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Knowledge gaps remain in the understanding of HIV disease establishment and
progression. Scientists continue to strive in their endeavor to elucidate the precise
underlying immunopathogenic mechanisms of HIV-related disease, in order to identify
possible preventive and therapeutic targets. A useful tool in the quest to reveal some of the
enigmas related to HIV infection and disease is the single-cell sequencing (scRNA-seq)
technique. With its proven capacity to elucidate critical processes in cell formation and
differentiation, to decipher critical hematopoietic pathways, and to understand the
regulatory gene networks that predict immune function, scRNA-seq is further
considered to be a potentially useful tool to explore HIV immunopathogenesis. In this
article, we provide an overview of single-cell sequencing platforms, before delving into
research findings gleaned from the use of single cell sequencing in HIV research, as
published in recent literature. Finally, we describe two important avenues of research that
we believe should be further investigated using the single-cell sequencing technique.
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INTRODUCTION

A broader and deeper knowledge of important immune responses during HIV infection in both the
acute and chronic phases of the HIV disease process is likely to assist in the identification of future
preventive and therapeutic targets for HIV infection (1). It is well known that cellular immunity is
essential for managing infection by intracellular pathogens such as the human immunodeficiency
virus (HIV). However, individual cellular dynamics and cell–cell cooperation in developing and
coordinating human immune responses are currently insufficiently understood. In this regard,
single-cell sequencing represents an excellent alternative to study these processes, as it has evolved
into a valuable tool for the understanding of complex multicellular processes in health and disease
(2, 3), as well as to expose testable potential therapeutic targets (4). When applied to whole blood as
well as a diverse range of human tissues in both healthy and pathological states, single-cell RNA
sequencing (scRNA-seq) now allows for the simultaneous study of more than 10,000 single-cell
transcriptomes (as suggested by recent improvements to the technique), resulting in the
characterization of novel immune cell subsets (5–8). Furthermore, scRNA-seq is now commonly
used in immunological studies seeking to describe essential processes in cell formation and
org February 2022 | Volume 13 | Article 8288601
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differentiation (9, 10), to decipher critical hematopoietic
pathways (11–13), and to understand the gene regulatory
networks that predict immune function (14–16). A single-cell
transcriptome snapshot can yield a valuable insight into the
multiple phases of differentiation and activation states that are
rarely synchronized between cells. Therefore, the application of
scRNA-seq to the HIV research field, and particularly to
longitudinal samples, may provide opportunities to discover
cellular variables associated with disease progression, without
the possibility of confusing these variables with inter-individual
variability, as suggested by Martin-Gayo et al. (17). Herein, we
briefly review single-cell sequencing platforms before focusing
on findings gleaned from the application of single cell sequencing
in the HIV field of research, as reported in contemporary
literature. Finally, we discuss two critical areas of investigation
that we believe are worth exploring by utilizing the single-cell
sequencing approach.
WHAT IS SINGLE-CELL SEQUENCING OR
SINGLE-CELL RNA SEQUENCING
(SCRNA-SEQ)?

Conventionally, scRNA-seq examines transcripts in a mixture of
cells referred to as a ‘bulk’. First proposed in a protocol published
in 2009 (18), there are currently many scRNA-seq methods that
Frontiers in Immunology | www.frontiersin.org 2
differ in how the mRNA transcripts are amplified to yield cDNA
(full-length or unique molecular identifier) at the 5′ or 3′ end
(Figure 1). For instance, the switching mechanism at the 5′ end
of RNA template sequencing (SMART-seq) (19) and its
optimized protocol SMART-seq 2 (20, 21) can generate full-
length cDNA. Besides, other methods such as massively parallel
RNA single-cell sequencing (MARS-seq) (22), single-cell tagged
reverse transcription (STRT) (23, 24), cell expression by linear
amplification and sequencing (CEL-seq) (25), CEL- seq2 (26),
Drop-seq (6), and indexing droplets (inDrops) (27) are designed
to integrate unique molecular identifiers into the cDNA.

Several published articles have already detailed the different
methods used for scRNA-seq, their individual advantages, and
their limitations (28–30) (Tables 1, 2). However, it is worth
noting that to date, despite the existence of several sequencing
methods, scRNA-seq remains challenging to conduct since whole-
transcriptome amplification methods [SMART-seq, CEL-seq,
Quartz-seq (31)] require the processing of hundreds to thousands
of single cells, and small volumes of sample (32). Therefore, a
number of strategies for the procedure of constructing a scRNA-seq
library, such as protocols based on microdroplet technology [i.e.,
Drop-Seq (6) and DroNc-seq (33)], have been described. These
microdroplet and other microwell-based [i.e., microwell-seq (34),
Nx1-seq (35) and Seq-Well (5)] protocols make it possible to handle
thousands of single cells with ease. Moreover, the currently used
method, which combines higher-throughput and lower-cost for
scRNA-seq analysis, is the single-cell combinatorial indexing
FIGURE 1 | Principle of single-cell sequencing technologies. SCRB-seq, single-cell RNA barcoding and sequencing; BCR, B-cell receptor; TCR, T-cell receptor.
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method (sci-RNA-seq) (36, 37). Overall, depending on the platform,
issues such as restricted cell capture, low RT efficiency, amplification
bias, and the need for a high number of sequencing reads remain.
Thus, users should appropriately select methods of scRNA-seq that
best suit their specific samples and study objectives.

