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Visceral leishmaniasis (VL), also known as kala-azar, is the most dangerous form of
leishmaniasis. Currently no effective vaccine is available for clinical use. Since the
pathogenicity of different Leishmania strains is inconsistent, the differentially expressed
proteins in Leishmania strains may play an important role as virulence factors in
pathogenesis. Therefore, effective vaccine candidate targets may exist in the
differentially expressed proteins. In this study, we used differential proteomics analysis
to find the differentially expressed proteins in two Leishmania donovani strains, and
combined with immunoinformatics analysis to find new vaccine candidates. The
differentially expressed proteins from L. DD8 (low virulent) and L. 9044 (virulent) strains
were analyzed by LC-MS/MS, and preliminarily screened by antigenicity, allergenicity and
homology evaluation. The binding peptides of MHC II, IFN-g and MHC I from differentially
expressed proteins were then predicted and calculated for the second screening. IFN-g/
IL-10 ratios and conserved domain prediction were performed to choose more desirable
differentially expressed proteins. Finally, the 3D structures of three vaccine candidate
proteins were produced and submitted for molecular dynamics simulation and molecular
docking interaction with TLR4/MD2. The results showed that 396 differentially expressed
proteins were identified by LC-MS/MS, and 155 differentially expressed proteins were
selected through antigenicity, allergenicity and homology evaluation. Finally, 16 proteins
whose percentages of MHC II, IFN-g and MHC I binding peptides were greater than those
of control groups (TSA, LmSTI1, LeIF, Leish-111f) were considered to be suitable vaccine
candidates. Among the 16 candidates, amino acid permease, amastin-like protein and the
hypothetical protein (XP_003865405.1) simultaneously had the large ratios of IFN-g/IL-10
and high percentages of MHC II, IFN-g and MHC I, which should be focused on. In
conclusion, our comprehensive work provided a methodological basis to screen new
vaccine candidates for a better intervention against VL and associated diseases.
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INTRODUCTION

Visceral leishmaniasis (VL), the most dangerous form of
leishmaniasis, is mainly characterized by irregular fever,
hepatosplenomegaly, and anemia, which is fatal without proper
treatment. Leishmania donovani (L. donovani) and Leishmania
infantum (L. infantum) are causative agents of VL and transmit
to humans and vertebrates with sand flies. At present, it was
reported by World Health Organization (WHO) that there were
at least 50,000 to 90,000 new cases of VL occurred annually
globally and more than 90% of new cases in 2020 were found in
Brazil, China, Ethiopia, India, and so on (1). Thus, leishmaniasis
is the second vital vector-borne protozoal disease after malaria
and more measures should be taken to control it (2). Drugs
available for VL, are associated with toxicity, high cost, and drug
resistance (3–5). Most individuals recovering from VL develop
immune protection against leishmania and become resistant to
later clinical reinfection for a long time, indicating that control of
the disease by vaccine is a viable approach (6, 7). However, no
licensed vaccines are currently available for clinical use to
prevent the infection by Leishmania species. Hence, there is an
urgent need to develop an effective vaccine.

Proteomics was applied to evaluate protein expression in
leishmania and offered the possibility of virulence, vaccine
candidate, diagnostic markers, and immunotherapeutic target
recognition (8). The proteomic studies were performed in
Leishmania to evaluate the protein expression of different
stages and species (9–11). Proteins contributing to the
infectivity should be vital because they are considered as
potential vaccine candidates and drug targets against the
disease (12). The differentially expressed proteins in leishmania
from different stages or species were identified to gain insight
into the mechanisms supporting survival, which led to the
identification of novel vaccine candidates and therapeutic
targets (8, 13, 14). For example, Fakhry et al. found that more
than 62 differentially expressed proteins from Leishmania
different stages were detected. Among them, two highly
expressed proteins (isocitrate dehydrogenase and triosepho-
sphate isomerase) in amastigote might act as virulence factors
because they respectively involved with Glucose metabolism
pathways and the processes of NADPH and a-ketoglutarate
production to support parasitic intracellular survival, which
permitted the possibi l i ty of new vaccine and drug
development (13).

Reverse vaccinology is the technology employed for new
antigen identifications (15, 16). It analyzes amino acid
sequences from open reading frames computationally. Proteins
homologous to humans are abandoned, and the rest are
predicted for immunogenicity (17). With the rapid
development of bioinformatics, a series of feasible methods
have been used in reverse vaccinology. It is prevalent that
amino acid sequences are subjected to the predictions of helper
T lymphocyte, cytotoxic T lymphocyte, and B cell epitopes,
which saves lots of time and cost for vaccine research (18).
Through the prediction of the epitope, many studies usually
combined plenty of epitopes from different target proteins to
construct multi-epitope vaccines, such as COVID-19,
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Leishmania, and Schistosoma (2, 19, 20). However, few studies
have used bioinformatics to discover novel proteins of
vaccine potential.

The greater richness the T cell epitopes contained within a
protein, the more possibility it will induce an immune response
(21). In our present research, based on differential proteomics
and bioinformatics, reverse vaccinology was conducted for new
antigens with rich T cell epitopes from Leishmania. The
differentially expressed proteins of L. 9044 (virulent) and L.
DD8 (low virulent) strains of L. donovani were analyzed to
find new desirable vaccine candidates. These proteins were
examined to remove the proteins with antigenic index< 0.5,
high allergenicity, and the similarity to humans and mice. The
remaining differentially expressed proteins were subjected to
predict MHC II, IFN-g, and MHC I epitopes and calculated
the percentages of MHC II, IFN-g, and MHC I binding peptides.
LeIF (the Leishmania elongation initiation factor), TSA (Thiol-
specific antioxidant), LmSTI1 (Leishmania major homologue to
eukaryotic stress-inducible protein), and Leish-111f composed of
LeIF, TSA, and LmSTI-1 were employed as control groups (22–
25). Differentially expressed proteins with higher percentages of
MHC II, IFN-g, and MHC I binding peptides than those of
control groups were selected as the proteins suitable for vaccine
candidate. In addition, the ratios of IFN-g/IL-10 and conserved
domains were evaluated in silico. According to those results,
vaccine candidates were selected for further analyses including
tertiary structure, molecular docking, and molecular
dynamic simulation.
MATERIALS AND METHODS

Parasites and Animals
Three eight-week-old BALB/c mice were prepared from Dassy
experimental animals Co., Ltd (Chengdu, China). L. DD8
(MHOM/IN/80/DD8) and L. 9044 (MHOM/CN/90/9044) were
cultured in M199 (HyClone, USA) medium with 10% fetal
bovine serum (FBS, Gibco, USA), antibiotics (100 U/ml
penicillin and 100 mg/ml streptomycin) at 22°C. For
experiments, all BALB/c mice were sacrificed by intraperitoneal
injections of pentobarbital sodium and cervical dislocation.

