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Abstract: We developed inexpensive and disposable gas sensors with a low environmental footprint.
This approach is based on a biodegradable substrate, paper, and features safe and nontoxic electronic
materials. We show that abrasion-induced deposited WS2 nanoplatelets on paper can be employed
as a successful sensing layer to develop high-sensitivity and selective sensors, which operate even
at room temperature. Its performance is investigated, at room temperature, against NO2 exposure,
finding that the electrical resistance of the device drops dramatically upon NO2 adsorption, decreasing
by ~42% (~31% half a year later) for 0.8 ppm concentration, and establishing a detection limit
around~2 ppb (~3 ppb half a year later). The sensor is highly selective towards NO2 gas with respect
to the interferents NH3 and CO, whose responses were only 1.8% (obtained for 30 ppm) and 1.5%
(obtained for 8 ppm), respectively. Interestingly, an improved response of the developed sensor under
humid conditions was observed (tested for 25% relative humidity at 23 ◦C). The high-performance,
in conjunction with its small dimensions, low cost, operation at room temperature, and the possibility
of using it as a portable system, makes this sensor a promising candidate for continuous monitoring
of NO2 on-site.

Keywords: WS2; humidity sensor; nitrogen dioxide; paper-based device; room temperature sensor;
2D materials

1. Introduction

Gas sensing is becoming more and more important in our society. In fact, detection of
various gases in low concentrations is crucial (and sometimes even mandatory) in fields
such as air quality assessment, greenhouse gas emissions control, the quantification of
volatiles for smart maintenance in the industry sector, and identification of biomarkers in
medical diagnosis [1–5].

Among the gaseous species that should be monitored, detection of nitrogen dioxide
(NO2) is required in different applications. In the atmosphere, NO2 plays the role of green-
house gas and causes acid rain and photochemical smog problems [6]. Long-term exposure
to high levels of NO2 produces harmful effects for humans and other living beings [7,8].
Additionally, nitrogen oxides (NOx) in exhaled breath are biomarkers for inflammatory
and oxidative changes in lungs, serving as early indicators of the pathophysiology of many
respiratory diseases [9].

Chemical sensors based on semiconductor materials [10–15], and particularly metal
oxides, are the most popular devices to sense NO2 gas [16–19]. However, these metal-oxide-
based devices present poor sensitivity at room temperature, requiring high-temperature
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operation that leads to high power consumption and the eventual degradation of the
sensing material [20]. Moreover, metal-oxide devices require the use of substrates com-
patible with micro-fabrication techniques (i.e., silicon, glass, quartz, etc.), which hampers
their application in disposable electronics applications where the use of ultra-low cost and
biodegradable substrates is crucial to emerging technologies and environmental impacts.

Over the past two decades, thanks to the revival of interest in van der Waals materials
aroused by the isolation of graphene [21], sensors based on layered materials have been
presented as a real step forward in gas sensing. Their exceptionally large surface-area-to-
volume ratio makes these materials strongly sensitive to adsorbed gases, and therefore
they are promising candidates for gas detection [22–28]. In fact, over the last years, several
examples of NO2 gas sensors based on van der Waals materials, operating even at room
temperature, have been proved [26,29–32].

The attractive properties of the conventional printer paper as a substrate, mainly its
environmental-friendliness and low-cost, have led researchers to develop paper-based
devices for various applications, including memory devices [33], solar cells [34,35], RFID-
enabled wireless sensors [36], or supercapacitors [37]. Recently, some of the authors have
demonstrated the integration of van der Waals materials on paper substrates through direct
abrasion against the rough surface of paper [38–41]. However, only light and temperature
sensors have been demonstrated so far, with gas sensing remaining unexplored. Because of
the combination of ultra-low cost, availability, and biodegradability of paper substrates,
integrating van der Waals materials on paper substrates opens the door for low-cost and
disposable [42–50] gas sensors.