Recently, Kashima et al., have indicated in an extensive review
that single-cell sequencing is a formidable tool which has several
Frontiers in Immunology | www.frontiersin.org 3
applications with respect to understanding genetic heterogeneity,
detecting footprints of differentiation of individual cells, analysis
of the proteome at the single-cell level, integration of different
layers of single-cell data sets, and analysis of multilayered
sequencing from the same cells (32). In the next section, we
review the major findings made by several research groups using
single-cell sequencing in HIV research.
TABLE 1 | Summary of single-cell sequencing applications and methods.

Type Method Feature

Transcriptome sequencing Smart-seq WTA method; template switching
CEL-seq WTA method; in vitro transcription
Quartz-seq WTA method; poly(A) tagging
C1-CAGE 5′-end RNA-seq
RamDa-seq Total RNA-seq
Drop-seq Microdroplet-based method
Microwell-seq Microwell-based method

Genome sequencing MDA WGA method; isothermal amplification
DOP-PCR WGA method; PCR-based
MALBAC WGA method; hybrid

Epigenome sequencing scBS-seq Whole-genome BS-seq
scRRBS RRBS
scAba-seq 5hmC sequencing
scATAC-seq ATAC-seq
Drop-ChIP ChIP-seq; microdroplet-based
scChIC-seq Ab-Mnase
CUT&Tag Ab + protein A-Tn5 transposase
Single-cell Hi-C Hi-C

Multilayer sequencing from the same cells G&T-seq MDA/PicoPlex (WGA), SMART-seq2 (WTA)
DR-seq No physical separation of DNA and RNA
scM&T-seq Based on scBS-seq and G&T-seq
scDam&T-seq Based on DamID and CEL-seq
T-ATAC-seq Based on scATAC-seq and TCR-seq
SNARE-seq Tn5-DNA/mRNA captured by beads
scCAT-seq Separation of nucleus and cytoplasm
CITE-seq Protein detected by barcode-conjugated antibodies
REAP-seq Protein detected by barcode-conjugated antibodies
WTA, Whole transcriptome amplification; C1-CAGE, C1-Cap analysis gene expression; RamDa-seq, Random displacement amplification sequencing; WGA, whole-genome amplification;
MDA, Multiple displacement amplification; scBS-seq, Single-cell bisulfite sequencing; scRRBS, single-cell reduced-representation bisulfite sequencing; RRBS, Reduced-representation
bisulfite sequencing; scAba-seq, Single-cell AbaSI sequencing; scChIC-seq, single-cell chromatin immunocleavage sequencing; CUT&Tag, Cleavage under targets and tagmentation; Ab,
antibody; G&T-seq, Genome and transcriptome sequencing; scM&T-seq, Single-cell methylome and transcriptome sequencing; scATAC-seq, Single-cell sequencing assay for transposase-
accessible chromatin; T-ATAC-seq, Transcript-indexed ATAC-seq; scCAT-seq, single cell chromatin accessibility and transcriptome sequencing; SNARE-seq, single-nucleus chromatin
accessibility and mRNA expression sequencing; CITE-seq, Cellular indexing of transcriptomes and epitopes; REAP-seq, RNA expression and protein sequencing assay.
TABLE 2 | Current approaches for scRNA-seq and their practical advantages and limitations.

Available Technologies Number of Cells/Experiment Cost ($) Sensitivity

Plate-based protocols (STRT- seq, SMART-seq, SMART-seq2) 50 to 500 3–6/well - 7,000 to 10,000 genes per cell for cell lines
- 2,000 to 6,000 genes per cell for primary cells

Fluidigm C1 48 to 96 35/cell - 6,000 to 9,000 genes per cell for cell lines
- 1,000 to 5,000 genes per cell for primary cells

Pooled approaches (CEL-seq, MARS- seq, SCRB-seq, CEL-seq2) 500 to 2,000 3–6/well - 7,000 to 10,000 genes per cell for cell lines
- 2,000 to 6,000 genes per cell for primary cells

Massively parallel approaches (Drop-seq, InDrop) 5,000 to 10,000 0.05/cell - 5,000 genes per cell for cell lines
- 1,000 to 3,000 genes per cell for primary cells

qPCR 300 to 1,000 1/cell 10 to 30 genes per cell
CyTOF Millions 35/cell Up to 40 markers
FACS Millions 0.05/cell Up to 17 markers
CyTOF, Cytometry by time of flight; FACS, Fluorescence-activated cell sorting; qPCR, quantitative PCR.
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FINDINGS FROM SINGLE-CELL
SEQUENCING APPLICATIONS IN
HIV RESEARCH

Characterization of HIV Replication Cycle
Single-cell sequencing approaches have opened up new avenues
of investigation in HIV research. In 2015, a research team
provided substantial information on the characterization of
HIV replication cycle delays in individual cells (38). Indeed,
Holmes et al., found that approximately three hours are required
between the onset of early and late HIV-1 gene expression, while
matrix protein (MA) causes an approximately 6–12h delay in the
generation of extracellular virions. These researchers noted that
the delays occur at a time at which apolipoprotein B mRNA
editing enzyme catalytic polypeptide-like 3G [APOBEC3G, a
molecule which exerts innate antiretroviral immune activity
against retroviruses (39, 40)], has largely been removed from
the cell, thus suggesting a need to prepare the cells to be efficient
producers of infectious HIV-1 virions. Furthermore, Holmes
et al., have reported that minor changes (APOBEC3G
downregulation, the expression of Gag, the absence of the MA
globular head, and the rate at which virions are assembled and
released) in the lifespan of infected cells may largely influence
viral replication in a single cycle and the overall clinical course in
infected individuals, as a typical infected cell generates new
virions for only a few hours at the end of a 48h lifespan.

