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Abstract

In recent years, the use of intrinsic markers such as stable isotopes to link breeding and foraging grounds of migratory
species has increased. Nevertheless, several assumptions still must be tested to interpret isotopic patterns found in the
marine realm. We used a combination of satellite telemetry and stable isotope analysis to (i) identify key foraging grounds
used by female loggerheads nesting in Florida and (ii) examine the relationship between stable isotope ratios and post-
nesting migration destinations. We collected tissue samples for stable isotope analysis from 14 females equipped with
satellite tags and an additional 57 untracked nesting females. Telemetry identified three post-nesting migratory pathways
and associated non-breeding foraging grounds: (1) a seasonal continental shelf–constrained migratory pattern along the
northeast U.S. coastline, (2) a non-breeding residency in southern foraging areas and (3) a residency in the waters adjacent
to the breeding area. Isotopic variability in both d13C and d15N among individuals allowed identification of three distinct
foraging aggregations. We used discriminant function analysis to examine how well d13C and d15N predict female post-
nesting migration destination. The discriminant analysis classified correctly the foraging ground used for all but one
individual and was used to predict putative feeding areas of untracked turtles. We provide the first documentation that the
continental shelf of the Mid- and South Atlantic Bights are prime foraging areas for a large number (61%) of adult female
loggerheads from the largest loggerhead nesting population in the western hemisphere and the second largest in the
world. Our findings offer insights for future management efforts and suggest that this technique can be used to infer
foraging strategies and residence areas in lieu of more expensive satellite telemetry, enabling sample sizes that are more
representative at the population level.
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Introduction

The movement of organisms in space and time defines their

interaction with the environment and, thus, constitutes a central

aspect of their ecology and evolutionary biology [1]. How, where,

and when organisms move also defines the array of resources they

encounter, the range of threats they experience (predators,

environmental conditions, anthropogenic hazards), and the degree

to which they interact with other organisms. Migration, the

regular seasonal movement of individuals, often from a breeding

location to a nonbreeding location and back [2], is widespread in

nature. Many species travel across thousands of kilometers in

regular movements that constitute some of the most spectacular

natural phenomena on the planet (e.g. Arctic tern [3], monarch

butterfly [4], salmon [5], sea turtles [6], humpback whales [7]).

Migratory connectivity describes the movement of individuals

between breeding and nonbreeding areas. For many species the

latter areas have not been identified [2].

Conserving migratory species has become a profound issue in

the twenty-first century as habitats worldwide are being reduced in

size or quality [1] (e.g. Nearctic migrant birds [8], Golden-cheeked

Warbler [9], songbirds [10], monarch butterfly [11], salmon [12]).

Thus, it is crucial to understand key migratory linkages in order to

develop appropriate management and conservation measures in

a rapidly changing world.

Our understanding of the ecology and evolution of migrating

organisms has been impeded by the inability to observe directly

their long distant movements. However, recent advances in

satellite telemetry, genetic analysis and stable isotope analysis are

unraveling geographical origin, movement patterns and foraging

behavior of individual organisms. Until recently, tracking migra-

tory animals involved the use of passive extrinsic markers (e.g.

banding, patagial tags, numbered neck collars, streamers, flipper

tags). In the last decade, stable isotope ratios have been

increasingly used as intrinsic markers to trace foraging habits

and movements of wildlife populations. Individuals that use
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geochemically different habitats, or feed on different resources, can

be differentiated through use of stable isotope analysis because the

isotopic profile of consumers reflects that of their prey in

a predictable manner [13]. Consumers are typically enriched in

d15N relative to their food and, consequently, d15N measurements

serve as indicators of a consumer’s trophic position (given

knowledge of prey species’ or baseline d15N values), while d13C

values vary little along the food chain and are mainly used to

identify location [14,15,16]. Moreover, the timescale over which

dietary information is represented by stable isotope ratios (i.e.,

residence time) varies with tissue type and depends largely upon

metabolic turnover [17].

Isotopic signatures may be influenced by diet, habitat type and

geographic location. Differences among and within oceanic

regions in nutrient cycling at the base of the food web produce

geographical gradients in carbon and nitrogen isotope composi-

tion [13]. For example, both carbon and nitrogen stable isotope

ratios can provide information on foraging latitude because

phytoplankton have higher d13C and lower d15N values in

temperate than in higher-latitude ecosystems [13,18]. Despite

the widespread use of this technique in marine systems, geographic

variation in stable isotope ratios at the base of the food web have

been described only at very coarse scales [13]. Few regional maps

of marine isoscapes (spatially explicit regions of stable isotope

ratios) are available, thereby limiting the use of isotopic methods in

the marine realm. However, another way to interpret the carbon

signature of top predators is to calibrate isoscapes using top

predators themselves (Pacific humpback whales [7], Pacific bigeye

and yellowfin tuna [13], albatrosses [19]).

Loggerhead turtles (Caretta caretta, L.) are highly migratory

organisms with a complex life cycle. Loggerheads exhibit weak

connectivity (sensu Webster [2]); that is, individuals at a breeding

area may travel to different foraging grounds and individuals at

a foraging ground may return to different breeding areas. Only

some key foraging grounds have been identified so far using

satellite telemetry. In the last decade, stable isotope analysis and

satellite tracking have provided insight into loggerhead feeding

ecology and migration. Hatase et al. [20] demonstrated that some

adult female loggerheads nesting in Japan inhabit oceanic zones

rather than neritic habitats, which differs from the accepted life-

history model for this species [21]. Likewise, McClellan and Read

[22,23] described a behavioral dichotomy among immature

loggerheads that alternate between neritic and oceanic habitat.