Here, we demonstrate the fabrication of gas sensors on standard copy paper substrates
using abrasion-induced deposited WS2 films as a sensing material. This process is simple to
implement and yields low-cost and environmentally-friendly devices. In fact, standard copy
paper substrates are biodegradable, and the sensing film (WS2) and electrodes (graphite)
are safe, nontoxic materials that can be found as natural minerals on Earth’s crust. The
sensing performance of the WS2-based sensor under exposure to NO2 gas, operating at
room temperature, is examined. Furthermore, the selectivity relative to potential interfering
gases (NH3 and CO) is analyzed [51–53].

2. Materials and Methods
2.1. Materials

Standard (untreated) copy printer paper (80 g/m2) was used as supporting substrates
because of its low cost and availability. Tungsten disulfide (WS2) from HAGEN automation
Ltd. (Bedford, UK) (0.6 microns APS Ultra Grade Micronized) was used as gas sensing
channel material. Among the different semiconducting transition metal dichalcogenides,
we selected WS2 as it yielded films with the lower electrical resistance facilitating the
electrical read-out of the fabricated devices. Graphite pencil (Madrid, Spain) (4B, Faber
Castell) was employed to pattern graphite-based electrical leads (it has ~80% of graphite
content [54]) to connect the WS2 channel to the readout electronics.

2.2. Sensor Fabrication

The steps for the gas sensor fabrication are depicted in Figure 1. First, the outline of
the sensitive layer channel and electrodes were printed on the paper substrate (Figure 1a).
Then, a stencil mask (made of Nitto SPV 224 tape) delimited the sensitive area (Figure 1b).
Micronized WS2 powder was rubbed against the unmasked paper substrate with a cotton
swab (Figure 1c). The depositing process mimics the action of drawing/writing with a
pencil on paper, where the friction forces between the van der Waals materials and paper
cleaves the van der Waals crystals, leading to a network of interconnected platelets. The
powder was abraded until a continuous film was reached. Then, the excess powder and the
stencil mask were removed (Figure 1d). In the last process step, graphite electrodes were
deposited on top of the sensitive material by drawing directly with a high-graphite content
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pencil (Figure 1e). These electrodes were contacted with spring-loaded probes (pogo pins)
integrated inside the test chamber. Figure 1f shows a picture of the final device.
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deionized water (Figure 2). 

Figure 1. Process sequence for the sensor fabrication. (a) The outline of the device is printed with a
standard office printer using standard copy paper. (b) Nitto SPV 224 tape is used to mask around
the active area of the device. (c) An active film of WS2 nanoplatelets is deposited by mechanical
abrasion of micronized WS2 powder against the paper surface. (d) The mask is removed, showing
the patterned WS2 film on paper active area of the device. (e) Graphite electrodes are patterned
by simply filling in, with a 4B graphite pencil, the area between the device outline dotted lines. (f)
Picture of the final fabricated device.

2.3. Material Characterization

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX),
using a FE-SEM, FEI Nova NANOSEM 230 (Hillsboro, OR, USA), were used to characterize
the morphology and the composition of the WS2 films deposited on paper. An electron
energy of 7 keV was employed for imaging and 14 keV for EDX spectroscopy.

2.4. Experimental Setup

The chemoresistive sensor was placed inside a 6.25 mL volume airtight chamber for
its characterization in different reducing and oxidizing atmospheres. Airflow inside the
chamber was set to 100 mL/min, switching between gas sample for 10 min (exposition
time) and synthetic air for 20 min (purge time). Gas cylinders supplied target gases with
appropriate concentrations and balanced with the carrier gas (synthetic air): NO2 (1 ppm),
CO (10 ppm), and NH3 (50 ppm) (all of them from Nippon Gases). Then, the initial sample
concentration was diluted with synthetic air by using a gas mixing unit (GMU, Ray IE,
Cáceres, Spain)to obtain the required exposed concentration. For proper control of the
relative humidity (RH) inside the chamber, a handheld thermohygrometer RS1364 was
used. The temperature was kept at 23 ◦C during the tests, and the required RH was
achieved with a third flow controller that regulates the synthetic air bubbling through
deionized water (Figure 2).