Identification of New Cell Subsets
Several publications have revealed the ability of scRNA-seq to
investigate the complexity and heterogeneity of cell populations
during HIV infection. The technique is able to identify the major
peripheral blood mononuclear cells (PBMCs) and T-cell subsets
affected by HIV infection. For instance, in their study [including
4 healthy donors, 3 donors with a low viral load (LL-HIV), and
3 donors with a high viral load (HL-HIV)], Wang et al. (41),,
have identified nine major immune cell clusters, namely
CD4+ T-cells (CD3D+ CD8A− IL7Rhi), CD8+ T-cells (CD3D+

CD8A+), natural killer cells (NK; CD3D− CD8A− IL7R−

GNLYhi), B-cells (MS4A1+), CD14+ monocytes (LYZhi

CD14hi), CD16+ monocytes (LYZhi FCGR3Ahi), conventional
dendritic cells (cDCs; LYZhi FCER1Ahi), plasmacytoid dendritic
cells (pDCs; LYZlow IGJhi), and megakaryocytes (Mk; PPBP+).
Compared to healthy patients, they noted that CD4+ T-cell
counts were considerably lower in HL-HIV donors (18.1%,
25.2%, and 3,6% for each of the three HL-HIV donors versus
33.9%, 34%, 53.1%, and 31.1% for each of the healthy donors)
while a high proportion of CD4 T-cells was observed in LL-HIV
donors (60.7%, 64.3% and 63.1% for each of the three LL-HIV
donors). In addition, they identified in the healthy donor PBMCs
(i) three CD4 T-cell clusters containing naive CD4+ T-cells
(CD4-Tn: CD8A− CCR7+ IL7Rhi), effector memory CD4+ T-
cells (CD4-Tem: CD8A− IL7Rhi CCR7− GZMA+) (42), and
precursor memory cells (CD4-Tpm: CD8A− IL7Rhi CCR7low

LTBhi) and (ii) two CD8+ T-cell clusters represented by naive
CD8+ T-cells (CD8-Tn: CD8A+ CCR7hi) and effector memory
CD8+ T-cells (CD8-Tem: CD8A+ IL7R− CCR7− GZMA+
Frontiers in Immunology | www.frontiersin.org 4
NKG7+). Such a composition of T-cell subtypes was found to
be significantly modified in HIV-positive individuals. On the one
hand, HL-HIV donors displayed (i) significantly smaller
populations of CD4-Tem and CD8-Tn, and (ii) 3 new cell
clusters referred to as exhausted memory CD8+ T-cells (CD8-
Tex), exhausted memory CD4+ T-cells (CD4-Tex), and CD8+

Tem cells, with marked upregulation of IFN-response genes
(CD8-Tem-IFNhi). On the other hand, LL-HIV donors showed
(i) a reduction in the CD4-Tem and CD8-Tn clusters, (ii) the
appearance of a CD8-Tem-IFNhi cluster, and (iii) the absence of
CD4+ Tex or CD8+ Tex cell populations.

Furthermore, scRNA-seq has been shown to be highly
effective in identifying rare (<5% of cells) central nervous
system (CNS) immune cell subsets that drive immune
activation and neuronal damage during HIV infection. Indeed,
Farhadian et al. (43),, by analyzing cerebrospinal fluid (CSF) and
blood from adults with and without HIV infection, have
identified a rare subset of myeloid cells (microglia-like cells)
only present in CSF. Such cells in HIV-positive patients have a
particular gene expression signature [overexpression of APOE
(Apolipoprotein E), AXL (Tyrosine-protein kinase receptor
UFO), CTSB (Cathepsin B), APOC1 (Apolipoprotein C-I),
MSR1 (Macrophage scavenger receptor 1), and TREM2
(Triggering receptor expressed on myeloid cells 2)] that
matches significantly with neurodegenerative disease-associated
microglia (43). With this innovative approach, the preceding
authors were able to demonstrate the potential mechanistic link
between pathways of neuronal injury in HIV and other
neurodegenerative conditions.

In analyzing the PBMCs from four participants who become
HIV-positive (untreated) during their study, Kazer et al.
(44), reported the presence of (i) well-established PBMC
subsets (CD4 T-cells, B-cells, dendritic cells, monocytes, NK
cells, cytotoxic T-cells, and plasmablasts), (ii) phenotypic
subgroupings of monocytes (antiviral, inflammatory, and
nonclassical), (iii) phenotypic subgroupings of cytotoxic T-cells
(CTLs, CD8+ CTL), and (iv) NK cell expansion after 2-3 weeks.
Interestingly, two patients (P2 and P3), who maintained low
levels of viremia (<1000 viral copies/ml) at 2.74 years after
infection without ART, exhibited a subset of proliferative
cytotoxic NK cells (CD8- TRDC+ FCGR3A+) during the
earliest stages of acute infection. More importantly, this subset
of NK cells was found to have increased before the majority of
HIV-specific CD8+ T-cells arise.

Overall, scRNA-seq application in the HIV research field is
not only continually providing novel information in terms of cell
subsets, but also in terms of gene signatures.

