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Nucleotide skew analysis is a versatile method to study the nucleotide composition of RNA/DNA molecules, in particular to
reveal characteristic sequence signatures. For instance, skew analysis of the nucleotide bias of several viral RNA genomes
indicated that it is enriched in the unpaired, single-stranded genome regions, thus creating an even more striking virus-
specific signature. +e comparison of skew graphs for many virus isolates or families is difficult, time-consuming, and
nonquantitative. Here, we present a procedure for a more simple identification of similarities and dissimilarities between
nucleotide skew data of coronavirus, flavivirus, picornavirus, and HIV-1 RNA genomes. Window and step sizes were
normalized to correct for differences in length of the viral genome. Cumulative skew data are converted into pairwise
Euclidean distance matrices, which can be presented as neighbor-joining trees. We present skew value trees for the four virus
families and show that closely related viruses are placed in small clusters. Importantly, the skew value trees are similar to the
trees constructed by a “classical” model of evolutionary nucleotide substitution.+us, we conclude that the simple calculation
of Euclidean distances between nucleotide skew data allows an easy and quantitative comparison of characteristic sequence
signatures of virus genomes. +ese results indicate that the Euclidean distance analysis of nucleotide skew data forms a nice
addition to the virology toolbox.

1. Introduction

Nucleotide skew analysis [1] provides a powerful tool to
visualize compositional aspects of a DNA/RNA sequence.
For instance, the minimum and maximum of a G vs C skew
can be used to predict the origin of replication and the
location of the terminus, respectively, in prokaryotic ge-
nomes [2–4]. +e GenSkew algorithm [1] calculates ratio
values of the six nucleotide combinations (C vs G, G vs A, U
vs G, U vs A, C vs A, and U vs C) in predefined windows
and steps along a sequence. Ratio values are calculated
according to (N1-N2)/(N1+N2), and hence, a positive
value indicates that N1 wins over N2. Skew graphs are
generally created by plotting the subsequent windows

as numbers on the X-axis against the corresponding cu-
mulative skew values on the Y-axis. In this way, we
demonstrated for a representative collection of RNA vi-
ruses that the skew plots can be interpreted as “nucleotide
compositional signatures” of the viral genomes and that
these characteristic signatures are more prominently ob-
served in the single-stranded regions than that in the base-
paired, double-stranded regions of a viral RNA genome [5].
Likewise, we demonstrated that purine enrichment in the
Zika virus RNA genome [6] is a general property of most
but not all Flaviviridae and, surprisingly, prominently
observed at the first position of the codons and not the
silent 3rd codon position (unpublished results). It is,
however, difficult, time-consuming, and nonquantitative to
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compare different skew graphs with respect to similarities
and dissimilarities. We therefore developed a simple
mathematical addition to GenSkew analysis that converts
skew data into a pairwise Euclidean distance matrix, which
can be formatted by means of clustering into a neighbour-
joining tree, facilitating the identification of putative re-
lationships, e.g., between viral sequences. +e key result of
this study is that this Euclidean algorithm offers an easy and
quantitative interpretation of nucleotide skew data of virus
genomes. +e construction of Euclidean distance trees
based on skewed nucleotide compositions does not require
a prior alignment of the sequences. In contrast, “classical”
phylogenetic trees are modelled after accurate nucleotide
alignment of the sequences. As an additional result, we
demonstrate that skew distance trees and phylogenetic
trees are surprisingly similar but not identical.