The sensor was kept at room temperature while variations of the resistance over time
were recorded with a digital multimeter (Keithley 2001). The experiment control and real
time data acquisition was implemented with a PC using an in-house custom-made software
developed with LabVIEW. The response of the sensor was calculated with the following
equation:

Response = ∆R/R0 = (R − R0)/R0 (1)

where R is the electrical resistance for the sensor in the tested gas and R0 is the resistance
of the sensor in the air.



Nanomaterials 2022, 12, 1213 4 of 12Nanomaterials 2022, 12, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 2. Experimental setup used to measure different gases concentrations with the WS2-on-paper 
sensor in real time. 

The sensor was kept at room temperature while variations of the resistance over time 
were recorded with a digital multimeter (Keithley 2001). The experiment control and real 
time data acquisition was implemented with a PC using an in-house custom-made soft-
ware developed with LabVIEW. The response of the sensor was calculated with the fol-
lowing equation: 

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 = ∆𝑅/𝑅 = (𝑅 − 𝑅)/𝑅 (1) 

where 𝑅 is the electrical resistance for the sensor in the tested gas and 𝑅 is the resistance 
of the sensor in the air. 

3. Results 
3.1. Structural and Morphological Characterization 

Figure 3a shows SEM image of the cross-section of the WS2 flakes forming the mi-
cronized WS2 powder. The flakes are initially 5–10 µm in lateral size and 50–150 nm thick. 
Figure 3b shows a SEM image of the porous microscopic structure of the WS2 film depos-
ited onto the paper substrate, formed by interconnected crystalline WS2 platelets, ensuring 
a very large effective surface area of the device. During the abrasion process, the WS2 
flakes are cleaved, reducing their lateral dimensions to 1–5 µm and their thickness to sub-
50 nm. Figure 3c shows a low magnification SEM image of a WS2 film obtained after its 
deposition on the paper substrate. The bare paper has fibrous-like structures arising from 
the cellulose fibers. The abrasion-induced deposition method yielded a continuous film 
of packed WS2 platelets covering the fibers. The bare paper and WS2 film can be easily 
distinguished because of their different contrast under SEM inspection. Figure 3d shows 
a SEM image of the sensitive area/electrode interface where it can be observed a sizable 
change in contrast due to the difference in electrical conductivity between the WS2 film 
and the WS2 film covered with graphite. The chemical composition of the film was char-
acterized by energy dispersive X-ray (EDX) spectroscopy. Apart from the prominent W 
and S peaks, expected from the WS2 film, the spectrum had peaks associated with the 
presence of C and O, arising from the paper substrate. The spectrum also showed a Ca 
peak, attributed to the presence of calcium carbonate, a filler usually added to paper pulp 
to achieve a brighter white color (Figure 3e). 
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sensor in real time.

3. Results
3.1. Structural and Morphological Characterization

Figure 3a shows SEM image of the cross-section of the WS2 flakes forming the mi-
cronized WS2 powder. The flakes are initially 5–10 µm in lateral size and 50–150 nm thick.
Figure 3b shows a SEM image of the porous microscopic structure of the WS2 film deposited
onto the paper substrate, formed by interconnected crystalline WS2 platelets, ensuring a
very large effective surface area of the device. During the abrasion process, the WS2 flakes
are cleaved, reducing their lateral dimensions to 1–5 µm and their thickness to sub-50 nm.
Figure 3c shows a low magnification SEM image of a WS2 film obtained after its deposition
on the paper substrate. The bare paper has fibrous-like structures arising from the cellulose
fibers. The abrasion-induced deposition method yielded a continuous film of packed WS2
platelets covering the fibers. The bare paper and WS2 film can be easily distinguished
because of their different contrast under SEM inspection. Figure 3d shows a SEM image of
the sensitive area/electrode interface where it can be observed a sizable change in contrast
due to the difference in electrical conductivity between the WS2 film and the WS2 film
covered with graphite. The chemical composition of the film was characterized by energy
dispersive X-ray (EDX) spectroscopy. Apart from the prominent W and S peaks, expected
from the WS2 film, the spectrum had peaks associated with the presence of C and O, arising
from the paper substrate. The spectrum also showed a Ca peak, attributed to the presence
of calcium carbonate, a filler usually added to paper pulp to achieve a brighter white color
(Figure 3e).