Identification of Exhaustion Signatures
In 2016, Baxter et al. (45),, demonstrated that HIV-infected CD4
T-cells (HIV-infected cells in general) preferentially express
markers of exhaustion such as PD-1, CTLA-4, and TIGIT.
More specifically, (i) the majority of infected-cells express PD-
1, (ii) half of the PD-1+ cells also express TIGIT, while TIGIT+-
only cells are less frequent, and (iii) the frequency of CTLA-4+ T-
cells was the lowest. These authors were the first to reveal
February 2022 | Volume 13 | Article 828860
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exhaustion signatures during HIV infection through scRNA-
seq analysis.

From their observations of the gene signatures of Tex cells in
HIV-infected donors (referred to in the preceding section),
Wang et al. suggested that CD8-Tex cells show less effector
function phenotypes than normal CD8+ Tem cells. Indeed, by
analyzing the similarities and differences observed in individuals’
(healthy vs. HIV-positive) PBMCs, Wang et al. (41), were able to
identify key upregulated genes [killer cell lectin-like receptor
subfamily G member 1 (KLRG1), cluster differentiation
(CD160), and T-cell immunoreceptor with Ig and ITIM
domains (TIGIT)] that are associated with T-cell exhaustion.
Interestingly, it appears that KLRG1 blockade effectively restores
the function of HIV-specific CD8+ T-cells. This finding, possible
through scRNA-seq application, highlights the path of a
potential target for immunotherapy against HIV infection.

In another study by Nguyen et al. (46),, scRNA-seq was used
to investigate the transcriptional signatures of HIV-specific CD8
T-cells present in the lymph nodes (LNs) of elite controllers
(ECs) and chronic progressors (CPs). The authors found that the
LNs of ECs possess HIV-specific CD8 T-cells displaying lower
expression of Perforin-1 (PRF1) and Granzyme B (GZMB)
compared to HIV-specific CD8+ T-cells from the LNs of CPs.
The expression of transcripts for genes encoding for cytolytic
molecules, including Granzyme A (GZMA), Granzyme H
(GZMH), Granzyme K (GZMK), Granzyme M (GZMM), Fas
ligand (FASL), and TNFSF10 [tumor necrosis factor superfamily
10, also known as TRAIL (TNF-related apoptosis-inducing
ligand)] (47, 48), was comparable between ECs and CPs, or
higher in HIV-specific CD8+ T-cells from the LNs of CPs.
Further investigations (flow cytometry, immunohistochemistry,
and antibody profiling) have confirmed that in ECs, HIV-specific
CD8+ T-cells (i) exhibit weak cytolytic activity, (ii) are present in
LN follicles, and (iii) potently suppress HIV replication in the
LNs. Additionally, Nguyen et al., demonstrated that HIV-specific
CD8+ T-cells from the LNs of CPs preferentially express TIGIT,
lymphocyte-activation gene 3 (LAG3), and CD244 (recognized
as inhibitory receptors), KLRG1, and the transcription factor
EOMES (Eomesodermin, also known as T-box brain protein 2,
Tbr2). Such a profile perfectly describes an exhausted phenotype
[as shown in the literature (49–51)] in HIV-specific CD8+ T-cells
from the LNs of CPs; whereas, HIV-specific CD8+ T-cells from
the LNs of ECs preferentially express IL7R, which is essential for
homeostasis (52). Furthermore, Nguyen et al., have identified 11
transcripts encoding predicted secreted factors that were
selectively upregulated in HIV-specific CD8+ T-cells from the
LNs of ECs. Among those transcripts, they have reported the
presence of genes coding for tumor necrosis factor (TNF),
chemokine (C-C motif) ligand 5 (CCL5), ribonuclease A
family member 1 (RNASE1), and interleukin 32 (IL32), all
known for their ability to suppress HIV replication (53–59).

Identification of the Inducible Latent Cell
and Potential Latent Cells
The application of scRNA-seq in HIV research has revealed the
heterogeneity in latent and reactivated HIV-1-infected cells (60–
Frontiers in Immunology | www.frontiersin.org 5
62). It has been demonstrated that latently infected CD4+ T-cells
(untreated) display two cell clusters (Cluster 1 and Cluster 2)
(63). That is important, as these 2 distinct clusters remain despite
treatment with (i) SAHA, a less efficient latency reversing agent
(LRA) as shown in the literature (64) or (ii) TCR stimulation
(65), which works as a potent LRA. HIV transcript levels were
consistently higher in cluster 2 than in cluster 1. This led
Golumbeanu et al. (63) to suggest that cluster 1 and 2
represent two distinct states, with different impacts on cellular
activation potential and HIV reactivation efficiency. As such,
they found that the cells in cluster 1 were in a deeper resting state
and difficult to activate upon TCR stimulation. On the other
hand, cluster 2 harbored cells in a less deep resting state, were
more responsive to cellular activation and HIV expression/
reactivation. Deeper investigation by Golumbeanu et al. (63),
has uncovered 134 differential expression genes differently
expressed between the two distinct cell clusters across all three
conditions (untreated, SAHA treatment, or TCR stimulation).
Compared to cluster 1, 133 genes were upregulated in cluster 2
(except for the Metazoa_SRP gene). Almost half (48.5%) of those
genes represented ribosomal proteins, and an analysis of their
enrichment pathways corresponded to processes related to the
metabolism of RNA and protein, electron transport, RNA
splicing, immune system, HIV infection, and translational
regulation. This finding, together with the results obtained
using the STRING database online resource (66) to analyze the
134 common differently expressed genes, support the hypothesis
of Golumbeanu and her colleagues. Indeed, using STRING, the
analysis revealed a strongly connected network of functional
interactions and enrichment of viral processes, translational
regulation, RNA and protein metabolism, as well as cell
activation. Most importantly, these 134 differently expressed
genes can be used to identify and discriminate the two clusters
in vivo. In other words, via scRNA-seq, it is now possible to
identify the proportion of latent HIV-infected cells that can be
successfully reactivated with LRAs. In addition, it seems that
HIV is preferentially downregulated (i) in cells with a naive
(CCR7+ CD45RO-) or central memory (CCR7+ CD45RO+)
phenotype and (ii) in cells with higher proliferative potential
(67). Furthermore, Liu et al., have found that HIV-1-infected
cells (isolated from peripheral blood) from virally suppressed
individuals upon early latency reversal preferentially display a TH