Parasitic Infection In Vitro
To confirm the difference between L. DD8 and L. 9044 strains in
resistance to immune clearance, Three BALB/c mice were
sacrificed for peritoneal macrophages following the description
above. Ice-cold RPMI 1640 medium was injected into the
peritoneal cavity for 15 min to gain the peritoneal
macrophages. The cells were then cultured with RPMI 1640
containing 10% FBS in 12-well plates at 37°C in 5% CO2. After 8
hours, the cells were washed with PBS to remove non-adherent
cells and the adherent cells were prepared for infected
experiments. To determine the virulent differences between L.
9044 and L. DD8, promastigotes of L. 9044 and L. DD8 were
respectively co-cultured with peritoneal macrophages at a ratio
of 10:1 (promastigotes to cells), and the parasites which not
phagocytized by peritoneal macrophages were washed away with
June 2022 | Volume 13 | Article 902066
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PBS at 6 h. Subsequently, the cells were stained by Wright’s
staining for the evaluation of parasitic burdens at the 6, 12, 18,
and 24 h. The number of parasites per 100 cells was counted
under light microscopes using 1000 power magnification.

Differentially Expressed Proteins
Generation and Analysis
The protein data of L. donovani 9044 and DD8 strains was
generated by using liquid chromatography-mass spectrometry/
mass spectrometry (LC-MS/MS) in our previous studies (26).
Proteomic data was not employed for immunoinformatics
analysis in previous studies and it can be retrieved from
ProteomeXchange Consortium via the accession number
PXD017089. In brief, L. 9044 and L. DD8 were cultured and
collected to incubate in lysis buffer (8 M urea and 1% protease
inhibitor cocktail) at 4°C for 3 min. Lysis samples were sonicated
on ice three times using a high-intensity ultrasonic processor
(Scientz, Ningbo, China) and the supernatant was collected by
centrifugation for an insolution reduction, alkylation, and
digestion approach. The processed samples were dissolved in
1.0% (v/v) formic acid, and then subjected to liquid
chromatography-mass spectrometry/mass spectrometry (LC-
MS/MS) analysis using a QExactiveTM Plus Orbitrap mass
spectrometer (Thermo Fisher Scientific) coupled online to the
EASY-nLC 1000 UPLC system. Perseus software v.1.6.15.0 was
employed to determine differentially expressed proteins (Fold
change ≥ 3, q-value < 0.01) between L. 9044 and L. DD8.

Prediction of Antigenicity, Allergenicity,
and Human and Mice Homologous
Proteins
Vaxijen (http://www.ddgpharmfac.net/vaxijen/VaxiJen/VaxiJen.
html) is usually applied to evaluate the antigenicity of protein
and has an accuracy from 70 to 89% (27). The differentially
expressed proteins were subjected to Vaxijen for the prediction
of antigenicity and the differentially expressed proteins having a
score of > the threshold value 0.5 were chosen. Allergenic
proteins are involved in hypersensitive reaction and the
proteins similar to hosts may result in autoimmune responses,
which will be harmful to organisms. The proteins that are non-
allergic and heterologous to hosts are appropriate for vaccine
development. The analyses of allergenicity were performed by
the AlgPred server (http://www.imtech.res.in/raghava/algpred)
with a hybrid approach (SVMc+IgE epitope+ARPs BLAST
+MAST). Identifying the similarity of humans and mice
proteins was done with the Blastp alignments. The similar
proteins (sequence identify >30% and expect value (E-value)
<1e-5 cutoff in Blastp alignments) were flited out. Then, the
results selected from this measure were be predicted for their
MHC II, MHC I, and IFN-g epitopes.

MHC II Epitope Prediction
The predictions of MHC II epitope from differentially expressed
proteins were performed using Immune Epitope Database server
(IEDB; http://tools.iedb.org/mhcii/, with 85% accuracy) based on
a recommended method that combined NN-align, SMM-align,
Frontiers in Immunology | www.frontiersin.org 3
CombLib, Sturniolo, and NetMHCIIpan methods. Fifteen mer
length epitopes were predicted for 27 alleles of human leukocyte
antigen II (HLA II) and the epitopes with percentile rank < 10
were considered as binding peptides. The average percentage of
27 alleles binding peptides was calculated as follow:

 the average percentage of 27 allele binding peptides

=
the sum of binding peptides from 27 alleles

No :  of total peptides � 27

LeIF, TSA, LmSTI1, and Leish-111f as control groups were
subjected to IEDB to analyze their average percentage of 27 allele
binding peptides. The differentially expressed proteins, having
higher average percentages of MHC II binding peptides than
those of controls, were considered for further analyses.

IFN-g Inducing Epitopes Prediction
The identification of IFN-g inducing epitopes was performed
using the IFN-g epitope server (http://crdd.osdd.net/raghava/
ifnepitope/, with 81.39% accuracy) (28). The MHC II binding
peptides from differentially expressed proteins were submitted to
this server for the prediction of IFN-g epitope based on the
support vector machine (SVM) hybrid approach. The positive
epitopes were considered as IFN-g inducing peptides and the
percentage of IFN-g inducing peptides was calculated as follow:

the percentage of IFN − g inducing peptides

=
No :  of IFN − g inducing epitopes

No :  of total MHC II binding peptides

LmSTI1, LeIF, TSA, and Leish-111f were employed as control
groups for IFN-g inducing peptide predictions. The differentially
expressed proteins, having higher percentages of IFN-g inducing
peptides than those of controls, were chosen for further analyses.