3.2. Electrical Characterization

A thorough characterization of the electrical properties of abrasion-induced deposited
WS2 films on copy paper can be found in Ref [41]. Briefly, the resistivity of the films,
determined through current vs. voltage measurements in transfer length configuration,
ranges from ~360 Ω·m to ~530 Ω·m and electric field effect measurements demonstrated
the p-type character of the WS2 film. Additionally, in the mentioned reference, 118 devices
were developed to study the reproducibility, showing a low dispersion taking into account
the nature of the films: a random network of interconnected platelets where percolation
transport is expected.

The sensor was kept at air atmosphere, and after a few minutes, the calculated root-
mean square (RMS) noise level was approximately 0.01% for the sensor. Thanks to the
electrical continuity of the WS2 film, the device operates with low noise that is a conse-
quence of the dry deposition method, and a good adhesion between sensitive material and
paper fibers.
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Figure 3. SEM images of (a) the cross-section of the WS2 flakes deposited on paper by abrasion
technique, (b) the network of WS2 flakes deposited on paper after abrasion-induced deposition, (c)
the interface between bare paper and the deposited WS2 film, and (d) the border between the surface
of the WS2 sensing area and the WS2 covered by the graphite electrode. (e) EDX spectrum for the
micronized WS2 deposited on the paper.

3.3. Gas Sensor Characterization

To characterize the performance of this sensor, its sensitivity, and response time,
we studied the changes in resistance upon cyclic exposition and purge processes with
NO2 at various concentrations ranges (0.2 ppm–0.8 ppm, see Figure 4a). The gas sensing
mechanism is attributed to the surface reactions between the p-type WS2 platelets and
gas molecules. In the case of a p-type semiconductor in an oxidant environment (NO2),
the concentration of electrons on the surface decreases (the number of holes increases)
and, consequently, the resistance of the WS2 film decreases (Figure 4a). The sensor device
showed a fast recovery with a low baseline drift of 0.6% at 0.8 ppm of NO2. Therefore, an
automatic baseline subtraction method based on linear correction for measurements before
exposition and in the final of the purge time was implemented.

In most real-life applications, the target gas is in a complex environment surrounded
by several gases at different concentrations, requiring sensors with high sensitivity and
selectivity to discriminate and classify the target gas. Important interfering gases, in the
above applications, are carbon monoxide (CO) and ammonia (NH3) [55,56]. Therefore, gas
sensors with negligible interference between reducing and oxidizing environments, i.e., a
high absolute selectivity, are highly desirable to achieve a more reliable signal interpretation.
To test the selectivity of the WS2 on paper NO2 sensor, we have subjected the device to
cyclic exposition and purge processes with CO and NH3 at various concentrations ranges
(1.5 ppm–8 ppm for CO and 10 ppm–30 ppm for NH3, see Figure 4b,c). Upon exposure to
CO and NH3, the resistance increases as expected for a p-type semiconductor, because the
generated electrons recombine with holes. The gas test showed the sensor has a remarkably
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higher sensitivity towards NO2 (42% resistance change at 0.8 ppm) than NH3 and CO,
whose responses were 1.8% (obtained at 30 ppm) and 1.5% (obtained at 8 ppm), respectively
(see Figure 5a,b). This can be justified by the adsorption kinetics of gas molecules on the
sensitive material. Additionally, the high sensitivity and selectivity to NO2 is consistent
with results of density functional theory calculation in Ref. [32]. Interestingly, this article
explains that the chemically reactive edge sites of WS2 served as highly favorable active
sites for direct interaction with target NO2 gas molecules. This is consistent with the fact
that abrasion-induced is an effective method to generate numerous edge sites in deposited
WS2 nanoplatelets on paper, since the technique induces fracturing, tearing, and peeling
off from substrates.
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Accordingly, the response speed of the device was studied. We determined the
response time parameter τ90, defined as the time necessary to reach approximately 90%
of the response when the sensor is subjected to an abrupt change in atmosphere. The τ90
values obtained were NO2 5.2 min at 0.8 ppm, NH3 8.8 min at 30 ppm, and CO 9.6 min at
8 ppm (Figure 5c). In comparison, the paper-based sensor showed the shortest response
time for NO2 that nearly achieved the equilibrium. In contrast, CO and NH3 responses
had not yet approached an equilibrium, resulting in a high sensitivity NO2 gas sensor with
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insignificant NH3/CO-interference. Therefore, this very high selectivity with respect to
potential interfering gases of the sensor is highly advantageous to be used for gas sensing
applications.
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The structural continuity of the micronized WS2 particles deposited by abrasion
provides higher electrical conductivity toward a lower limit of detection (LOD) compared
to sensors fabricated by other methods, such as drop-casting [26]. From the response for
0.8 ppm of NO2, a theoretically achievable LOD of around 2 ppb was calculated, which is
equivalent to a signal-to-noise ratio (SNR) value of three.