1 phenotype (62). It is known that (i) CD4+ T cells from
peripheral blood are polarized toward TH 1 (often 10-fold
more compared to other polarizations) (68), and (ii) HIV-1
also infects TH 1 more frequently (and TH 0 and TH 2 at much
lower levels) as reported in the literature (69). The preceding
contexts could explain the onset of latency after cell infection by
HIV, and also the specific cells to target. As is currently known,
the latency process may lead to formation of reservoir cells,
which make it challenging to cure HIV.

Characterization of HIV-1 Reservoir
Diversity
Before 2018, researchers using single-cell approaches were
oriented to the investigation of cellular heterogeneity of the
February 2022 | Volume 13 | Article 828860
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latent reservoir (45, 70), and the assessment of cellular response
heterogeneity to latency reversal agents (LRAs) (71). This is
understandable, as latent reservoirs represent the greatest
challenge to HIV eradication (72), and the application of LRAs
to reverse latency is one of the strategies that has been explored
to treat patients (65). For example, Baxter et al. (45), found that
latent reservoirs (CD4+ T-cells) from HIV-untreated individuals
were predominantly central/transitional memory (Tcm/tm,
CD27+ CD45RA-) and Tem (CD27- CD45RA-) when
stimulated with bryostatin [an antineoplastic drug used in
clinical cancer trials (73), and also used as an LRA (65)], or
not. Tem (and Tcm contributing to a minor degree) also
represented the majority of bryostatin-induced cells (90%)
when aviremic ART-treated subjects’ reservoir CD4+ T-cells
were considered. Even more interestingly, they found that in
ART-treated subjects, both Tcm/tm and Tem contributed to the
persistent reservoir, and that the bryostatin-induced reaction was
limited to the Tem compartment. It has been known for a while
that central memory cells represent major long-lived viral
reservoirs in ART-treated subjects (74), but the preceding
study has revealed the role (in terms of proportion) of effector
memory T-cells in HIV reservoir composition.

Recently, Sannier et al. (75), have also used scRNA-seq to
explore the diversity of the HIV-1 reservoir. To this purpose,
they have considered the active viral reservoir of CD4+ T cells (i)
isolated from PBMCs of 16 ART treated and 9 untreated
PLWHs, then (2) stimulated for 12h with an LRA, phorbol 12-
myristate 13-acetate (PMA)/ionomycine. This stimulation of the
active reservoir cells with PMA/ionomycine resulted in a 2-fold
and 11-fold median increase in HIV viral RNA-positive (vRNA+)
in untreated and ART treated samples, respectively. Then, in
analyzing the links between viral transcription and translation
within ART-treated and untreated individuals, the authors
reported that most vRNA+ cells in untreated samples express
p24 protein. In contrast, the expression of p24 was comparatively
infrequent among vRNA+ cells with ART, suggesting a
repression of p24 translation in induced viral reservoirs. To
further understand the mechanism behind this observation,
Sannier et al., analyzed gagRNA and nefRNA co-expression in
p24+ and p24- vRNA+ cells, and found eight theoretical
subpopulations of viral reservoirs (Table 3). Based on the type
Frontiers in Immunology | www.frontiersin.org 6
of sample, and in the absence of LRA stimulation, an overall
consistent hierarchy of the different populations has been
reported. In untreated samples, they found: p24+ gagRNA+

nefRNA+ (or p24+) > p24 gagRNA+ nefRNA (or gagRNA+) >
p24 gagRNA+ nefRNA+ (or vRNADP) > p24 gagRNA nefRNA+

(or nefRNA+). The hierarchy in ART samples was notably
different: gagRNA+ ~ nefRNA+ > vRNADP > p24+ cells. In
comparing both profiles, Sannier et al., suggested that the
transcription process is suboptimal in induced viral reservoirs.
Indeed, gagRNA+ cells showed consistent signs of poor
transcriptional activity compared with all other vRNA+

subpopulations, and the level of gag transcripts, therefore, may
represent key limitations for full gene expression. The expression
of CD4 surface protein was much more frequent (CD4 high) on
gagRNA+ cells and strongly downregulated on p24+ cells and
vRNADP (to a lesser extent). In addition, most nefRNA+ cells
displayed low CD4 levels. Overall, these results indicate a large
heterogeneity of the HIV viral reservoir. In the same manner, a
near-full-length single-cell vDNA sequencing of induced,
transcriptionally active viral reservoirs have identified
underlying proviral defects known to abrogate viral replication,
such as inversions, hypermutations, large internal deletions, and
premature stop codons. The defect leading to frameshift was
also investigated [except in nef (76), as it has been reported to be
dispensable for virus replication (77)] as well as J packaging
motif, and alterations of the major splice donor (MSD) site (76,
78–82). Sannier et al., have, therefore, found that most
transcriptionally active cells harbor packaging signal and
MSD site mutations, stop codons/frameshift defects, less
common internal deletions (though few occurrences of large
deletions in viral genomes harbored by p24+ cells were
observed), and a few hypermutated or inverted sequences. The
resulting proviral clones also display transcriptional and
translational heterogeneity, and besides, identical HIV-1 clones
can adopt diverse transcriptional and translational states. Most
importantly, they have observed that HIV-1 protein translation
in the viral reservoir is associated with an effector memory
phenotype, as all viral subpopulations predominantly display a
memory phenotype (CD45RA-).