MHC I Epitope Prediction
NetMHC-4.0 server (https://services.healthtech.dtu.dk/service.
php?NetM HC-4.0, with 86% accuracy) was used to predict
MHC I epitopes from differentially expressed proteins. This
server was founded on artificial neural networks (ANN) with a
sequence alignment method and predicted 9 mer length epitopes
of human leukocyte antigen I (HLA I). Three supertypes (A2, A3,
and B7) covering 90% of the global population were predicted
and the epitopes containing a half-maximal inhibitory
concentration (IC50) < 500 nm were recognized as binding
peptides (29). The average percentage of three MHC I
supertype binding peptides was calculated as follows:

the average percentage of MHC I binding peptides

=
the sum of binding peptides from three supertypes

No :  of total peptides � 3

LeIF, LmSTI1, TSA, and Leish-111f were employed as control
groups for MHC I binding peptide predictions. The differentially
expressed proteins, having higher percentages of MHC I binding
June 2022 | Volume 13 | Article 902066
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peptides than those of controls , were selected for
further analyses.

The Evaluation of the Ratio of IFN-g to
IL-10 and Conserved Domain Analysis
After epitope prediction, the differentially expressed proteins
whose percentages of MHC II, MHC I, and IFN-g epitope were
all more than those of control groups (LmSTI1, LeIF, TSA, and
Leish-111f) were taken to immune response simulations for the
evaluation of the ratio of IFN-g to IL-10. The dynamics simulation
of immune response in silico was conducted using the C-ImmSim
server (https://kraken.iac.rm.cnr.it/C-IMMSIM/). To stimulate
both humoral and cellular responses against selected
differentially expressed proteins, C-ImmSim utilizes a position-
specific scoring matrix (PSSM) for epitope recognition and
machine learning techniques for the simulation of immune
interactions (30). The simulation of this server involves three
distinct anatomical regions: bone marrow, the thymus, and a
tertiary lymphatic organ (31). Three doses of injection were
carried out at intervals of 2 weeks without any adjuvants. Other
parameters were kept defaults. The results of cytokines from C-
ImmSim were analyzed for the ratio of IFN-g to IL-10 on the 16,
30, and 40 days. The results of TGF-b, IL-2, and IL12 from C-
ImmSimwere analyzed on the 8, 16, and 30 days. According to the
measures above, the sequences of selected differentially expressed
proteins were further submitted to NCBI-CDD (https://www.ncbi.
nlm.nih.gov/cdd/) and Pfam (http://pfam.xfam.org/) for
conserved domains prediction.

Evaluation of Physicochemical Properties
ProtParam (https://web.expasy.org/protparam/) was operated to
determine the physicochemical properties. Protein sequences
were submitted to this server to compute parameters, such as
molecular weight, instability index, aliphatic index, half-life,
theoretical pI, and negatively and positively charged residues.

Tertiary Structure Prediction, Refinement,
and Assessment
After the predictions of conserved domains and physicochemical
properties, some differentially expressed proteins were
considered as vaccine candidates. I-TASSER server (http://
zhanglab.ccmb.med.umich.edu/I-TASSER) developed by Yang
Zang lab was utilized to develop the tertiary structure of
vaccine candidates, based on multiple threading alignments
and iterative structural assembly simulations (32). Visual
Molecular Dynamics software was used for the visualization of
3D structures. The tertiary structures from I-TASSER were
subjected to the GalaxyRefine server (http://galaxy.seoklab.org/
cgi-bin/submit.cgi?type=REFINE) for refinement. GalaxyRefine
server outputs five models, of which model 1 is generated by
structural perturbation and models 2-5 are produced by deeper
secondary structural elements and perturbations of the loop (33).
To confirm the effect of refinement, the tertiary structures from
I-TASSER and GalaxyRefine were validated by the SWISS-
MODEL server (https://swissmodel.expasy.org/assess) and
ProSA-web (https://prosa.services.came.sbg.ac.at/prosa.php)
(34). SWISS-MODEL server can calculate a Ramachandran
Frontiers in Immunology | www.frontiersin.org 4
plot that indicates favored backbone dihedral angles for each
amino acid residue in protein structure. ProSA-web can produce
Z-score that indicates overall model quality.

Molecular Docking of Vaccine Candidates
and Toll-Like Receptor 4
To investigate the interaction between vaccine candidates and
Toll-like receptor 4 (TLR 4, PDB ID: 3FXI) with myeloid
differentiation factor 2 (MD2), molecular docking was carried
out using Cluspro 2.0 server (https://cluspro.bu.edu/login.php?
redir/queue.php). This server is a major available tool for
docking and it performs stiff docking by producing thousands
of various conformations, calculating the lowest energy of
clustering via the root mean square deviation (RMSD), and
refining subjected structures (35). Here, TLR4/MD2 acted as a
receptor, and vaccine candidates worked as ligands.

Molecular Dynamics Simulation
The stability of the complexes of TLR4/MD2 and vaccine
candidates was investigated with the help of MD simulation.
MD simulation was performed by Gromacs 2019.6 software in
CHARMM36 force field and solvated system (TIP3P water and
Na+ as neutralizing counter ions). LINCS algorithm was used to
constrain Covalent bonds involving hydrogen atoms and
electrostatic interactions were treated with particle-mesh Ewald
employing a real-space cutoff of 10 Å. To avoid steric clashes, the
steepest descent algorithm approach was used for energy
minimization. During the equilibration phase (100ps), MD
simulation was performed for 50ns in 300K temperature and
1 bar pressure, and the stability of complexes was analyzed in
terms of root mean square deviation (RMSD) and root mean
square fluctuation (RMSF) (19, 30).

Codon Optimization and In Silico Cloning
To make sure the expression of vaccine candidates in Ecoil cells,
the reverse translation and codon optimization were carried out
using the JCAT server (http://wwwjcat.de/) (2, 19). This server
provides the results including codon optimization, codon
adaptive index (CAI), and GC content. The cDNA sequences
of vaccine candidates with XhoI and BamHI restriction sites were
inserted into the pET32a vector for further experiments.