More recently, Zbinden et al. [24] used a combination of satellite

telemetry and stable isotope analysis to assign foraging areas of

untracked loggerheads nesting in Greece, and Pajuelo et al. [25]

used a combination of the two techniques to investigate post-

mating destinations of male loggerheads from a breeding aggre-

gation in Florida. Using stable isotope analysis and epibionts from

loggerheads nesting on the east coast of Florida, Reich et al. [26]

found a bimodal distribution of d13C that could reflect a bimodal

foraging strategy that the authors interpreted as a nearshore/

offshore dichotomy or–because of the potential for confusion

among four gradients of d13C in marine environments -

a polymodal foraging strategy. Reich et al. [26] called for

integrated studies in which sufficient numbers of individuals are

fitted with satellite transmitters and passive tags and are sampled

for stable isotope analysis, epibionts and other biomarkers to

evaluate further the foraging strategies and foraging habitats of

Florida loggerheads. While there has been extensive tracking effort

on loggerheads nesting along the Florida west coast [27,28]

(Tucker unpublished), a paucity of tracking studies have focused

on loggerhead nesting on the Florida east coast, despite the fact

that the latter accounts for approximately 80% of all the nesting

activity in the United States [29]. Furthermore, few studies have

measured stable isotope ratios in marine megafauna in the western

North Atlantic (sharks [30], Atlantic Bluefin tuna [31], leatherback

turtles [32], loggerheads [25]).

In this study using a combination of satellite telemetry and

stable isotope analysis, we (1) identified key foraging grounds used

by female loggerheads nesting in Florida and (2) examined the

relationship between stable isotope ratios and the location of

nonbreeding foraging areas. This is the first study integrating

satellite telemetry and stable isotope analysis to investigate

migratory strategies used by loggerhead females in the Atlantic

Ocean. If loggerhead isotopic signatures from distinct foraging

areas differ significantly, stable isotope analysis may be considered

a viable alternative to satellite telemetry for denoting migratory

patterns in the NW Atlantic, as found elsewhere [33,34].

Knowledge of foraging grounds and migratory connectivity for

loggerheads in the NW Atlantic is crucial to develop appropriate

conservation measures and help managers define and protect

loggerhead critical habitat.

Methods

Ethics Statement
The animal use protocol for this research was reviewed and

approved by the University of Central Florida Institutional Animal

Care and Use Committee (IACUC protocol #09–22W). Proce-

dures were approved under the Florida Fish and Wildlife

Conservation Commission (Marine Turtle Permit #025).

Biology and Conservation Status of Loggerhead Turtles
Loggerheads are highly migratory organisms with a complex life

cycle where different life stages occupy different ecological

environments. They typically switch from an initial oceanic

juvenile stage to one in the neritic zone, where maturity is

reached. Breeding migrations are subsequently undertaken every

two to three years [21]. Loggerheads are largely carnivorous

during all life history stages [35,36]. The loggerhead turtle is

classified as endangered by the IUCN Red List [37] and listed as 9

distinct population segments (4 of which are threatened and 5

endangered) under the U.S. Endangered Species Act [38] (2011).

The Northwest Atlantic Ocean distinct population segment is

classified as threatened under the U.S. Endangered Species Act. In

2008, the U.S. National Marine Fisheries Service (NMFS) and the

U.S. Fish & Wildlife Service issued a second revision of the North

West Atlantic (NWA) loggerhead recovery plan. Five Recovery

Units (management subunits of a listed species that are geo-

graphically or otherwise identifiable and essential to the recovery

of the species) have been identified based on genetic differences

and a combination of geographic distribution of nesting densities

and geographic separation [39]. The NWA Peninsular Florida

Recovery Unit, which comprises loggerheads nesting from the

Florida/Georgia border through Pinellas County (Florida), is the

largest loggerhead nesting population in the western hemisphere

and one of the two largest in the world [29]. Florida’s long-term

loggerhead nesting trend indicates a nesting decline of 16% from

1998 to 2011 [40] but the reasons for the observed decline in nest

numbers are unclear [41]. In a recent analysis of nesting trends in

Florida, Witherington et al. [42] argued that the reduction in

annual nest numbers could be best explained by a decline in the

number of adult female loggerheads in the population. Although

multiple stressors are likely responsible for the decline in adult

females, fishery by-catch ranked first in the analysis of threat

factors for adult females [42] and has been identified as a major

threat for the recovery of the Northwest Atlantic loggerhead

Isotopic Signatures of Loggerhead Foraging Areas
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population [43]. Only some key foraging grounds for the NWA

Florida Peninsular Recovery Unit population have been identified

so far using satellite telemetry: the Bahamas, Cuba, the West Coast

of Florida, the Yucatán Peninsula of Mexico and the Gulf of

Mexico [27,28,44]. A recent paper on the global priorities for sea

turtle conservation in the 21st Century highlights the need to

identify key foraging grounds and oceanic hotspots to develop

informed management plans for the recovery of the species [45].

Study Site and Sampling
Blood samples were collected for stable isotope analysis from

turtles nesting within the 21 km stretch of beach of the Archie

Carr National Wildlife Refuge (hereafter Carr NWR) located in

southern Brevard County on Florida’s east-central coast. This area

hosts the most important loggerhead rookery in the western

hemisphere and accounts for approximately 25% of all the

loggerhead nests in Florida [29]. Here, all nesting activity is

monitored and a subsample of females is encountered and tagged

using both Inconel flipper tags and passive integrated transponders

during night surveys. A total of 71 females, 14 of which were

equipped with a satellite tag, were included in this study.

Tracking Analysis
Between 2008 and 2010, we attached satellite transmitters

(Wildlife Computers MK10-A and MK10 AFB, Redmond,

Washington, USA and SIRTRACK KiwiSat 101 K1G 291A,

New Zealand) to 14 female loggerheads and tracked their post-

nesting migration (Table 1). Half of the units were deployed at the

beginning of the nesting season on turtles previously marked (with

Inconel flipper tags) as part of a different project investigating

clutch frequency, movements and foraging activity during the

inter-nesting period. The remaining seven tags were deployed at

the end of July of each year in collaboration with the Sea Turtle

Conservancy, a Florida based non-profit organization. Transmit-

ters were affixed to the turtle’s carapace (between the first and

second vertebral scute) using two cool-setting two-part epoxies

(Power Fast and Sonic Weld). Females were kept in a wooden box

during attachment and released at the capture location a few hours

later. Satellite tags were programmed to transmit daily over a 24 h

period during the nesting season (beginning of May to end of

August) and every other day outside of the nesting season to

extend battery life. Service Argos, Inc provided position estimates

and associated location accuracy. To reject implausible locations,

we employed a customized script in the R package software that

was based on a two-stage filtering algorithm (land/sea and Freitas’

speed-distance-angle filters [46]). Sea turtle movements were

reconstructed by plotting the best location estimate per day of the

filtered location data using ArcGIS version 10.0. If two or more

high quality locations were received, we only used the first received

for that day. Migratory destination was classified as ‘oceanic’ if

a turtle moved off the continental shelf, as defined by the 200 m

isobath, or ‘neritic’ if it remained on the shelf.