2. Materials and Methods

Nucleotide sequences of the single-stranded (ss) RNA ge-
nomes of coronavirus, picornavirus, and HIV (reference
strains and unclassified species) were downloaded from the
ViralZone database (http://viralzone.expasy.org/) [7, 8].
Flaviviridae were selected and classified according to [9, 10]
(Berkhout and van Hemert, unpublished results). GenBank
IDs are provided in the figures. Nucleotide skew analysis was
done by means of the GenSkew algorithm [1], of which Dr.
T. Rattei (Technische Universität München) kindly provided
a version that is not restricted by the length of a sequence.
For normalization purposes, the overlapping window size
was set 1% of the sequence length with a step size of 20% of
the window size. +e skew between two nucleotides N1 and
N2 is defined by the ratio (N1 − N2)/(N1 + N2), and hence,
a positive value of this ratio indicates that N1 proportionally
exceeds N2. If the N1 versus N2 comparison results in
a negative skew value, the same but positive skew value is
true for these nucleotides in the reverse order (N2 versus
N1). Algorithms converting skew data into a pairwise Eu-
clidean distance matrix are provided as Additional File S1.
+e multiple sequence alignment of coronaviral, flaviviral,
picornaviral, and HIV genomes was obtained by means of
MAFFT [11]. Other alignments and Neighbor Joining (NJ)
skew distance trees were built in MEGA v7 [12]. Phyloge-
netic histories were inferred by using the maximum-like-
lihood method based on the general time reversible model
of nucleotide substitution in the viral genomes [12]. A
discrete gamma distribution (5 categories) was used to
model evolutionary rate differences among sites. +e tree
with the highest log likelihood is shown. Randomization of
the rubella virus RNA genome (10 consecutive cycles to
ensure complete nucleotide randomization) was performed
by means of the BioWeb server (http://www.cellbiol.com/
scripts/randomizer/dna_protein_sequence_randomizer.
php). All calculations were performed in Excel.

3. Results

3.1. Nucleotide Skew Analysis of a Single Sequence. We used
the rubella virus with its G- and C-rich RNA genome
(JN635295) to illustrate the skew plot analysis (Figure 1).

Skew profiles are shown of the nucleotide sequence before
Figure 1(a) and after 10 consecutive cycles of randomization
Figure 1(b). +e profiles are nearly identical because skew
profiles are determined solely by nucleotide composition
and not by the nucleotide sequence.+e rubella virus RNA
genome size is 9761 nucleotides, and hence, the window
size and step size are set to 98 (1% of sequence length) and
20 (20% of window size), respectively, generating 489
overlapping windows from the 5′- to the 3′-end (X-axis)
with the corresponding skew values cumulatively plotted
on the Y-axis. +e skew lines start by definition at the
origin of the plot. It should be noted that, in skew lan-
guage, CG does not represent a CG base pair but a com-
parison of the C with the G nucleotide proportions. We
adopted the notation C versus G (C vs G) in the text and
the figures. +e nucleotides C and G win over A (steep
positive slope), and the U-nucleotide loses from C and G
(steep negative slope) by approximately the same pro-
portion. C is slightly more prominent than G, and the
proportions of U and A are close to equality. Importantly,
the skew profiles are straight lines, which indicates that the
virus-specific nucleotide bias is quite constant along the
sequence of the RNA genome. +erefore, skew values at
the ultimate 3′ end of the genome (position 489) represent
a reliable measure of the pairwise nucleotide composi-
tional bias of the rubella virus genome. For instance, the
skew endpoint values of C vs A (216.24) and U vs C
(−213.37) are very similar but with the opposite sign. +e
same is true for G vs A (169.79) and U vs G (−168.02), and
the skew endpoint values for C vs G and U vs A are 56.39
and 2.31, respectively. For the rubella virus genome, these
values can be considered a characteristic signature of the
nucleotide composition and presented as a vector in a six-
dimensional Euclidean space (C vs G, G vs A, U vs G, U vs
A, C vs A, U vs C) � (56.39, 169.79, −168.02, 2.31, 216.24,
−213.37).

+e skew lines (N1 − N2)/(N1 + N2) are shown of the
rubella virus genome sequence (Figure 1(a)) and the same
sequence after 10 consecutive cycles of nucleotide ran-
domization (Figure 1(b)). Overlapping windows are plotted
on the X-axis against the corresponding skew values cu-
mulatively on the Y-axis.