In general, studies of the HIV reservoir using the scRNA-seq
approach reveal that Tem cells, the major component of HIV
TABLE 3 | Theoretical subpopulations of viral reservoirs as defined by Sannier et al. (75).

Subpopulations Gene Characteristics Proportion

5’exonRNA gagRNA nefRNA p24

p24+ cells + + + + Predominant
vRNADP cells + + + –

gagRNA+ cells + + – –

nefRNA+ cells + – + –

Marginal cells + + – + Absent in ART-treated and minimal in untreated
patients+ – + +

+ – – +
Excluded cells + – – –
+, present; -, absent.
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reservoir cells, should be the main consideration, especially when
such strategies as the “Shock and Kill” strategy (83) or the
“SECH” technique (65), aiming to cure HIV infection, are used.

Identification of Pathogenic TRAIL-
Expressing Innate Immune Cells During
HIV-1 Infection
In their quest to investigate HIV-induced transcriptomic changes
in innate immune cells in lymphoid organs, Cheng et al. (84),
used the scRNA-seq approach on hCD45+hCD3–hCD19–

human leukocytes isolated from the spleens of humanized
NOD/Rag2–/–gc–/– (NRG) mice transplanted with human
CD34+ hematopoietic stem progenitor cells (NRG-hu HSC
mice). Briefly, major innate immune cells, including
plasmacytoid dendritic cells (pDCs), myeloid dendritic cells
(mDCs), macrophages, NK cells, and innate lymphoid cells
(ILCs) were discovered, and in each of them, upregulated
genes involved in type I IFN inflammatory pathways were
found. A most interesting finding is the particular upregulation
of the TNF superfamily member 10 (TNFSF10) gene (which
encodes TRAIL) in the aforementioned innate immune cells. The
percentage of TRAIL increased from 3.5% (in mock mice) to 37%
(in HIV-1–infected mice) in pDCs, 21% to 66% in mDCs, 32% to
81% in macrophages, 14% to 38% in NK cells, and 8% to 56% in
ILCs. The upregulation of TRAIL was also reported recently in
HIV-specific CD8+ T-cells from the LNs of ECs and CPs, in a
relatively high proportion (46). It is known that TRAIL is a
proapoptotic ligand with an immune effector function to
promote the eradication of infected or malignant cells (85). As
such, is it possible that TRAIL plays a role in the depletion of
CD4+ T-cells during HIV-1 infection? In trying to provide a
clear answer to this question, Cheng et al., found that blockade of
the TRAIL signaling pathway in NRG-hu HSC mice prevented
HIV-1–induced CD4+ T-cell depletion in vivo. In CD4 + T-cells
from spleens of humanized mice, they have noted that HIV-1
infection upregulates the expression of TRAIL receptor death
receptor 5 (DR5) but not death receptor 4 (DR4). They have,
therefore, used a soluble form of DR5 fused with human IgG-Fc
(sDR5-Ig) that has the potential to prevent TRAIL-induced cell
death (86–88). Identification of pathogenic TRAIL-expressing
innate immune cells during HIV-1 infection in mice (84) and
humans (46) through scRNA-seq represents a potential
therapeutic target. However, even if the number of CD4 T-cells
in HIV-1–infected mice treated with sDR5-Ig increased, in
comparison to the isotype control treatment group, the
number of CD4 T-cells remained lower than that in mock
mice (84), suggesting that mechanisms other than the TRAIL
pathway may also contribute to CD4+ T-cell depletion
in vivo (89).

Effect of Methamphetamine on the SIV-
Infected Rhesus Monkey Brain
Using scRNA-seq, Miu et al., have demonstrated the effect of
methamphetamine on the brains of SIV-infected rhesus
monkeys (90). To this purpose, they isolated microglia and
brain macrophages from SIV-infected rhesus monkeys treated
Frontiers in Immunology | www.frontiersin.org 7
with (Meth-SIVE derived cells) and without (SIVE derived cells)
methamphetamine. Further experiments were then conducted
on these samples. Firstly, they noted that monkeys treated with
methamphetamine displayed a significantly increased
proportion of microglia and macrophages infected by SIV.
Compared to SIVE derived cells, known macrophage/microglia
marker genes were elevated (AIF1, 2.4 fold; CD68, 1.5 fold) or
decreased (CD163, 2.9 fold; STAB1, 3.0 fold; P2RY12, 6.6 fold;
CD14, 1.6 fold; GAS6, 3.4 fold; CSF1R, 2 fold) in Meth-SIVE
derived cells. These results informed the authors that Meth-SIVE
derived microglia/macrophages mainly differ from SIVE derived
cells by a decrease in markers of M2 macrophages, and an
alteration in the pattern of activation markers. Pathway
analysis using ingenuity pathway analysis (IPA) has, therefore,
revealed that the SIV-infected cells from monkeys treated with
methamphetamine had increased gene encoding functions in cell
death pathways and inhibited the brain-derived neurotropic
factor pathway. Further investigation revealed that the gene
expression patterns in infected cells (with or without
methamphetamine) did not cluster separately from uninfected
cells (5 similar clusters in each condition). However, clusters
within microglia and/or macrophages from methamphetamine-
treated animals differed in neuroinflammatory and metabolic
pathways from those comprised of cells from untreated animals.
Thus, it appears that methamphetamine, in addition to
promoting CNS infection by SIV, has a damaging effect on
both infected and uninfected microgl ia and brain
macrophages. Although this investigation utilized simian cells,
the study highlights the multiple interactions and consequences
of SIV, and by extrapolation, HIV infection and drug usage on
the brain.