To investigate the relationship between foraging areas identified

by telemetry and isotopic signatures of female tissues, we

calculated average latitude and longitude of foraging grounds.

We define foraging ground as the area where an individual

loggerhead resides during the nonbreeding season and migration

as the movement between foraging areas (if more than one

foraging area is used, Figure 1A) or between foraging area and

nesting area (Figure 1A, B). Migration, summer and winter

foraging phases were determined by plotting displacement from

deployment site (Figure 1). Migration was considered to have

ended when displacement began to plateau. Likewise summer and

winter foraging phases were considered to have ceased when

displacement values started to change again [47]. To calculate

mean latitudes and longitudes of summer and winter foraging

areas, we averaged the locations of all filtered data (best estimate/

day) from each plateau. If a tag transmitted for more than one year

and the individual made multiple seasonal movements (Figure 1A:

winter 2009-summer 2009-winter 2010-summer 2010-winter

2011), we averaged all filtered data from the summer plateaus

(summer 2009 and 2010) and the winter plateaus (winter 2009,

2010, 2011) in order to obtain a unique latitude and longitude

value representing the overall turtle summer and winter foraging

area. We then used mean latitude and longitude to calculate the

distance to the nearest coastline (distance from shore, km).

Stable Isotope Sampling and Analysis
Blood samples (4 ml) were collected from the cervical sinus with

a 20-gauge needle and syringe [48] as soon as the turtle began to

cover her nest. Blood was transferred to a non-heparanized

container and separated into serum and cellular components by

centrifugation (5000 rpm610 min), then frozen at 220uC until

analysis. To address our objectives, we measured the stable isotope

ratios of red blood cells (RBC), a tissue assumed to have a long

turnover rate that should reflect an integration of diet and habitat

at the foraging ground prior to breeding migration. Tissue

turnover rate for RBCs in adult sea turtles is unknown but it has

been estimated to reflect the foraging habits of the 4–7 months

prior sampling [49,50] (Ceriani et al. unpublished). We assumed

females exhibit site fidelity to foraging grounds (pre-nesting

foraging area = post-nesting foraging area). This assumption is

commonly used in studies combining telemetry and stable isotope

analysis [20,24,51,52] and is supported by the data available for

individual marine turtles that have been equipped repeatedly with

satellite tags [47,53] and by long-term studies at foraging grounds

[54]. Recently, site fidelity in female loggerheads has been

indicated by the long-term consistency in isotopic signatures of

scute layers, a tissue that incorporates several years of dietary

history and habitat use [55]. Moreover, if our analysis finds

concordance among individual turtled13C and d15N groupings and

distinct post-nesting migratory destinations, our study will provide

further evidence supporting foraging ground philopatry in most

adult loggerhead females.

Sample preparation was done at the Biology Department of the

University of Central Florida. Samples were prepared following

standard procedure. RBC samples were freeze-dried for 48 h

before being homogenized with mortar and pestle. Lipids were

removed using a Soxhlet apparatus with petroleum ether as

solvent for 12 h. Approximately 0.5 mg of each sample was

weighed and sealed in tin capsules. Prepared samples were sent to

the Stable Isotope Core Laboratory at Washington State

University, where they were converted to N2 and CO2 with an

elemental analyzer (ECS 4010, Costech Analytical, Valencia, CA)

and analyzed with a continuous flow isotope ratio mass

spectrometer (Delta PlusXP, Thermofinnigan, Bremen). Isotopic

reference materials were interspersed with samples for calibration.

Stable isotope ratios were expressed in conventional notation as

parts per thousand (%) according to the following equation:

dX ~ Rsample=Rstandard

� �
1

� �
| 1000

where X is 15N or 13C, and R is the corresponding ratio 15N:14N or
13C:12C. The standards used for 15N and 13C were atmospheric

nitrogen and Peedee Belemnite, respectively. Precision was 0.07%
for d13C measurements and 0.11% for d15N.

Isotopic Signatures of Loggerhead Foraging Areas
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Statistical Analysis
Relationships between d13C and d15N and mean latitude of

foraging ground and distance from shore were explored through

multiple regression analysis. Akaike’s Information Criteria (AIC)

was used to determine the best fitting regression [56]. We included

distance from shore in the multiple regression analysis to take into

account differences in coastline shape and female differential use

of the continental shelf (inner, mid or outer shelf). Because some

females undertook a seasonal migration and it is unknown whether

RBC isotopic signatures reflect the diet and geographic location

occupied during the summer or winter months, we performed two

distinct multiple regression analyses. In one we used mean latitude

and distance from shore of summer areas identified from

telemetry, while in the other we used mean latitude and distance

from shore of winter areas. The remaining females did not exhibit

a seasonal migration and, therefore, we calculated only one

average latitude and distance from shore.

To test for significant differences in isotopic signatures among

foraging areas, we used multivariate analysis of variance

(MANOVA) with the Pillai’s trace test. Data were tested for

normality and homogeneity of variance using Kolmogorov-

Smirnov and Levene’s test, respectively. Data were normal but

did not meet the equal variance assumption even after trans-

formation. We chose the Pillai’s trace test because it is the most

robust of the tests when the assumption of similar-covariance

matrix is not met [57]. We used post hoc Games-Howell (GH)

multiple comparison tests (which assumes unequal variance) to

identify groups responsible for statistical differences [58]. We

used discriminant function analysis (DFA) to examine how well

d13C and d15N predict the post-nesting foraging grounds used by

loggerheads. We used d13C and d15N values of the 14 females

equipped with satellite tags as training data set (with equal priors

for the classification) to develop the discriminant functions and

the untracked turtles as test data set for the discriminant

classification. Untracked turtles are defined as females that were

sampled for stable isotope analysis but that were not equipped

with satellite tags. Data were analyzed using program R (R

Development Core Team 2009), SPSS v. 19, Sigma Plot 10.0

and ArcGIS 10.0. Alpha level was set to 0.05 for all statistical

analyses.

