many peak regions (to adjust chemical shift variability 
issues due to pH or other technical/instrumental issues) were performed. Data binning of 0.04 ppm was per-
formed to restrict the dimensionality of the data, with removal of the downfield >9.5 and upfield <0.5 regions not 
containing any metabolic data. Processed data were analyzed in Metaboanalyst74. Missing value estimation was 
performed by removing features with greater than 50% missing values then replacing these features with half of 
the minimum positive values from the original data. Data filtering was performed with interquartile range (IQR) 
to remove peaks that were unlikely to be of use in data modeling. Probability quotient normalization was per-
formed to reduce any possible variation in total signal intensity between the groups75, including possible bias that 
might have arisen because of sample handling and potential variability in the total amount of tissue per sample. 
Pareto scaling (mean-centered and divided by the square root of the standard deviation of each variable) was used 
to provide equivalent weight among the variables.

For 1H-NMR data, abundance of metabolites among three different genotypes of corals was analyzed via 
multivariate statistical analysis. The analysis used 15 spectra for a set (five samples per genotype). For LC-MS 
data, any metabolites present in <80% of samples were discarded. If data met that criterion, any missing values 
were imputed with half the minimum value of the reported data. Next, the data were filtered for relative standard 
deviation to remove metabolites with a high degree of variability. Finally, the data were normalized to the total ion 
signal, log transformed and autoscaled (mean-centered and divided by the standard deviation of each variable).

The web-based metabolomics data processing tool MetaboAnalyst 3.074 was utilized to perform one-way anal-
ysis of variance (ANOVA), principal component analysis (PCA), and partial least square discriminant analysis 
(PLS-DA) for both LC-MS and 1H-NMR data. All p-values were FDR corrected and only values of 0.05 or less 
were reported. The data met all assumptions of ANOVA. ANOVA models based on either 1H-NMR or LC-MS 
data used concentration of a given compound (i.e. integrated peak height, normalized to the total ion signal) as 
the response variable, with genotype as a factor. Significance of PLS-DA models was assessed with permutation 
tests (consisting of 1000 permutations) and leave one out cross-validation (LOOCV). Robustness of PLS-DA 
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models was validated by calculating Q2. For LC-MS, data from positive and negative ion modes were analyzed 
separately. Variable Importance in Projection (VIP) was used to summarize the importance of each variable (i.e. 
metabolite) in driving separation among treatments (i.e. genotypes) in the PLS-DA models76,77. Compounds with 
a VIP values >1 are generally considered to be influential in PLS-DA models76,78. The present study used the con-
servative cutoff value of >2 to identify highly important compounds driving separation.

Data Availability
All data generated or analyzed during this study are publicly available via Metabolomics Workbench (Project ID: 
PR000747) and as Supplementary Data.
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