3.2. Nucleotide Skew Analysis of Unrelated Sequences. +e
algorithm outlined above can be applied to sets of sequences
provided that one carefully preserves the order of nucleotide
comparisons as well as the normalization of window and
step sizes to gain ±500 cumulative skew values. +e resulting
vectors can be formatted into a pairwise Euclidean distance
matrix and visualized by means of cluster analysis as
a neighbor-joining tree. It should be emphasized that the
branch nodes of the skew value trees predict equality of the
nucleotide skew values among the viral species involved. In
contrast, branch nodes of evolutionary trees derived by
means of nucleotide substitution models mark the expec-
tation of sequence equality—the common ancestor—of the
taxa involved. Hence, only partial similarity between the two
tree building methods can be expected. Here, we apply
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Figure 2: Continued.
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Figure 1: Nucleotide skew profiles of the rubella virus genome (JN635259). (a) Rubella virus. (b) 10x randomized.
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the procedure to collections of arbitrarily chosen genomes
of picornaviruses, flaviviruses, coronaviruses, and HIV-1
subtypes. First, we investigated whether the Euclidean skew
algorithm is able to discern differences among the four
families of viral genomes. Next, the four viral families are
individually subjected to the Euclidean skew analysis.

Indeed, the neighbor-joining tree (Figure 2(a)) shows
a consistent clustering of the HIV-1 subtypes (red), the
coronaviruses (black), and the flaviviral species (blue). +e
picornaviruses (green) are significantly less resolved. No-
tably, HIV-1 genomes share A enrichment as the common
feature of their nucleotide composition [13], coronavirus
genomes typically tend to accumulate the U-nucleotide [14],
and the Flaviviridae displays enhanced purine proportions
in the first codon positions (unpublished results). +e ge-
nomes of picornavirus species do not display such
a prominent compositional feature. Apparently, the skew
algorithm is able to discern viral families by giving credit to
unique compositional features that are typical of a virus
family. Viral genomes with a nucleotide composition that is
more relaxed like picornavirus RNA are resolved poorly by
the skew algorithm. A “classically” constructed phylogeny of
the viruses shows a similar grouping (Figure 2(b)). HIV
(red), coronavirus (black), and flavivirus species (blue) are
clustered in separated clades, whereas representatives of
picornavirus are found scattered among the flavi- and

coronaviruses. With respect to salivirus, aichivirus, foot-
and-mouth disease virus, and hepatitis A virus, both trees
show similar topological positions, but in general, this
is not the case. In addition, construction of “classical”
phylogenetic trees relies a great deal on the accurate
alignment of the sequences involved, which becomes less
reliable as the evolutionary distance of the taxa increases. For
that reason, we separately analyzed the four virus families.

Virus genomes are mentioned by short names and
GenBank IDs and are colored black (coronaviruses), blue
(flaviviruses), green (picornaviruses), and red (HIVs). +e
trees were constructed by means of neighbor-joining clus-
tering (NJ, Figure 2(a)) and by maximum likelihood phy-
logeny (ML, Figure 2(b)). +e scale bars are in skew units
(Figure 2(a)) or estimate the number of nucleotide sub-
stitutions per site (Figure 2(b)).

3.3. Nucleotide Skew Analysis of Related Sequences

3.3.1. Coronavirus. Coronavirus RNA genomes show high
U and low C proportions that are quite variable and in fact
act like communicating vessels [14]. Indeed, a bipartition
can be observed in the cluster tree based on Euclidean skew
distances (Figure 3(a)). +e upper group containing the
MERS and SARS (in red) isolates is characterized by
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FIGURE 2: Trees of virus genomes based on nucleotide skew values (a) or nucleotide substitution (b).
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relatively low U vs C skew values varying from 120 to 31.+e
lower group with the human 229E, NL63, and OC43
coronaviruses displays U vs C skew values increasing from
140 to 201. Apparently, the opposite movement of the U
and C proportions in coronaviral genomes is a distinctive
feature, and hence, an important parameter in shaping
coronaviral phylogenies is based on nucleotide substitution
(Figure 3(b)). We included two unclassified virus iso-
lates—marked in italic—to investigate whether the method
can contribute to an initial virus classification. +e un-
classified Bat-Rousettus isolate is found near the Vespertilio
coronavirus, and the unclassified Bat-BM48-31 isolate is at
the root position of in the upper clade.