Results

Satellite Telemetry & Post-nesting Migration Destinations
Loggerheads moved across a wide range of latitudes spanning

from the Great Bahamas Bank (23uN) to the offshore waters of

Virginia and Delaware (38.6uN). Satellite telemetry identified

three migratory pathways and associated foraging grounds

(Figure 2): (1) a seasonal shelf-constrained North-South migratory

pattern between waters offshore Virginia/Delaware and North

Carolina (along the NE USA coastline), (2) a year-round residency

in southern foraging grounds (Bahamas and SE Gulf of Mexico)

and (3) a residency in the waters adjacent to the breeding area

(eastern central Florida). We classified female loggerheads into

three migratory strategies according to whether they migrated

‘‘north’’ (northern), ‘‘south’’ (southern) or stayed in central Florida

(resident or central) and will follow this classification hereafter.

Migratory destinations of the 14 females were classified as

‘‘neritic’’ since all individuals took up residency within the limits

of the continental shelf (water depth ,200 m).

At the end of the nesting season, six individuals departed

eastern central Florida and migrated north to seasonal foraging

grounds above 35uN in the Mid-Atlantic Bight where they spent

the rest of the summer and beginning of fall (Figure 2A). By the

end of October, these six individuals left summer feeding areas

and migrated south toward winter grounds located in North

Carolina between Cape Hatteras and Wilmington where they

stayed until the beginning of May (Figure 2B). Three of these six

females, whose tracking lasted more than 1 year, exhibited the

same seasonal displacement among years (Figure 1A, Figure S1).

Four females that were equipped with tags at the end of the

nesting season (Table 1, individuals g-j) did not leave the area of

eastern central Florida but remained in the waters off Cape

Canaveral (Figure 2A, Figure S2). Tracking data for these 4

individuals were limited since tags failed between 2 and 7 months

Table 1. Information on satellite tracking and foraging area of choice of 14 satellite-tracked loggerheads.

Turtle ID PTT eployment date
Tracking
duration (d)

Date of last
location Foraging area PTT type

A 31 July 2008 1397 28 May 2012 North (MAB) KiwiSat 101

B 05 May 2009 873 30 Sept 2011 North (MAB) Mk10-AFB

c 12 May 2009 530 21 Oct 2010 North (MAB) Mk10-AFB

d 19 May 2010 188 23 Nov 2010 North (MAB) Mk10-A

e 19 May 2010 286 1 March 2011 North (MAB) Mk10-A

f 20 May 2010 380 4 June 2011 North (MAB) Mk10-A

g 1 Aug 2009 60 30 Sept 2009 Central (SAB) KiwiSat 101

h 1 Aug 2010 204 21 Feb 2011 Central (SAB) Mk10-A

i 31 Jul 2010 127 7 Dec 2010 Central (SAB) Mk10-A

j 31 Jul 2010 90 29 Oct 2010 Central (SAB) KiwiSat 101

k 31 Jul 2008 795 16 Feb 2011 South (SE GoM) KiwiSat 101

l 21 May 2009 932 9 Dec 2011 South (Bahamas) Mk10-AFB

m 29 May 2009 478 19 Sept 2010 South (FL Keys) Mk10-AFB

n 30 July 2009 378 12 Aug 2010 South (Bahamas) KiwiSat 101

Abbreviations are as follow: platform terminal transmitter (PTT), day (d), Mid-Atlantic Bight (MAB), South-Atlantic Bight (SAB), South East Gulf of Mexico (SE GoM), Florida
Keys (FL Keys).
doi:10.1371/journal.pone.0045335.t001
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from deployment. However, females that undertook long-distance

post-nesting migrations (all but individuals g-j in Table 1) left the

breeding area by mid-August, immediately after laying the last

nest of the season, and traveled a minimum of 288 km during

the first two months after deployment (northern: 1205 km

6121 km; southern: 458 km 6171 km). Therefore, since these

4 loggerheads did not lay additional clutches and did not depart

from the area (displacement after 2 months at large: 89 km

652 km), we assumed eastern central Florida to be their final

destination. The remaining 4 females headed to subtropical

northwest Atlantic and southeast Gulf of Mexico foraging areas

where they remained year-round until the next breeding

migration (Figure 1B, Figure 2A, Figure S3). Two females took

up year-round residency in the Great Bahamas Bank, just south

of the Bahamian island of Andros, one female dwelled in the

shallow waters of the Gulf of Mexico immediately west of the

Florida Keys, while the last individual resided in the SE Gulf of

Mexico off the SW Florida coast. Even though loggerheads that

migrated south used two geographic regions (the Bahamas Great

Bank vs. the Gulf of Mexico) with distinctive oceanographic

regimes, we refrained from splitting the southern aggregation due

to the small sample size of loggerheads equipped with satellite

tags.

Geographic Variability in Stable Isotope Ratios
The d13C values of RBCs from tracked female loggerheads

ranged from 217.50 % to 210.48 %, and d15N varied between

5.46 % and 14.00 %. The multiple regression analysis and AIC

model selection revealed that average latitude alone was the best

predictor of d13C values in female tissues for both winter

(Table 2) and summer (Table 3) feeding areas. d13C decreased

significantly with increasing latitude for both winter feeding areas

(F1,12 = 75.04, r2 = 0.862, p,0.001, Figure 3A) and summer

feeding areas (F1,12 = 46.13, r2 = 0.794, p,0.001). Likewise,

winter feeding area latitude was the best explanatory variable for

d15N (F1,12 = 23.01, r2 = 0.657, p,0.001; Figure 3B), while the

additive model of latitude and distance from shore explained the

relationship better than latitude alone with regard to summer

feeding areas (F1,12 = 21.96, Adjusted r2 = 0.763, p,0.001).