Statistical Analysis
Statistical analyses were performed by IBM SPSS Statistics 22
version. The differences were evaluated using Student’s t-test,
and the significant difference was designed as asterisks (*P<0.05,
**P<0.01, ***P<0.001).
RESULTS

Parasitic Infection In Vitro
To confirm the difference between L. DD8 and L. 9044 in
resistance to immune clearance, peritoneal macrophages were
respectively co-cultured with promastigotes (L. DD8 and L.
9044) and were stained by Wright’s staining for the evaluation
of parasitic load (Figure 1 and Supplementary Table 1). Parasite
June 2022 | Volume 13 | Article 902066
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burdens per 100 cells were estimated at 6, 12, 18, and 24 h post-
infection. The loads of parasite (per 100 cells) of L. DD8 were
more than those of L. 9044 at 6 h, but the burdens of L. DD8
strain were less than those of L. 9044 at 12 h, 18, and 24 h. From 6
to 12 h and 12 to 18h, the parasite reductions from L. DD8 were
significantly more than those of L. 9044 (Figure 1A). From the
results of cellular stained by Wright’s staining (Figure 1B), the
burdens of L. DD8 were kept less than those of L. 9044 at 12, 18,
and 24 h.
Frontiers in Immunology | www.frontiersin.org 5
Differentially Expressed Proteins Analysis
There were 396 differentially expressed proteins between L. DD8
and L. 9044 (Figures 2A, B) (Supplementary Table 2).
Furthermore, L. 9044 strains had 381 down-regulated proteins
and 15 up-regulated proteins compared with L. DD8. This
suggests that there are great differences in protein expression
patterns between L. DD8 and L. 9044. Some of these differentially
expressed proteins may enable L. 9044 with more virulence and
act as antigenic proteins in Leishmania donovani.
A

B

FIGURE 1 | Parasite burdens of L. DD8 and L. 9044. Peritoneal macrophages were respectively infected with promastigotes (L. DD8 and L. 9044). The cells were
stained by Wright’s staining for the evaluation of parasite burdens at 6, 12, 18, and 24 h. (A) Parasites were counted per 100 cells under 1000 power magnification.
The number of parasites inside cells at each time point were presented and the ratio of burden reduction was calculated. (B) The cells were stained by Wright’s
staining at 6, 12, 18, and 24 h, and parasites were marked using arrows. Statistical analyses were performed by IBM SPSS Statistics 22 with Student’s t-test, and
the significant difference was designed as asterisks (*P<0.05, **P<0.01).
June 2022 | Volume 13 | Article 902066
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Prediction of Antigenicity, Allergenicity, and
Human and Mice Homologous Proteins
Through the analysis of differentially expressed proteins, 396
proteins were chosen. As shown in Figure 2C, the antigenicity,
allergenicity, and human and mouse dissimilarity of 396
differentially expressed proteins were respectively predicted.
The 266 proteins were owning antigenic indexes > 0.5, and 318
proteins were not allergenic. After the blastp of sequence, the
proteins dissimilar to human and mouse were 261 and 271,
respectively. Differentially expressed Proteins that were
simultaneously included in the analysis results of antigen
index, allergen, and blastp were 155 and selected for epitope
prediction (Supplementary Table 3).

MHC II, IFN-g, and MHC I Epitope Prediction
The 155 differentially expressed proteins along with control
groups (LeIF, LmSTI1, TSA, and Leish-111f) were employed to
Frontiers in Immunology | www.frontiersin.org 6
predict MHC II, IFN-g, and MHC I epitope respectively.
Meanwhile, the percentages of binding peptides were ranked
(Figure 3A). In MHC II epitope prediction, the average
percentage of 27 alleles binding peptides of LeIF was 8.8%
and more than those of the other three control groups (TSA
7.3%, Leish-111f 7.0%, and LmSTI1 6.6%). The percentages
(from 8.9% to 17.3%) of 36 differentially expressed proteins
were more than that of LeIF. These proteins ranked superior
to LeIF. In IFN-g epitope prediction, LeIF (51.4%) had the
highest percentage in control groups (TSA 36%, Leish-111f
42.7% and LmSTI1 41.7%). Seventy-five differentially expressed
proteins were having percentages from 51.6% to 80.5% and
ranked superior to LeIF (51.4%). As for MHC I epitope
prediction, the average percentage of TSA was 2.3%, ranking
highest in control groups at 47th (LeIF 2.0%, Leish-111f
1.9%, and LmSTI1 1.8%). The average percentages of 46
differentially expressed proteins (from 2.3% to 7.9%) were
A B

C

FIGURE 2 | The Differentially expressed proteins analysis between L. DD8 and L. 9044 and the prediction of antigenicity, allergenicity, and human and mouse
homologous proteins. (A) Volcanic plot map of differentially expressed proteins of L. 9044 vs L. DD8. (B) Heatmap of differentially expressed proteins of L. 9044 vs
L. DD8. (C) a: The number of differentially expressed proteins having antigenic indexes > 0.5 was 266. b: The number of differentially expressed proteins that were
not allergenic was 318. c: The number of differentially expressed proteins dissimilar to human proteins was 261. d: The number of differentially expressed proteins
dissimilar to mouse proteins was 271.
June 2022 | Volume 13 | Article 902066
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greater than TSA and ranked higher than it. Based on the above
results, there were 16 differentially expressed proteins of which
percentages of MHC II, IFN-g, and MHC I epitopes prediction
were all greater than those in the control groups (Figure 3B).
These 16 proteins were suitable for vaccine candidates and taken
Frontiers in Immunology | www.frontiersin.org 7
for the next analysis. The raw dates of epitope prediction please
refer to Supplementary Table 4-1, 4-2, 4-3 (Please note the
Supplementary Material Section) for MHC II prediction,
Supplementary Table 5-1, 5-2, 5-3 for IFN-g prediction,
Supplementary Table 6 for MHC I prediction.
A

B

FIGURE 3 | MHC II, IFN-g, and MHC I epitope prediction. (A) According to the percentage of MHC II, IFN-g, and MHC I binding peptides, 155 differentially
expressed proteins and control groups (LeIF in red color, LmSTI1 in purple, Leish-111f in green color, and TSA in yellow color) were ranked respectively. (B) The
percentages of MHC II, IFN-g, and MHC I binding peptides were analyzed together to rank the 155 differentially expressed proteins and the results were represented
as 3D scatter diagram. The 155 spheres were representative of 155 differentially expressed proteins. The 16 red spheres stranded for 16 differentially expressed
proteins of which percentages of MHC II, IFN-g, and MHC I epitopes prediction were all greater than those in the control groups (yellow sphere). The differentially
expressed proteins which failed to be equipped with all the percentages greater than those of the control groups were marked as black. The plots on planes (MHC
II-MHC I and MHC II-IFN-g binding peptide percentage axis) were the projection of spheres.
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The Evaluation of the Ratio of IFN-g to
IL-10 and Conserved Domain Prediction
To determine the type of immune response, 16 differentially
expressed proteins were applied to C-IMMSIM for the
evaluation of ratio of IFN-g to IL-10 on 16, 30, and 40
days (Figure 4A). TGF-b, IL-12, and IL-2 were also analyzed by
C-IMMSIM (Supplementary Figure 1) and the raw results of
cytokine predicted by C-IMMSIM please refer to Supplementary
Frontiers in Immunology | www.frontiersin.org 8
Figure 2. IFN-g/IL-10 value from every protein increased over
time and was the highest at 40 days. LeIF, XP_003862806.1, and
XP_003865405.1 had a greater value than other differentially
expressed proteins and control groups on 16, 30 and 40 days.
The values of IFN-g/IL-10 and the percentages of MHC II, IFN-g,
and MHC I epitope were combined for analysis to determine the
differentially expressed proteins not only full of MHC II, IFN-g,
and MHC I epitopes but also possessing a better ability to cause
A