In order to assess the stability of these devices upon environmental degradation, we
performed a new set of measurements half a year after its fabrication (the sensor was stored
under ambient conditions during that time). Thereafter, the response for 0.8 ppm of NO2
was slightly decreased to 31%, increasing the LOD around 3 ppb (Figure 6). In particular,
the decrease of the gas response is small between measurements for a half year interval,
which demonstrates that the paper-based sensor has a slow degradation, maintaining a
high response over time. The effect of relative humidity on the paper-based sensor was
tested at 23 ◦C with 25% RH and it responded efficiently to humidity, obtaining a maximum
response of 114% (Figure 7a). Cross-sensitivity measurements were carried out to assess the
influence of RH on the sensor response to NO2. Figure 7b illustrates the effect of 0.8 ppm
of NO2 detection in an environment with a RH of 25% with a sensor response of ~44%.

The experimental responses of NO2 over time and under humid conditions were
compared for 0.8 ppm (Figure 8a1–a4). In the days following device manufacture, the
sensor had a high response close to 42% with an operating resistance of ~4 MΩ. Then, after
half a year where the sensor was stored in ambient conditions, the resistance increased to
~22 MΩ, decreasing the response to ~31%, which was attributed to the effects of sensor
poisoning by gases surrounding in ambient during the half a year period. However, a
positive effect of humid conditions (25% RH at 23 ◦C) is that at the same gas concentration
the sensor response increased to 44%, simultaneously the resistance scaled up ~142 MΩ.
The improved response to NO2 with humidity can be justified by the intrinsic and induced
dipole moments of the molecules and their intermolecular charge transfer [57]. Finally,
there was a practically total regeneration of the sensor after humidity exposition was
obtained for dry synthetic air, and the sensor showed a response of ~30% for a resistance
operation of ~42 MΩ (Figure 8b,c). Therefore, the sensor performance is a huge benefit
since it can work on a large range of tests for multidisciplinary applications carried out in
humid conditions with sensitivity gain.
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4. Conclusions

In summary, we fabricated and characterized a disposable NO2 sensor based on a
p-type WS2 film on standard paper. The sensing film was deposited by a low-cost and easy
to implement abrasion-induced method, establishing a nanostructured sensitive layer by
exfoliation of micronized WS2 particles and an electrical connection among flakes. The
structure of the WS2 sensing film was characterized by using SEM, which showed rough
and porous film formed by interconnected WS2 flakes. The sensor showed excellent sensing
properties at room temperature with a response higher than 42% (31% half a year later) at
0.8 ppm NO2 and with a significant LOD of around 2 ppb (3 ppb half a year later). The
relative humidity of 25% at 23 ◦C has a beneficial impact. The result indicates the high
sensitivity, selectivity, and repeatability of the presented sensor towards sub-ppm level of
NO2 gas, which makes it a promising candidate for monitoring of NO2 sensing.
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