Females from the three foraging areas segregated by their

overall isotopic signatures (MANOVA, Pillai’s trace test, F4,

22 = 4.147, p = 0.012) and, in univariate analysis, both d13C

(ANOVA, F2, 11 = 17.695, p,0.001) and d15N values (F2,

11 = 10.217, p = 0.003) differed among foraging aggregations

(Figure 4). Mean d13C values per group varied from –

17.2760.17% in females using northern foraging areas to –

13.0962.08% in southern individuals. d15N values ranged from

11.9762.09% (northern females) to 7.0461.83% (southern

females). Individuals residing in eastern central Florida exhibited

intermediate values between northern and southern loggerheads

in both d13C (215.3560.13%) and d15N (10.6260.19%). Post

hoc Games-Howell (GH) multiple comparison tests indicated that

the northern aggregation d13C differed significantly from the

resident aggregation (p,0.001) and marginally from the southern

(p = 0.054), while resident and southern aggregations did not

differ from each other in d13C (p = 0.222). d15N signatures of

loggerheads using southern foraging areas differed significantly

from the northern aggregation (p = 0.013) and marginally from

the resident (p = 0.058) group, while northern and resident

aggregations did not differ from each other in d15N (p = 0.336).

Assignment of Untracked Females to Foraging Areas
The discriminant analysis of the training data set (14

loggerheads equipped with satellite tags) was significant (P.

Wilks’ Lambda ,0.002). Two discriminant functions were

calculated, with a combined X2 (4) = 16.785, p = 0.002. After

removal of the first function, the association between groups

(foraging areas) and predictors (d13C and d15N) became not

significant X2 (1) = 0.867, p = 0.352. The first discriminant

function accounted for 97.6% of the between-group variability.

Overall the discriminant analysis of the training data set was able

to correctly classify the foraging ground used for all but one

individual (92.9% of original grouped cases correctly classified).

The only misclassified loggerhead was assigned to the resident

aggregation, while satellite telemetry indicated this loggerhead

belonged to the southern aggregation as it migrated to the SE

Gulf of Mexico. The stability of the classification procedure was

checked by a leave-one-out cross validation, which classified

Figure 1. Displacement from release site plot of loggerheads
equipped with satellite tags. (A) Displacement pattern of a turtle
that followed the northern strategy and migrated between summer and
winter foraging areas (turtle a, see Table 1 for details). Females
following the northern strategy moved between summer foraging
grounds in the Mid-Atlantic Bight (MAB) off the Delmarva Peninsula and
winter foraging grounds located in the waters off North Carolina. (B)
Displacement pattern of a turtle that took up year-round residence in
the Great Bahamas Bank and did not show seasonal migration (turtle l).
Phases of migration are represented by rapid changes in displacement
distance; summer, winter and year-round foraging areas can be seen
where displacement values plateau.
doi:10.1371/journal.pone.0045335.g001

Isotopic Signatures of Loggerhead Foraging Areas

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e45335



Figure 2. Reconstructed satellite tracks (n=14) of loggerheads tagged after nesting at the Carr NWR. (A) Reconstructed route (pink,
green and blue lines) to foraging areas (labeled circles) for individuals a to n from release location (black star). Loggerheads were classified into three
migratory groups: northern (a to f), central Florida resident (g to j) and southern (k to n). Pink, green and blue reconstructed routes represent
northern, resident and southern migratory groups, respectively. (B) Reconstructed route (pink lines) from summer foraging areas (darker pink-labeled
circles) to wintering areas (lighter pink-labeled circles) for individuals that followed the northern strategy (a to f). The 200 m isobath is delineated
(black line). Dotted line separates Mid-Atlantic Bight (MAB) and South-Atlantic Bight (SAB). A bight is defined as a long, gradual bend or recess in the
coastline that forms a large, open bay. The MAB is defined as the region enclosed by the coastline from Cape Cod (MA), to Cape Hatteras (NC). The
SAB extends from Cape Hatteras (NC) to West Palm Beach (FL).
doi:10.1371/journal.pone.0045335.g002

Table 2. Comparison of linear regression models describing the relationship between RBC d13C and d15N and geographic location
of winter non-breeding foraging areas for the 14 loggerheads fitted with satellite tags.

Model variables R2 Adj.R2 RSS N K AICc D AICc AICc Weights P

d 13C lat 0.862 0.851 0.797 14 3 231.7 0 0.885 ,0.0001

lat + dist shore 0.870 0.846 0.808 14 4 227.5 4.2 0.106

lat * dist shore 0.877 0.840 0.825 14 5 222.1 9.6 0.007

dist shore 0.121 0.048 2.013 14 3 218.8 13.0 0.001

d 15N lat 0.657 0.629 1.617 14 3 221.8 0.0 0.818 0.0004

lat + dist shore 0.714 0.662 1.543 14 4 218.4 3.4 0.150

dist shore 0.026 20.055 2.726 14 3 214.5 7.3 0.021

lat * dist shore 0.732 0.652 1.566 14 5 213.2 8.7 0.011

Model selection used Akaike’s Information Criterion, corrected for small sample sizes (AICc). Abbreviations are as follow: RSS = residual sum of squares, N = number of
observations, K = number of parameters, DAICc = difference between each model and the best model, AICc weight = relative information content, P = probability
associated with the best model, lat = average latitude of foraging ground based on tracking data, dist shore = distance from shore (in km) calculated from the point
having as coordinates average latitude and longitude of foraging ground, lat * dist shore = lat + dist shore + lat * dist shore.
doi:10.1371/journal.pone.0045335.t002
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92.9% of the test data set correctly. In the untracked females,

RBC d13C ranged from 219.36 % to 29.72 % and d15N varied

between 2.79 % and 14.00 %. Putative foraging ground was

predicted for 57 untracked turtles in the test data set and was

based on the above classification functions. The discrimination

analysis assigned 15 of the 57 untracked individuals (26.3%) to

the northern aggregation, 20 females (35.1%) to the resident

group and 22 females (38.6%) to the southern aggregation

(Figure 5, Table 4). When we considered the entire dataset

(n = 71), the relative importance of the three foraging areas

remains similar with 21 females considered northern (29.6% of

all females), 24 resident (33.8% of all females) and 26 southern

(36.6% of all females).

Discussion

Satellite Telemetry
Our telemetry data identified new foraging areas used by

female loggerheads of the NWA Florida Peninsular Recovery

Unit. Six of the 14 individuals we tracked moved north and four

resided in eastern central Florida, demonstrating for the first time

that the Mid- and South-Atlantic Bights, respectively, provide

Table 3. Comparison of linear regression models describing the relationship between RBC d13C and d15N and geographic location
of summer non-breeding foraging areas for the 14 loggerheads fitted with satellite tags.