C

D

B

FIGURE 4 | The value of IFN-g/IL-10 and conserved domain. (A) The values of IFN-g and IL-10 from 16 differentially expressed proteins were predicted using C-
IMMSIM to evaluate the ratio of IFN-g to IL-10 on 16, 30, and 40 days. (B) Combining with the value of IFN-g/IL-10 and the percentage of MHC II, IFN-g, and
MHC I epitopes, 16 differentially expressed proteins were analyzed and represented as a heat map. (C) Amino acid permease (XP_003392714.1), amastin-like
protein (XP_003862806.1), the hypothetical protein (XP_003865405.1) and papLe22 protein (XP_001467102.1) were predicted their conserved domain. Amino
acid permease (residue 99-696), amastin-like protein (residue 37-206), the hypothetical protein (residue 37-690), and papLe22 protein (residue 20-189) shared a
similar conserved domain with SLC5-6-like sbd family, amastin family, major facilitator superfamily (MFS) and reticulon family, respectively. (D) Refined 3D
structures of vaccine candidates (alpha helix: purple; extended stands: yellow; beta turn: cyan; random coil: white).
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the higher ratios of IFN-g/IL-10. According to Figure 4B, 16
differentially expressed proteins along with the values of IFN-g/IL-
10 and the percentages of MHC II, IFN-g, and MHC I binding
peptide were analyzed using heat map clustering. Differentially
expressed proteins, amastin-like surface protein-like protein
(amastin-like protein) (XP_003862806.1), a hypothetical protein
(XP_003865405.1), 22 kDa potentially aggravating protein
(papLe22) (XP_001467102.1) and amino acid permease
(XP_003392714.1), performed well in the percentages of MHC
II, IFN-g, and MHC I binding peptide and the values of IFN-g/IL-
10 (16th, 30th and 40th). These four proteins formed one cluster at
the top of the heat map. XP_003862806.1 and XP_003865405.1
had the lowest TGF-b levels on 8 and 16 days. XP_001467102.1
and XP_003392714.1 had low levels of TGF-b on 8, 16, and 30
days (Supplementary Figure 1A). On 16 days, these four proteins
had high levels of IL-2 and IL-12, and had more IL-2 than the
other eleven proteins (including TSA, LmSTI1, and Leish-111f)
and more IL-12 than the other twelve proteins (including TSA,
LmSTI1, and Leish-111f) (Supplementary Figures 1B, C). These
four proteins were more desirable proteins as vaccine, which
contributed to predicting the conserved domains of these four
proteins. Amino acid permease, amastin-like protein, the
hypothetical protein (XP_003865405.1), and papLe22 protein
shared similar motifs with the SLC5-6-like sbd family, amastin
family, major facilitator superfamily (MFS), and reticulon family,
respectively (Figure 4C). SLC5-6-like sbd family and MFS
participate in transportation for metabolism (36–38). The
amastin family is responsible for interaction with hosts and
invasion (39). The reticulon family is involved in protein
synthesis. Amino acid permease, amastin-like protein, and the
hypothetical protein (XP_003865405.1) were employed as
vaccine candidates.

Evaluation of Physicochemical Properties
With the help of ProtParam, three vaccine candidates [amino
acid permease, amastin-like protein, and the hypothetical protein
(XP_003865405.1)] were computed for their physicochemical
properties. Amino acid permease contained 605 amino acids,
65.5KDa molecular weight, 7.15 theoretical pI, and 42 negatively
and positively charged residues. Its estimated half-lives were 30
hours (mammalian reticulocytes, in vitro), >20 hours (yeast, in
vivo), and >10 hours (Escherichia coli, in vivo). The instability
index (II) was calculated as 35.97, indicating that it is a stable
protein (value < 40 is classified as stability). The aliphatic index
was 95.92 and showed more thermostability (the higher aliphatic
index, the more stable in a broad range of temperature.) (19). As
for amastin-like protein, it contained 222 amino acids, 24.5 KDa
molecular weight, 6.41 theoretical pI, 18 negatively and 17
positively charged residues. Its estimated half-lives were 30
hours (mammalian reticulocytes, in vitro), >20 hours (yeast, in
vivo), and >10 hours (Escherichia coli, in vivo). The instability
index (II) was 32.61, indicating that it is a stable protein. The
aliphatic index was 94.46 and showed more thermostability. The
hypothetical protein (XP_003865405.1) had 607 amino acids,
66.2 KDa molecular weight, 8.52 theoretical pI, 42 negatively,
and 48 positively charged residues. Its estimated half-lives were
30 hours (mammalian reticulocytes, in vitro), >20 hours (yeast,
Frontiers in Immunology | www.frontiersin.org 9
in vivo), and >10 hours (Escherichia coli, in vivo). The instability
index (II) was 35.07 and suggested it is a stable protein. The
aliphatic index was 111.55, indicating more thermostability.