Coronavirus genomes are mentioned by short names
and GenBank IDs. Clustering of MERS and SARS corona-
viruses is indicated by coloring in red. Numbers in brackets
indicate U versus C skew values. Two clades differing by U vs
C skew values can be discerned in the skew-based tree, the
upper clade with U vs C proportions decreasing from 120 to
31 and the lower clade with U vs C proportions decreasing
from 201 to 140. +e two unclassified isolates are italicized.
+e trees were constructed by means of neighbor-joining
clustering (NJ, Figure 3(a)) and by maximum likelihood
phylogeny (ML, Figure 3(b)).+e scale bars are in skew units
Figure 3(a) or estimate the number of nucleotide sub-
stitutions per site Figure 3(b).
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Figure 3: Trees of coronavirus genomes based on nucleotide skew values (a) or nucleotide substitution (b).
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3.3.2. Flavivirus. +e Flaviviridae represent an extensive
group of ssRNA viruses with a diverse nucleotide compo-
sition. Yet, the pairwise distance tree based on skew values
(Figure 4(a)) is in remarkable agreement with the topology
obtained by means of evolutionary models (Figure 4(b)) [9].
Dengue virus (DENV), bovine viral diarrhea virus (BVDV),
yellow fever virus (YFV), Zika virus (ZIKAV), West Nile
virus (WNV) species, and the unclassified Bamaga flavivirus
are clustered into the clade of mosquito-borne flaviviruses.
+e unclassified Anopheles, Menghai, and Xishuangbanna
flaviviruses map in between the mosquito-borne viruses and
the tick-borne representative (louping ill virus, LIV). +e
insect-specific culex flavivirus (CxFV) and cell fusing agent
virus (CFAV) cluster together. Finally, the skew algorithm
distinguishes the hepaciviruses from the pegiviruses (in-
cluding Wenling shark virus, WLSV) consistent with more
classical phylogeny [10].

Flavivirus genomes are mentioned by short names and
GenBank IDs. Representatives of the flaviviruses are colored
red (dengue virus and pestivirus), green (flavivirus), blue
(tick-borne flavivirus), light-blue (insect-specific flavivirus),
yellow (hepacivirus), and magenta (pegivirus). +e five
unclassified flavivirus genomes are italicized. +e trees were
constructed by means of neighbor-joining clustering (NJ,
Figure 4(a)) and by maximum likelihood phylogeny (ML,
Figure 4(b)). +e scale bars are in skew units (Figure 4(a)) or
estimate the number of nucleotide substitutions per site
(Figure 4(b)).

3.3.3. Picornavirus. +e skew cluster tree of picornaviruses
(Figure 5(a)) also matches the tree topology based on nu-
cleotide substitution (Figure 5(b)). As an exception, the
rhinoviruses of humans and equines are close neighbors
based on skew values that are separated more distantly in the
standard evolutionary tree. Two of the three unclassified
picornaviruses (Washington bat and bat crohivirus) map in
the cluster of avian EMV and hepatitis A virus. +e un-
classified African bat icavirus takes a position in between
rosavirus 2 and two rhinoviruses.

Picornavirus genomes are mentioned by short names
and GenBank IDs. +e three unclassified picornavirus ge-
nomes are italicized. +e trees were constructed by means of
neighbor-joining clustering (NJ, Figure 5(a)) and by max-
imum likelihood phylogeny (ML, Figure 5(b)).+e scale bars
are in skew units (Figure 5(a)) or estimate the number of
nucleotide substitutions per site (Figure 5(b)).

3.3.4. HIV. +e reference sequences of HIV-1 subtypes
show much less compositional divergence than corona-,
flavi-, and picornaviruses as indicated by the approximately
10x smaller size of the scale bar (Figure 6). In fact, the
nucleotide skew profiles are nearly identical to the average
skew value with small standard deviation (Table 1).+e well-
known A-accumulation in HIV-1 genomes [13] is promi-
nently demonstrated by the negative values for G vs A, U vs
A, and C vs A (Table 1: AVG: −101.30, −118.86, and −171.62,
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Figure 4: Trees of flavivirus genomes based on nucleotide skew values (a) or nucleotide substitution (b).
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respectively). A-accumulation occurred mainly at the ex-
pense of C (C vs G: 77.15; U vs C: 59.48). Similar calculations
for average skew values and standard deviations of coro-
navirus, flavivirus, and picornavirus genomes did not pro-
vide useful AVG and StDev data (Table 1).