Model variables R2 Adj.R2 RSS N K AICc D AICc AICc Weights P

d 13C lat 0.794 0.776 0.976 14 3 228.9 0 0.884 ,0.0001

lat + dist shore 0.804 0.768 0.994 14 4 224.6 4.3 0.103

lat * dist shore 0.826 0.774 0.981 14 5 219.7 9.2 0.009

dist shore 0.026 20.055 2.119 14 3 218.0 10.9 0.004

d 15N lat + dist shore 0.800 0.763 1.291 14 4 220.9 0.0 0.551 0.0001

lat 0.549 0.511 1.855 14 3 219.9 1.0 0.329

dist shore 0.304 0.246 2.304 14 3 216.9 4.1 0.072

lat * dist shore 0.823 0.769 1.275 14 5 216.0 4.9 0.048

Model selection used Akaike’s Information Criterion, corrected for small sample sizes (AICc). Abbreviations are as follow: RSS = residual sum of squares, N = number of
observations, K = number of parameters, DAICc = difference between each model and the best model, AICc weight = relative information content, P = probability
associated with the best model, lat = average latitude of foraging ground based on tracking data, dist shore = distance from shore (in km) calculated from the point
having as coordinates average latitude and longitude of foraging ground, lat * dist shore = lat + dist shore + lat * dist shore.
doi:10.1371/journal.pone.0045335.t003

Figure 3. Relationship between RBC stable isotope ratios and post-nesting foraging ground location. RBC d13C (A) and d15N (B) values
of satellite-tracked adult female loggerheads (n = 14) versus mean latitudes of winter foraging areas calculated based on satellite telemetry. Blue
diamonds represent individuals migrating to southern foraging grounds (southern), green squares females residing in eastern central Florida
(resident) and pink triangles females that migrated to northern foraging areas (northern). Only northern loggerheads undertook seasonal migration
between winter and summer foraging ground. In the case of northern females, the latitude plotted represents the average latitude of the winter
foraging area for each individual. The remaining eight females did not show seasonal movement; therefore, the latitude plotted represents the
average latitude of the year-round foraging area. Dashed blue and black lines indicate 95% confidence and predictive interval (respectively) for the
regression analysis.
doi:10.1371/journal.pone.0045335.g003
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important foraging grounds for adult females of this Recovery

Unit. This result is a major difference from the results of prior

satellite tracking studies. Overall there are published tracking

data for 47 females of the NWA Florida Peninsular Recovery

Unit [27,28,44]. Prior to this study, only 19 females were tracked

(between 1988 and 2000) from eastern central Florida [27,44]

despite the fact that the Carr NWR alone accounts for ,25% of

the 30–60,000 nests laid in Florida each year [29,42]. Only one

Figure 4. Scatterplot of d13C and d15N values for the 71 nesting loggerhead turtles sampled at the Carr NWR, Florida (USA). Pink
triangles represent females equipped with satellite tags that migrated to northern foraging areas, green squares those foraging in eastern central
Florida, blue diamonds those foraging in the south, while empty circles represent untracked females. The arrow indicates turtle ‘‘k’’, which foraged in
the SE Gulf of Mexico. The d13C and d15N values of this individual were extremely similar to the ones found in eastern central Florida residents, while
the average latitude of the foraging ground used by this female for almost two years was intermediate between residents and the other southern
individuals. RBC stable isotope ratios of untracked females (n = 57) have a similar distribution pattern to the 14 satellite-tracked loggerheads.
doi:10.1371/journal.pone.0045335.g004

Figure 5. Discriminant function analysis (DFA) of foraging groups based on the stable isotope ratios. Function 1 accounted for 97.6% of
the between-group variability. Pink triangles represent females equipped with satellite tags that migrated to northern foraging areas, green squares
those foraging in eastern central Florida and blue diamonds those foraging in the south. Black markers represent the centroids for the respective
foraging groups. Empty circles represent untracked females. Dotted lines define the three DFA territories.
doi:10.1371/journal.pone.0045335.g005

Isotopic Signatures of Loggerhead Foraging Areas

PLOS ONE | www.plosone.org 8 September 2012 | Volume 7 | Issue 9 | e45335



of the 19 previously tracked individuals moved north to North

Carolina and one stayed in eastern central Florida, while the

remaining 17 females migrated south along the east coast of

Florida to the Bahamas Archipelago, Cuba, west coast of Florida

and Gulf of Mexico.

The Mid- and South- Atlantic Bights are known to be important

foraging areas for adult females of the NWA North Recovery Unit,

which comprises loggerheads nesting from the Florida/Georgia

border to southern Virginia [39]. Of the 73 females of the NWA

North Recovery Unit equipped with satellite tags between 1997

and 2008 in North Carolina, South Carolina and Georgia, 51 used

the north strategy, nine stayed year-round in the South Atlantic

bight, four migrated to the Bahamas, Florida Keys and Gulf of

Mexico, while the remaining ceased transmitting before reaching

post-nesting migration destinations [47,59,60].

Prior to our study, the documentation that adult females of the

NWA Florida Peninsular Recovery Unit used Mid- and South-

Atlantic Bights were limited to few flipper tag returns [61]. In fact,

the majority of tag returns for this Recovery Unit are from Cuba

[62], Bahamas and Florida Keys (Ehrhart, unpublished). In-

terestingly, migratory patterns similar to the ones we identified

have been shown recently in male loggerheads tracked from Cape

Canaveral (FL, USA), a major breeding aggregation only 40 km

north of our study site [63]. Twenty of the 29 males tracked used

the Mid- (n = 8) and South Atlantic (n = 12) Bights. Among the 12

males that used the South Atlantic Bight, two individuals migrated

to South Carolina, while 10 remained in eastern central Florida

suggesting that eastern central Florida supports a year round

aggregation of adult loggerheads.

We can think of three plausible explanations for the novelty of

our tracking data: (1) the high use of Mid- and South- Atlantic

Bights may be a new phenomenon, (2) sample size of telemetry

studies is small and our results, as well as prior studies’, may be due

to chance, (3) Mid- and South- Atlantic Bights have always been

important foraging grounds for the Florida Peninsular Recovery

Unit but the importance was not detected with prior technology

such as flipper tag return. Even though considerable progress has

been made into understanding sea turtle migration using recovery

of flipper-tagged individuals [61,62,64,65,66,67,68], the use of this

technique to assess post-nesting migration destinations has some

drawbacks. Flipper tag recapture distribution may be affected by

small sample sizes, differential fishing pressure and/or oceano-

graphic features such as currents that may push carcasses offshore.