Tertiary Structure Prediction, Refinement,
and Assessment
Tertiary structure models of amino acid permease, amastin-like
protein, and the hypothetical protein (XP_003865405.1) were
generated with the help of I-TASSER. To enhance the quality of
the 3D structure, the GalaxyRefine server was employed to refine
the selected initial models and generated five refined models. The
selected refined models were amino acid permease (GDT-HA
0.99, RMSD 0.272, MoProbity 2.159, Clash score 14.1, Poor
rotamers 0.6 and Ramafavored 91.7%), amastin-like protein
(GDT-HA 0.98, RMSD 0.254, MoProbity 2.242, Clash score
17.8, Poor rotamers 0.5 and Ramafavored 91.8%) and the
hypothetical protein (XP_003865405.1) (GDT-HA 0.97, RMSD
0.319, MoProbity 2.453, Clash score 32.5, Poor rotamers 0.6 and
Ramafavored 92.7%). Visualizations of the refined 3D structure
were shown in Figure 4D. Initial and refined models were
subjected to SWISS-MODEL for Ramachandran plot analysis.
More residues of the model in Ramachandran favored region
and less in outlier region indicate desirable models. Before
refinement, Ramachandran plot results from initial models
revealed amino acid permease (70.71% favored region and
11.83% outlier region), amastin-like protein (83.62% favored
region and 6.90% outlier region), and the hypothetical protein
(XP_003865405.1) (71.9% favored region and 14.05% outlier
region) (Figure 5A). Refined models were found that the favored
and outlier regions were 91.21% and 1.49% (amino acid
permease), 90.45% and 2.27% (amastin-like protein) and
92.73% and 1.65% [hypothetical protein (XP_003865405.1)]
(Figure 5C). ProSA-web provides Z-score that indicates overall
model quality. Z-score close to the regions that X-ray and NMR
produced indicates better structure (40). As for amino acid
permease, the Z-scores of initial and refined model were
respectively -1.48 and -2.27. The Z-scores from amastin-like
protein were -1.32 (initial model) and -2.26 (refined model). The
Z-scores of the hypothetical protein (XP_003865405.1) were -0.1
(initial model) and -3.6 (refined model) (Figures 5B, D).
According to the results of the Z-score, the lower values were
closer to the regions of X-ray and NMR.

Molecular Docking of Vaccine Candidates
and Toll-Like Receptor 4
Molecular docking was performed by Cluspro 2.0 server to
investigate the interaction between vaccine candidates and
TLR4/MD2 (PDB ID: 3FXI) (Figure 6). TLR4/MD2 and three
vaccine candidates were respectively defined as receptor and
ligands. Cluspro 2.0 server provides 30 models based on the
number of the cluster with low energy structure. More clusters
in docked complex indicate a better encounter complex (35).
To gain available docked complexes, models with 32 clusters and -
1301 lowest energy (amino acid permease), 58 clusters and -1236.5
lowest energy (amastin-like protein), and 52 clusters and -1232.9
lowest energy [hypothetical protein (XP_003865405.1)] were
taken for molecular dynamics simulation.
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FIGURE 5 | Ramachandran and Z-score plots of initial and refined 3D models. The results of Amastin-like protein, Amino acid permease, and hypothetical protein
(XP_003865405.1) were respectively remarked with (1), (2), and (3). (A) Ramachandran plots of initial models: Amino acid permease showed 70.71% favored region
and 11.83% outlier region; Amastin-like protein had 83.62% favored region and 6.90% outlier region; The hypothetical protein (XP_003865405.1) demonstrated
71.9% favored region and 14.05% outlier region. (B) Z-score plots of initial models: Amino acid permease, amastin-like protein, and the hypothetical protein
(XP_003865405.1) were -1.48, -1.32, and -0.1 value, respectively. (C) Ramachandran plots of refined models: Amino acid permease showed 91.21% favored region
and 1.49% outlier region; Amastin-like protein had 90.45% favored region and 2.27% outlier region; The hypothetical protein (XP_003865405.1) demonstrated
92.73% favored region and 1.65% outlier region. (D) Z-score plots of refined models: Amino acid permease, amastin-like protein, and the hypothetical protein
(XP_003865405.1) were -2.27, -2.26, and -3.6 value, respectively.
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Molecular Dynamics Simulation
Molecular dynamics simulation provides chances to investigate
the stability of docked complex between TLR4/MD2 and vaccine
candidates. After the equilibration phase, MD simulation was
performed for 50 ns in 300K temperature and 1 bar pressure.
Root mean square deviation (RMSD) shows the fluctuation of
the overall structure of the docked complex and root medium
square fluctuation (RMSF) represents the fluctuation of amino
acid from the docked complex. As shown in Figures 7A–C, the
RMSD of amastin-like, amino acid permease, and the
hypothetical protein (XP_003865405.1) complexes had obvious
fluctuation during 0-10 ns simulation. After 10 ns, the RMSD of
amastin-like, amino acid permease, and the hypothetical protein
(XP_003865405.1) complexes were kept at 0.5 nm, 0.6 nm, and
Frontiers in Immunology | www.frontiersin.org 11
0.7nm, indicating their stable conformation. From the results of
the RMSF plot, the RMSF fluctuation of amastin-like complex
appeared at 1500-1800 amino acid, showing high flexibility
(Figure 7E). The residues 0-1500 of the amastin-like complex
had stable RMSF, indicating low flexibility. Amino acid permease
complex had low RMSF value at 0-400 and 700-1000 amino acid,
suggesting these residues had low flexibility (Figure 7D).
Conversely, the residues 400-700 and 1000-2100 of Amino
acid permease complex had greater RMSF value, showing large
flexibility. As for the hypothetical protein (XP_003865405.1)
complex, the residues 0-650, 1100-1400, and 1650-2100 were
significantly flexible because of obvious RMSF fluctuation, and
the rest had stable RMSF fluctuation, suggesting low
flexibility (Figure 7F).
FIGURE 6 | Representation of docked complexes between TLR4/MD2 and vaccine candidates. TLR4 and MD2 were defined as orange and yellow, respectively.
Three vaccine candidates including amino acid protein, amastin-like protein, and the hypothetical protein (XP_003865405.1) were marked in blue.
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Codon Optimization and In Silico Cloning
The reverse translations and codon optimizations of amino acid
permease, amastin-like, and the hypothetical protein
(XP_003865405.1) were performed using the JCAT server to
investigate the stability of expression in Ecoil K12 cells. After
reverse translations and codon optimizations, codon adaptation
index (CAI) and GC content were analyzed. The CAI of amino
acid permease protein was 1.0 which was considered as optimal
expression. Its GC content was 51.81%, lying in the desirable
range (30% to 70%) that is easily expressed in a suitable host (41).
Amastin-like protein had 1.0 CAI and 49.47% GC and the
hypothetical protein (XP_003865405.1) had 1.0 CAI and
50.87% GC. Three vaccine candidates were cloned into pET32a
with XhoI and BamHI restriction sites, using Snapgene
standalone software (Figure 8).
Frontiers in Immunology | www.frontiersin.org 12
DISCUSSION