HIV-1 subtype genomes are mentioned by subtype and
GenBank IDs. +e trees were constructed by means of
neighbor-joining clustering (NJ, Figure 6(a)) and by max-
imum likelihood phylogeny (ML, Figure 6(b)).+e scale bars
are in skew units (Figure 6(a)) or estimate the number of
nucleotide substitutions per site (Figure 6(b)).

Differences can be observed between the Euclidean skew
tree of HIV-1 subtypes and the HIV-1 topology based on
regular nucleotide substitution models (Figure 6). For in-
stance, the evolutionary tree indicates a close relationship of
F1 and F2 strains and between both HIV-1-CRF isolates,
which is not observed in the skew-based tree. +e dominant
A-pressure in HIV may drive the compositional signatures
of different HIV sequences towards similar skew values, by
which the resolving power of the Euclidean skew algorithm
becomes insufficient for a proper discrimination among
HIV-1 subtypes. In addition, different sequences may have
similar skew profiles. For example, randomization of a se-
quence does not alter the skew profile of the nucleotides
(Figure 1). Finally, unclassified HIV-1 subtypes were not
found in the ViralZone database.

4. Discussion

Pairwise Euclidean distance analysis facilitates an easy initial
interpretation of the relationships among viral sequences
based on skew values as a nucleotide compositional signa-
ture. +e algorithm distinguishes related and unrelated

sequences, particularly in case of compositional features that
are characteristic for a certain virus family (e.g., A-accu-
mulation in HIV, the U-C balance in coronavirus genomes,
and the purine enrichment at the first codon position in
flaviviral genomes). Within a family of viral genomes, the
topology based on Euclidean skew distances is surprisingly
similar (but not identical) to the topology based on regular
evolutionary analysis (coronavirus, flavivirus, and picor-
navirus). +is is remarkable because branch nodes in skew-
based trees predict equal skew values of both sequences, and,
in contrast, branch nodes in evolutionary trees mark nu-
cleotide sequence equality of the two taxa. +e resolving
power of skew value analysis is diminished at high sequence
similarity as shown for HIV-1 subtypes. +is is due to the
prominent A-pressure in all HIV genomes [15].

+e key focus of this research was the Euclidean analysis
of nucleotide skew data among virus genomes. In addition,
we demonstrated similarity of skew data-based cluster trees
with “classical” maximum-likelihood phylogenetic trees
constructed via a general time reversible (GTR) model of
nucleotide substitution during evolution. Confidence of
ancestral nodes in “classical” trees is usually attained by
means of bootstrap analysis, which requires repetitive
resampling of sites in the original sequence alignment. Each
bootstrap replicate generates a tree, and a consensus tree is
constructed based on the collection of replicates. Each node
in this consensus tree is decorated with the frequency
number (%) that reflects the level of bootstrap support. It is
evident that a skew-based pairwise distancematrix cannot be
used for bootstrap analysis simply due to the absence of
a sequence alignment. Also, resampling of sites in a sequence
prior to skew analysis does not affect the skew data vector
(Figure 1). Future investigation may reveal whether the
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Figure 5: Trees of picornavirus genomes based on nucleotide skew values (a) or nucleotide substitution (b).
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building of skew-based trees may serve as a valuable addition
to many sequence-independent methods of evolutionary
tree reconstruction.

5. Conclusions

Euclidean skew analysis supports the study of nucleotide
compositional features and facilitates the classification of
unclassified viral sequences as nearest neighbors of classified
ones. Compared with methods based on nucleotide sub-
stitution models, (Euclidean) skew analysis is very robust in
that it tolerates sequence errors and shifts in reading frames.
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