In recent years advances in satellite telemetry, genetic analysis and

stable isotope analysis have provided additional tools to unravel

migratory connectivity. While it is not possible to discriminate

between hypothesis (1) and (3), it is possible to test whether the

importance of Mid- and South- Atlantic Bights is due to random

chance and small sample size. To do so we can either (a)

significantly increase the number of females equipped with satellite

tags or (b) investigate the reliability of stable isotope analysis as

a tool to infer post-nesting migration of a large number of females

to obtain a better representation at the population level.

Relationship between Loggerhead RBC Isotopic
Signatures and Post-nesting Migratory Destinations

The variability we found among individuals in both d13C and

d15N allowed us to identify three distinct foraging aggregations.

Four gradients from enriched to depleted d13C in marine habitats

[18,69,70,71,72,73] can explain the variability in d13C we

observed: (1) nearshore/offshore, (2) benthic/pelagic, (3) en-

riched/depleted d13C food webs and (4) low/high latitudes.

We reject the hypothesis that differences in d13C are due to

a neritic/oceanic gradient because all the loggerheads we tracked

stayed on the continental shelf (within the 200 m isobaths), thus in

neritic habitat. Our data did not allow testing the benthic/pelagic

gradient because we only have dive profile data for four (of the 14)

loggerheads we tracked. Bathymetry is not a good proxy to

investigate the benthic/pelagic gradient because individuals may

use the water column differently and these differences can only be

detected if diving profiles are available. Adult loggerheads are

known to feed mostly on benthic invertebrates such as crabs and

mollusks [35,74]. Since all loggerheads resided on the continental

shelf and remained within their diving limit (up to 233 m: [75]),

we hypothesize the majority of their diet will be made of benthos

and, thus, exclude a primary role of the benthic/pelagic gradient

in driving the differences in d13C among loggerheads. The

benthic/pelagic and the enriched/depleted food web gradients are

tightly connected. Benthic organisms will most likely feed on

seagrass or algae-based webs that are enriched in d13C compared

to pelagic environment based on phytoplankton food webs [76].

The last known gradient that could explain variation in d13C is the

latitudinal gradient. Latitudinal differences in d13C are due to

temperature, surface water CO2 concentrations and differences in

plankton biosynthesis or metabolism [77]. The loggerheads we

tracked moved across a wide latitudinal range (23uN to 38.6uN)

and, therefore, provide an opportunity to test the latitudinal

gradient hypothesis. The North-South latitudinal gradient in d13C

isotopic values of our satellite-tracked loggerheads, with northern

individuals being more depleted in 13C, support the conclusion

that a latitudinal gradient is the main driver of the variation in

d13C we observed. This conclusion agrees with previous studies in

several marine taxa (cephalopods [78], penguins [79], North

Pacific humpback whales [7], Cory’s shearwater [33], albatrosses

[19]).

For nitrogen, northern females were the most enriched, and

southern females the most depleted, in 15N. The relationship

between latitude and d15N was weaker than for d13C, suggesting

that other factors may affect loggerhead RBC d15N values.

Variation in d15N can be explained in three ways: (1) loggerheads

at different latitudes forage at different trophic levels, (2) the

differences in RBC d15N are a consequence of primary producers’

baseline shift in nitrogen values associated with prevailing N

Table 4. Foraging ground assignment (number and %) for
the discriminant model based on d13C and d15N values of
loggerhead RBCs.

Predicted Group Membership

Group Northern Central Southern Total

Training data
(n=14)

Northern 6 (100%) 0 (0%) 0 (0%0 6

Central 0 (0%) 4 (100%) 0 (0%) 4

Southern 0 (0%) 1 (25%) 3 (75%) 4

Test data
(n=57)

Untracked 15 (26.3%) 20 (35.1%) 22 (38.6%) 57

Total 21 25 25 71

Number and % of loggerheads assigned to each foraging ground based on the
classification results. Observed classes are in rows, predicted in columns. We
used d13C and d15N values of the females equipped with satellite tags (n = 14) as
training data set to develop the discriminant functions and the untracked
turtles (n = 57) as test data set for the discriminant classification. 92.9% of
original and of cross-validated grouped cases were classified correctly. Only one
southern individual (turtle ID k, Table 1) was misclassified and assigned to the
central group.
doi:10.1371/journal.pone.0045335.t004
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cycling regimes that are maintained and amplified higher up the

food chain and (3) a combination of the two hypotheses. The

nitrogen stable isotope ratios of primary producers define the d15N

value at the base of the food web and are a function of the d15N

values of their nutrient sources (e.g. nitrate, ammonium, N),

subsequent biological transformation (e.g. nitrogen fixation, which

lowers the d15N values of primary producers, and denitrification,

a process that increases values of d15N) and isotopic fractionation

[13,80,81]. Data available in the literature on plankton d15N

support a gradient in the NWA, with d15N values becoming

progressively more enriched from the subtropics as we move north

along the U.S. coastline (McMahon et al. as cited by [13]) [82].

Loggerheads that migrated south moved to areas dominated by N2

fixation, where source nitrogen has a lower isotopic composition

[81,83], while loggerheads moving into the MAB entered a region

whose nitrogen budget is mostly driven by denitrification and,

thus, it is characterized by high phytoplankton d15N value in

surface waters [84].

There also may be some individual variability in foraging

preference, as reflected in our data on females using northern

feeding areas. Within the northern aggregation, our d15N data

show two clusters that may reflect two alternative foraging

strategies. One group of females (n = 3) has d15N values ranging

from 9.74 to 10.28 % (10.0760.29%), while the second group

(n = 3) d15N values range from 13.77 to 14% (13.8760.12%).