An overall picture of the major findings gleaned from scRNA-
seq application during HIV infection is presented in Figure 2.
However, critical areas, discussed in the following section, are
thus far unexplored and should be actively considered in future
research work.
POTENTIAL FUTURE DIRECTIONS

Elucidate the Underlying Reasons for the
Incomplete Immune Recovery Observed in
Immunological Non-Responders (INRs)
In 2020, 27.4 million of the 37.6 million people living with HIV
(PLWH) were reported to be on ART. This represents more than
triple the number of patients on ART recorded in 2010 (7.8
million), and the data also suggests that since 2001, the use of
modern ART has prevented 16.2 million deaths (91). Modern ART
efficiently suppresses HIV-1 replication by targeting key
mechanisms in its life cycle (92). Thus, ART (i) can reduce HIV
viral RNA loads to below detectable levels (93, 94), (ii) can increase
the circulating number of CD4+ T-cells (95, 96), (iii) can reduce the
incidence of AIDS-related disease and/or death (95, 97), and (iv)
can effectively prevent the transmission of HIV to uninfected
people (98). However, although ART can effectively inhibit HIV
replication and reduce HIV-related mortality, 15-30% of
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individuals, also known as immunological non-responders (INRs),
have difficulty in achieving adequate or full immune reconstitution.
Indeed, HIV-positive individuals tend not to respond uniformly to
ART. Some individuals are able to achieve and maintain
undetectable plasma HIV RNA levels, resulting in an increase of
CD4+ T-cell counts to >350 cells/mm3 (99). These people are
referred to as immunological responders (IRs). However, a
substantial but poorly described subset of treated people, the
INRs, maintain abnormally low peripheral blood CD4+ T-cell
counts of <350 cells/mm3, or even lower, long after virological
suppression has been achieved (100). The reasons for such a
disparity in terms of immune recovery remain to be elucidated.
Therefore, the application of scRNA-seq in this area of
investigation represents a promising method that may lead to
potential therapeutic interventions for patients in this situation,
especially knowing that this technique has already been effective in
finding new cell subtypes, their exhaustion signatures, and the
particular heterogeneity of HIV reservoir cells. We believe that its
application to the analysis of several types of samples from INRs
may reveal critical information. A particular focus on blood, gut,
and stool samples should be prioritized, as several studies have
shown the close relationship and complex interactions between gut
microbes, their metabolites, and the host’s immune system during
HIV disease progression (101–106). Besides, deeper profiling of
TRAIL and/or other genes upregulated during HIV infection may
provide a clearer picture of the mechanisms involved in CD4
depletion and immune recovery in the particular case of INRs.
Frontiers in Immunology | www.frontiersin.org 8
Predict the Onset of Opportunistic
Infections (OI) During HIV Infection
Opportunistic infections (OIs) occur easily during HIV infection
as the immune system of the HIV-infected individual becomes
compromised (107). HIV disrupts the immune system, and a
weakened immune system makes it increasingly difficult for the
body to fight off OIs. Fortunately, ART has drastically limited the
onset of OIs in appropriately treated people (108–110). However,
the underlying risk of developing OIs in HIV-infected people is
always present. Thus, diligent and methodical blood sampling
during routine check-ups, followed by scRNA-seq analysis may
help to identify critical markers (from cells, transcriptome, or
proteome). The idea is to collate the results provided by scRNA-
seq analysis before and after the onset of an OI, to compare them,
and to thus identify potentially useful biomarkers. The best
illustration of this approach is given by Kazer et al., who have
compared the results of scRNA-seq of four untreated individuals
before and longitudinally during acute HIV infection. In doing
so, they were able to conclude that patients who maintained low
levels of viremia (<1000 viral copies/ml) at 2.74 years after
infection without ART exhibited a subset of proliferative
cytotoxic NK cells (CD8- TRDC+ FCGR3A+) during the
earliest stages of acute infection (44). In that particular case,
with this subset of proliferative cytotoxic NK cells (CD8- TRDC+

FCGR3A+), doctors in charge of newly infected patients could be
informed of their predicted potential outcomes. We believe that
this investigative approach can and should be developed further,
FIGURE 2 | Summary of the major findings resulting from scRNA-seq application in HIV research.
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and should be aimed towards finding biomarkers that are likely
to predict the onset of OIs.
CONCLUSION

Single cell RNA sequencing has greatly improved our
understanding of HIV immunopathogenesis, especially with
respect to its life cycle, the derived-onset of new cell subsets
with diverse and/or particular gene signatures, the infected-cell
exhaustion profile, and reservoir cell heterogeneity, to list a few.
Several points discussed in this article have the potential to
possibly lead to the identification of new therapeutic targets.
However, two critical problems often encountered during HIV
infection remain unexplored with scRNA-seq. Firstly, finding the
causes of abnormal/incomplete immune recovery may help INRs
to achieve immune recovery, just as IRs do. Secondly, finding
markers that predict the possible onset of an OI will greatly help
HIV-positive individuals to improve their overall quality of life.
Much missing information regarding HIV infection remains to
be elucidated; however, we believe that the scRNA-seq approach
combined with other powerful assays/approaches (multiplex of
transcriptome, genomic, chromatin, methylation, and/or
proteomic assays, to list a few) will certainly enhance the quest
to reveal some of the enigmas related to HIV infection and
disease in humans in the future.