Almost existing epitope screening methodologies for vaccine
against VL are classical approaches and immunoinformatics.
Classical approaches synthesize overlapping peptides (usually
15-mers) to stimulate T cell clones in vitro and in vivo for
mapping epitopes (42–44). This way requires lots of time and
energy and may neglect some epitopes, which could be saved by
immunoinformatics (42, 45). Based on mathematical algorithms,
immunoinformatics is concerned with computational prediction
of epitopes from proteins and contributes to a new pattern of
vaccine design (42, 46). Then, epitopes predicted by
immunoinformatics are submitted to further experiments in
vitro and in vivo for confirmation. Leishmania antigenic
proteins validated by experiments usually are screened for their
A B

C D

E F

FIGURE 7 | The results of molecular dynamics simulation. (A) Amino acid permease and TLR4/MD2 complex RMSD. (B) Amastin-like protein and TLD4/MD2
complex RMSD. (C) Hypothetical protein (XP_003865405.1) and TLR4/MD2 complex RMSD. (D) Amino acid permease and TLR4/MD2 complex RMSF.
(E) Amastin-like protein and TLD4/MD2 complex RMSF. (F) Hypothetical protein (XP_003865405.1) and TLR4/MD2 complex RMSF.
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epitopes of T and B cells by immunoinformatics (2, 30, 47, 48).
However, this approach is mainly used to construct multi-
epitope vaccines against VL and relies on known antigenic
proteins. It is seldom supplied to discover vaccine potential
from novel proteins. The differentially expressed proteins from
different species (virulent and low virulent) may be associated
with leishmania survival and offer more chances to identify novel
vaccine candidates (8, 13, 14). In our studies, differentially
expressed proteins were analyzed by bioinformatics to select
the proteins with rich epitopes and high IFN-g/IL-10 ratios as
novel protein vaccine candidates.
Frontiers in Immunology | www.frontiersin.org 13
In our previous studies, BALB/c mice were infected with L.
DD8 and L. 9044 for 28 days, and the parasite loads of L. 9044 in
livers and spleens were more than those of L. DD8 (26). Those
results of parasite load from mice were consistent with that of
infection in peritoneal macrophages, suggesting that L. 9044 had
more virulence than L. DD8. The 396 differentially expressed
proteins between L. 9044 (virulent) and L. DD8 (low virulent)
were explored in silico to screen the new vaccine candidates in
our present studies. The 396 differentially expressed proteins
from LC-MS/MS analysis were submitted to analyze their
antigenicity, allergenicity, and human and mouse homologous
FIGURE 8 | In silico cloning. The coding sequences of amino acid permease, amastin-like protein, and the hypothetical protein (XP_003865405.1) were cloned into
the pET32a (+) expression vector and represented in the red region. The inserts were added with XhoI and BamHI restriction sites.
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proteins and then 155 differentially expressed proteins were
selected for MHC II, IFN-g and MHC I binding peptide
prediction. Subsequently, the 16 differentially expressed
proteins suitable for vaccine were selected for the analyses of
IFN-g/IL-10 ratio. Four differentially expressed proteins, having
large ratio of IFN-g/IL-10 ratio and high percentage of MHC II,
IFN-g, and MHC I, were considered as desirable proteins as
vaccine and were taken for conserved domain analysis. Finally,
three differentially expressed proteins, amino acid permease,
amastin-l ike protein, and the hypothetical protein
(XP_003865405.1) were selected as vaccine candidates for
future studies.

Early studies predicted the T cell epitopes of differentially
expressed protein from promastigotes and amastigotes for
vaccine (49). Shubhranshu et al. focused on the promastigote
differentially expressed proteins between avirulent and virulent
strains and screened the protein which may work as a virulence
factor to study its immunogenicity and immunoprotection (50).
Mohammad et al. found that some upregulated proteins from
virulent Leishmania donovani were more capable of restraining
MAPK and PI3K signaling, but some downregulated proteins
also have immune protection and virulence-related properties,
such as 60S acidic ribosomal protein P2 and tryparedoxin
peroxidases (51). In our studies, the differentially expressed
proteins of L. 9044 and L. DD8, including both upregulated
and downregulated proteins, were used to screen ideal
vaccine candidates.

It is acknowledged that parasites can replicate in hosts due to
inactive macrophages. CD4+ Th1 cells are of great significance to
IFN-g and TNF-a secretion and are considered to have a vital
role in parasitic clearance. CD8+ T cells also secret IFN-g and
TNF-a to participate in the resistance to leishmania reinfection,
although some studies showed that they were not essential for the
control of primary infection (52). That Leishmania establishes
intracellular residence makes it possible that humoral immune
response is not as effective as a cellular immune response (43). In
conclusion, Leishmania desirable vaccine candidates should
trigger a strong Th1 immune response where CD4+ and CD8+
T cells recognize the epitopes of MHC I and MHC II and
macrophages activated by IFN-g eliminate parasites. Therefore,
our studies predicted the MHC I, MHC II, and IFN-g epitopes of
differentially expressed protein between L. 9044 and L. DD8.

Four vaccine candidates, LeIF (the Leishmania elongation
initiation factor), TSA (Thiol-specific antioxidant), LmSTI-1
(Leishmania major homologue to eukaryotic stress-inducible
protein), and Leish-111f, have been tested in clinical trials and
showed the desirable immunogenicity and safety in healthy
volunteers, seronegative, and seropositive Leishmania patients
(7). LeIF can stimulate vaccinated splenocytes to produce IFN-g
and promote Th1 immune response, and it gives protection
against L. major because of its T cell epitopes (22). TSA can be
processed through the antigen processing of MHC I and MHC II
pathways. Its DNA vaccine favors the production of IFN-g-
secreting-CD4+ cells and CD8+ cells, which supports the
resistance to Leishmania (23). LmSTI-1 also induces Th1
immune response along with high levels of IFN-g and IgG2a
Frontiers in Immunology | www.frontiersin.org 14
and provides excellent protection against L. major (24). Leish-
111f induces increased CD4+ cells that produce IFN-g, IL-2, and
TNF-a, which confers desirable protection against visceral
leishmaniasis with significant reductions in parasite loads (25).
Those performances of LeIF, TSA, LmSTI-1, and Leish-111f
indicate that there are effective epitopes in these vaccine
candidates to develop the Th1 immune response, such as
MHC I, MHC II, and IFN-g epitopes. In summary, LeIF, TSA,
LmSTI-1, and Leish-111f, the candidates in clinical trials, were
employed as control groups when we analyzed the MHC I, MHC
II, and IFN-g epitopes of differentially expressed proteins.