These values suggest that females of the two clusters forage at

different trophic levels. Despite previous paradigms that all turtles

are benthic foragers, we suspect that the depleted group has a diet

based mostly on jellyfish, while the enriched group forages mostly

on benthos (crustacean and mollusks). These conclusions are

supported by video footage of loggerheads foraging on sea scallop

beds in the Mid-Atlantic (Haas et al. unpublished). Intraspecific

variability in foraging preference in adult female loggerheads has

been demonstrated using series of scute samples [55]. Alternative-

ly, differences in d15N between the two groups may reflect an

anthropogenic effect. Recently McKinney et al. [85] found

a gradient in d15N of particulate matter available to primary

producers from estuaries (more enriched) to nearshore (average

30 km offshore) to mid-shelf (average 90 km offshore) in six

locations at the same latitude (in the Mid Atlantic Bight). Our two

groups of northern females also followed this pattern, with the

enriched group residing an average of 17 km from shore

(range = 10–29 km) and depleted group 71 km (range = 67–

76 km) from shore. Thus, both groups may forage at the same

trophic level and the differences in d15N may be attributed to

agriculture runoff and anthropogenic waste that increase d15N in

nearshore compared to mid-shelf ecosystems [85]. We cannot

discriminate between these alternative hypotheses (different

trophic level vs. anthropogenic effect) with our data, but further

investigation using additional elements (oxygen and sulfur),

compound specific stable isotope analysis, trace minerals and

contaminant levels could be informative.

Discrimination of Stable Isotope Ratios According to
Foraging Areas and Assignment of Untracked Females

Our use of the isotopic patterns identified in the 14 loggerheads

equipped with satellite tags to assign putative post-nesting

migration destinations of the remaining 57 untracked females

allowed us to scale up the information obtained with satellite

telemetry, gain a better idea at the population level and begin to

understand relative importance of foraging grounds. Telemetry

and assignment results were similar and highlighted a similar

relative importance of foraging grounds. However, it should be

noted that while telemetry results were obtained over the course of

several years (2008, n = 2; 2009, n = 6; 2010, n = 6), all the

untracked turtles analyzed were sampled in 2010. Therefore, our

analysis does not take into consideration remigration interval,

which may affect the relative importance of each foraging area on

a year-to-year basis.

Several authors [18,26,77] have called for studies that integrate

satellite telemetry data to ground truth the use of isotopic data as

proxies for habitat use and diet. Validation of stable isotope

analysis with tracking has recently been done in other migratory

species (several sea bird species [86], albatrosses [19], kittiwake

[52], Procellariiform species [33], fin whales [87]). With regard to

sea turtles, a combination of satellite tracking and stable isotope

analysis has been used in juvenile [23], adult male [25] and adult

female loggerheads nesting in Japan [20] and Greece [24], and

adult leatherbacks [34]. Our study, as well as previous studies in

loggerheads, supports the use of stable isotope analysis to infer

post-nesting foraging grounds. However, while Zbinden et al. [24]

found only d15N to be informative in the Mediterranean, our study

in the NW Atlantic, as well as Hatase et al. [20] in the NE Pacific,

used both d13C and d15N to assign post-nesting migration

destinations. Interestingly, Hatase et al. [20] found differences in

d13C and d15N to be caused by a neritic/oceanic gradient, while

we found them to be associated with a latitudinal gradient.

Therefore, while we support the use of stable isotope analysis in lieu

of more expensive satellite tags, we emphasize the need to validate

the use of isotopic signatures with satellite telemetry on a sub-

sample of individuals because oceanographic processes that affect

baseline stable isotope ratios differ among ocean basins and

geographical regions and, thus, data interpretations without

validation can be misleading.

Conclusions
The Carr NWR hosts approximately 25% of all the nests laid by

the NWA loggerhead Florida Peninsular Recovery Unit, which in

turn makes up the greatest majority of the NWA female

population. Therefore, to identify key foraging areas used by

females nesting at Carr NWR is particularly important for the

persistence of the species as a whole. Using a combination of

satellite telemetry and stable isotope analysis we not only identified

prime foraging areas -whose importance was previously unknown-

but also validated the use of stable isotope analysis as a tool to

derive post-nesting migration destinations for the most important

breeding aggregation of this Recovery Unit. We provided the first

documentation that the continental shelf of the Mid- and South

Atlantic Bights offer essential foraging areas for a large number

(61%) of adult female loggerheads of the NWA Florida Peninsular

Recovery Unit. These same areas have been found to be extremely

important for loggerheads of the NWA Northern Recovery Unit

[47,59,60]. Our findings suggest that a large proportion of NWA

Florida Peninsular Recovery Unit loggerheads are likely to be

found within the USA Economic Exclusive Zone, potentially

simplifying strategies for the conservation of the two most

numerous Recovery Units of the NWA loggerhead populations.

We agree with Hawkes’ conclusion [47] that models integrating

loggerhead spatial data (e.g. home range, niche models), anthro-

pogenic threat data (e.g. from commercial fisheries and future

plans for offshore oil drilling) and climate change are needed to

identify hotspots to prioritize for conservation management.

After validating stable isotope analysis with satellite tracking, we

suggest using isotopic signatures to assign turtles to foraging

regions to scale up knowledge obtained from a limited number of

individuals equipped with satellite tags to sample sizes that are

more representative at the population level. Regular monitoring of

foraging locations for nesting females will open new opportunities

Isotopic Signatures of Loggerhead Foraging Areas
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to investigate carry-over effects (sensu Norris [88]: any event

occurring in one season that influences individual performance in

a non-lethal manner in subsequent season) and assess variation in

relative importance of foraging grounds that, in turn, may reflect

changes in environmental conditions (e.g. food availability) or

anthropogenic stress (e.g. differential fishing pressure, pollution).

Supporting Information

Figure S1 Displacement from release site plot of
loggerheads equipped with satellite tags that followed
the northern strategy and migrated between summer
and winter foraging areas (turtle a–f). Phases of migration

are represented by rapid changes in displacement distance;

summer and winter foraging areas can be seen where displacement

values plateau. Note differences in y-axis scale among Figure S1,

S2 and S3.

(TIF)

Figure S2 Displacement from release site plot of
loggerheads equipped with satellite tags that resided
in eastern central Florida (turtle g–j).
(TIF)

Figure S3 Displacement from release site plot of
loggerheads equipped with satellite tags that followed
the southern strategy and took up year-round residence
in southern foraging grounds (turtle k–n). Phases of

migration are represented by rapid changes in displacement

distance. Year-round foraging areas can be seen where displace-

ment values plateau.

(TIF)
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