Two major limitations of currently available single cell assays
require mentioning. The first is related to the various omics
profiles of each individual cell, which are difficult to process
(these comprise high-dimensional and mostly sparse data).
Since it has been observed that less sampling bias and fewer
batch effects are involved in single cell sequencing, multiomics
Frontiers in Immunology | www.frontiersin.org 9
data analysis from a single cell is, therefore, much more reliable
than the integration of single omics layers. At the same time,
single-layered data from single cells are easier to obtain, and their
integration may allow more cost-effective and less time-
consuming analysis. The second major limitation of currently
available single cell assays is that results obtained using single-cell
sequencing technologies lack meaningful spatial information. The
reason for this is that specific tissues are dissociated into single
cells before sequencing analysis can proceed. Recently, spatial
transcriptome techniques have been proposed [Slide-seq and
Visium (10× Genomics/Spatial Transcriptomics) approaches].
However, these existing approaches are not currently available
at single cell resolution. With the inexorable progress being made
in this exciting research field, we are indeed hopeful that these
limitations will be overcome in the near future, and that single cell
assays will be used more frequently at a population scale to
achieve a more comprehensive understanding of complex
disease pathogenesis, for example, as in the pathogenesis of
HIV-related disease, and not only for identification of cell
population in a heterogeneous tissue.
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GLOSSARY

AIF1 Allograft inflammatory factor 1
APOBEC3G Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like

3G
APOC1 Apolipoprotein C-I
APOE Apolipoprotein E
ART Antiretroviral therapy
AXL Tyrosine-protein kinase receptor UFO
BCR B-cell receptor
CCL5 Chemokine (C-C motif) ligand 5
CD4 Cluster of differentiation 4
CD8 Cluster of differentiation 8
CD14 Cluster of differentiation 14
CD68 Cluster of differentiation 68
CD163 Cluster of differentiation 163
CD244 Cluster of differentiation 244
CD4-Tex Exhausted CD4 T-cell
CD8-Tex Exhausted CD8 T-cell
CD4-Tem Effector memory CD4 T-cell
CD4-Tn Naive CD4 T-cell
CD4-Tpm Precursor memory cell
CD8-Tem Effector memory CD8 T-cell
CD8-Tn Naive CD8 T-cells
cDC Conventional dendritic cell
cDNA Complementary DNA
CEL-seq Cell expression by linear amplification and sequencing
CNS Central nervous system
CP Chronic progressor
CSF Cerebrospinal fluid
CSF1R Colony stimulating factor 1 receptor
CTL Cytotoxic T-cell
CTLA-4 also known as CD152 (cluster of differentiation 152)
CTSB Cathepsin B
DNA Deoxyribonucleic acid
DC Dendritic cell
EC Elite controller
EOMES Eomesodermin
FASL Fas ligand
Gag Group-specific antigen
GAS6 Growth arrest – specific 6
GZMA Granzyme A
GZMB Granzyme B
GZMH Granzyme H
GZMK Granzyme K
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GZMM Granzyme M
HIV-1 Human immunodeficiency virus type 1
IFN Interferon
IL32 Interleukin 32
ILC Innate lymphoid cell
inDrops indexing droplets
INR Immunological nonresponder
IR Immunological responder
IPA Ingenuity pathway analysis
KLRG1 Killer cell lectin-like receptor subfamily G member 1
LAG3 Lymphocyte-activation gene 3
LN Lymph nodes
LRA Latency reversing agent
MARS-seq Massively parallel RNA single-cell sequencing
MA Matrix protein
mDC Myeloid dendritic cell
mRNA Messenger RNA
MSD Major splice donor
MSR1 Macrophage scavenger receptor 1
Nef Negative factor
NK cell Natural killer cell
OI Opportunistic infection
P2RY12 Purinergic receptor P2Y12
PBMC Peripheral blood mononuclear cell
PD-1 Programmed cell death protein 1
pDC Plasmacytoid dendritic cell
PRF1 Perforin-1
PLWH People living with HIV
RNA Ribonucleic acid
RNASE1 Ribonuclease A family member 1
SAHA Suberoylanilide hydroxamic acid
scRNA-seq Single-cell RNA sequencing
sci-RNA-
seq

Single-cell combinatorial indexing method

SECH Selective elimination of host cells capable of producing HIV
SIV Simian immunodeficiency virus
SMART-seq Switching mechanism at 5′ end of RNA template sequencing
STAB1 Stabilin-1
STRT Single-cell tagged reverse transcription
TCR T-cell receptor
Tem Effector memory T-cell
TIGIT T-cell immunoreceptor with Ig and ITIM domains
TNF Tumor necrosis factor
TNFSF10 Tumor necrosis factor superfamily 10 also known as TRAIL
TRAIL TNF-related apoptosis-inducing ligand
TREM2 Triggering receptor expressed on myeloid cells 2
vRNA+ HIV viral RNA-positive
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