To further select our vaccine candidates equipped with
characteristics similar to or better than those proteins (control
group: LeIF, TSA, LmSTI-1, and Leish-111f) that have been
shown to induce a protective immune response, sixteen
differentially expressed proteins of which rates of MHC I,
MHC II, and IFN-g epitopes were greater than those of control
groups were chosen in our studies. IFN-g and IL-10 are
respectively Th1 and Th2 immune response signature
cytokines. IFN-g serves as monocyte-activating factor and
boosts the production of pro-inflammatory cytokines, the
expression of MHC II, and antigen presentation (53, 54). IFN-
g inhibits IL-10 production and the expansion of CD4+ Th2 cells,
and it matters enormously to support macrophage activation in
leishmanicidal state (55, 56). It has been reported that the
children with high levels of IFN-g resist L. chagasi infection,
whereas children with low levels of IFN-g are susceptible to VL
(57, 58). IL-10 can suppress production of IFN-g, IL-12, TNF-a,
and IL-6 and downregulate Th1 responses, macrophage
activation and antigen presentation by DC cells (54, 58, 59).
Abundant secretion of IL-10 accompanies with symptomatic VL
but absent in asymptomatic individuals (54). It has been
documented that IL-10 neutralization supports leishmania
parasite clearance (60). IFN-g and IL-10 are used to
demonstrate the levels of Th1 and Th2 immune response by
the ratio of IFN-g/IL-10 (61). Combining IFN-g/IL-10 ratios with
the rates of MHC I, MHC II, and IFN-g epitopes, amino acid
permease, amastin-like surface protein-like protein (amastin-like
protein), the hypothetical protein (XP_003865405.1), and 22
kDa potentially aggravating protein (papLe22) were selected
for further studying. TGF-b can induce Treg cells and suppress
Th1 and Th2 development and some macrophage functions (62).
TGF-b and IL-10 are inhibitory effects on the development of VL
and favor the progress of leishmania (7, 63). IL-12 is secreted
from inflammatory myeloid cells and promotes differentiation of
naive CD4 T cells into IFN-g–producing Th1 cells (64). It is
considered as a vital role that contributes to parasite clearance
(61). IL-2 is an essential cytokine and is required for the survival,
proliferation and differentiation of CD4, CD8 and NK cells (65).
It was reported that mice treated with IL-2 blocking monoclonal
antibodies could not resist the infection of L. donovani, while the
infected mice receiving exogenous IL-2 had reduced parasite
loads, relative with controls (66). Comparing with control groups
together with other differentially expressed proteins, these four
proteins had high levels of IL-12 and IL-2 and low levels of TGF-
b, which might be conducive to parasite elimination.
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Amino acid permease, amastin-like protein, the hypothetical
protein (XP_003865405.1), and papLe22 protein shared similar
motifs with the SLC5-6-like sbd family, amastin family, major
facilitator superfamily, and reticulon family, respectively. SLC5-6-
like sbd family, the Solute carrier family 5 and 6-like and solute
binding domain, serves as co-transporter transporting Na+, sugars,
and amino acids (67, 68). For example, Leishmania amino acid
permease3 (AAP3) fromtheSLC5-6-like sbd familyenablesparasites
to complete for L-arginine from macrophages, which results in the
reduction of NO synthesis in macrophages and supports parasitic
growth (36, 37). The major facilitator superfamily (MFS) has a large
and diverse group of secondary transporters and MFS proteins are
responsible for the transportationof ions, shortpeptides, aminoacids,
and nucleotides (38, 69). An example of MFS proteins from
Leishmania is Leishmania Iron Regular 1 (LIR1) which functions
in iron export toprevent the accumulationof intracellular iron for the
avoidance of toxicity (70). Our amino acid permease and the
hypothetical protein (XP_003865405.1) may be involved in the
metabolic pathways of Leishmania. As for amastin, it is
acknowledged that amastin, the surface glycoproteins, participates
in the formation of interaction between parasites and host cell
membranes (39). Infection of intraperitoneal macrophage and mice
with wild type, knocking down d-amastin, and re-expressing d-
amastin promastigotes were performed by de Paiva RM et al, and
the results (increased parasite loads: wild type and re-expressing d-
amastin promastigotes, and decreased parasite burdens: knocking
down d-amastin promastigotes) suggested that amastinwas required
as a vital virulence for parasite intracellular multiplication and
survival (39). The amastin-like protein may act as the same
virulence as amastin. PapLe22 protein involved in protein synthesis
has been studied for its effects of vaccine (71, 72), which causes us to
stop studying it.

TLR4 primarily contributes to the immune response against
Leishmania invasion. The interaction between the designed vaccine
and TLR4 was investigated by many studies (2, 30, 34, 73). Some
binding of TLR4 needs myeloid differentiation factor 2 (MD-2) as
coreceptors, such as lipopolysaccharide (LPS), Chlamydia
pneumonia heat shock protein 60, Respiratory Syncytial and Virus
(RSV) fusion protein (74–76). Based on the evaluation of Bahareh
et al. the interaction betweenTLR4 and vaccinemay bemedicated by
MD-2 (2). Hence, the TLR4/MD-2 and vaccine candidates were
subjected to docking andmolecular dynamic simulation. The results
indicated the stability and flexibility of the TLR4/MD-2-vaccine
candidate complex and supported the interaction between TLR4/
MD-2 and vaccine candidates. That interaction suggested that
vaccine candidates may also have the function of adjuvant and may
trigger TLR4 signaling to favor Th1 immune response.

In conclusion, we have selected three vaccine candidates from
differentially expressed proteins between virulent and low virulent
strains, considering the rates ofMHC I,MHC II, and IFN-g epitopes,
the ratio of Th1/Th2 and conserved domains. The three candidates,
amino acid permease, amastin-like protein, and the hypothetical
protein (XP_003865405.1) will be used to inject animals for
immunization and explore the protection against Leishmania
parasites. Our studies about new vaccine candidates in silico can
also provide references for other pathogenic vaccine designs.
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