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Efforts in the treatment of glioma which is the most common primary malignant tumor of
the central nervous system, have not shown satisfactory results despite a comprehensive
treatment model that combines various treatment methods, including immunotherapy.
Cellular metabolism is a determinant of the viability and function of cancer cells as well as
immune cells, and the interplay of immune regulation and metabolic reprogramming in
tumors has become an active area of research in recent years. From the perspective of
metabolism and immunity in the glioma microenvironment, we elaborated on arginine
metabolic reprogramming in glioma cells, which leads to a decrease in arginine levels in
the tumor microenvironment. Reduced arginine availability significantly inhibits the
proliferation, activation, and function of T cells, thereby promoting the establishment of
an immunosuppressive microenvironment. Therefore, replenishment of arginine levels to
enhance the anti-tumor activity of T cells is a promising strategy for the treatment of
glioma. However, due to the lack of expression of argininosuccinate synthase, gliomas are
unable to synthesize arginine; thus, they are highly dependent on the availability of arginine
in the extracellular environment. This metabolic weakness of glioma has been utilized by
researchers to develop arginine deprivation therapy, which ‘starves’ tumor cells by
consuming large amounts of arginine in circulation. Although it has shown good results,
this treatment modality that targets arginine metabolism in glioma is controversial.
Exploiting a suitable strategy that can not only enhance the antitumor immune
response, but also “starve” tumor cells by regulating arginine metabolism to cure
glioma will be promising.

Keywords: glioma, arginine metabolism, T lymphocytes, tumor microenvironment, metabolic reprogramming
INTRODUCTION

Glioma is the most common primary malignant tumor of the central nervous system (CNS),
accounting for 48% of all primary malignant CNS tumors (1); the most malignant type of glioma is
glioblastoma (GBM). Although various treatment modalities including surgery, radiotherapy,
chemotherapy, tumor treatment fields, molecular targeted therapy as well as supportive care have
been employed in the treatment of GBM, the median survival time of the patients is less than two
years, and the 5-year survival rate is less than 10% (2). The main reasons for the poor prognosis of
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patients with GBM are tumor infiltration, recurrence, and
resistance to conventional therapy, which are closely related to
intra-tumoral heterogeneity and phenotypic plasticity in
GBM (3).

The CNS was considered an immune-privileged organ.
However, this dogma was broken with the discovery that
lymphatic vessels exist in the CNS (4) and that immune cells can
cross the blood-brain barrier (BBB) (5). Many innate and acquired
immune cells reside in the boundary zones of the CNS (6, 7).
Different from the brain parenchyma, there is a large amount of
lymphocyte infiltration that mediates the immune response (8). The
lymphatic system in the meninges, and the cerebrospinal fluid, and
the lymphocytes present in the meninges form a relatively mature
network. This network allows antigens in the cerebrospinal fluid to
enter the lymphatic system through the cervical lymph nodes,
thereby initiating the activation of T cells (9, 10). This process has
been confirmed in various diseases, including GBM. However, in
pathological conditions such as GBM, the blood-brain barrier is
destroyed; this results in increased permeability. Leukocytes,
including antigen-presenting cells, enter the CNS through the
choroid plexus, meningeal barrier, and postcapillary venules (5,
11), leading to infiltration of immune cells into tumor tissues (12,
13). GBM is a “cold” tumor owing to a lack of lymphocyte
infiltration (14). The immune cells that infiltrate GBM are mainly
macrophages and lymphocytes, such as CD4+ and CD8+ T cells;
the concentration of T lymphocytes is positively correlated with the
survival time of patients (15).

Advances in immunotherapy, such as the use of immune
checkpoint inhibitors, have revolutionized cancer therapy.
Unfortunately, these have been unsuccessful in the treatment of
GBM (14, 16). The main obstacle in the treatment of GBM is the
heterogenous and immunosuppressed tumor microenvironment,
which results partly due to altered cellular metabolism (17).
Cellular metabolism has become a determinant of the viability and
function of cancer cells as well as immune cells. Tumors are
metabolically reprogrammed to maintain enormous anabolic
demands, which leads to the development of a microenvironment
that is acidic, hypoxic, and devoid of the key nutrients required by
immune cells. In this context, tumor metabolism is a checkpoint
because it mediates tumor immune escape (18). The interplay
between immune regulation and metabolic reprogramming in
GBM is an active and stimulating area of research (18, 19). For
example, enhanced glycolysis results in a glucose-starved
microenvironment that makes tumors more aggressive. Glucose is
a key nutrient that supports the rapid and dynamic transition of
immune cells from the naïve state to an activated state (20).
Reprogramming of amino acid metabolism in tumors often
involves nutritional competition between cancer and immune cells.
A largenumberofbasicandclinical studieshave shownthat theuseof
new drugs that target tumor-dependent amino acid metabolism can
effectively inhibit tumor growth. We noticed that arginine in the
GBM microenvironment may be associated with the antitumor
function of T lymphocytes.

Arginine promotes a series of metabolic reactions, including
the synthesis of nitric oxide, polyamines, glutamine, and proline,
all of which are important regulators of cell growth and survival
Frontiers in Oncology | www.frontiersin.org 2
(21). Arginine also exerts an essential regulatory effect on the
immune system. Arginine-deficient T cells exhibit cell cycle
arrest, impaired proliferation, reduced activation, and reduced
antitumor activity (22–25). The reprogramming of arginine
metabolism in GBM includes upregulation of the expression of
amino acid transporters for intake of arginine, upregulation of
the expression of arginase to decompose arginine, and
downregulation of the expression of key enzymes involved in
the endogenous arginine synthesis pathway. The former causes a
deficit of arginine in the microenvironment, thereby inhibiting
the function of T lymphocytes and promoting the formation of
an immunosuppressive microenvironment. The latter represents
a defect in cancer cell metabolism, and targeting this metabolic
defect is a strategy used for treating tumors. Since the rate of
proliferation of cancer cells is much higher, they require more
nutrients, which exceeds their ability to synthesize amino acids
(26). Cancer cells are dependent on extracellular arginine
because of the decreased expression of arginine-synthesizing
enzymes , a rg in inosucc ina t e syn thase (ASS1) and
argininosuccinate lyase (ASL). In the absence of extracellular
arginine, cancer cells become arginine dystrophic, or “arginine
auxotrophic” (27). This strategy has been successfully used to
treat acute lymphoblastic leukemia, in which asparaginase
combined with chemotherapy has become the standard
treatment (28). Mycoplasma infection was initially found to
kill cancer cells (29). It was subsequently found that this is due
to arginine deaminase (ADI), which degrades arginine in
Mycoplasma (30, 31). Researchers then began using arginine
deaminase and another enzyme, arginase (ARG), to break down
arginine for the treatment of various tumors, including gliomas.
Extensive preclinical and clinical research is being conducted on
arginine deprivation therapy (32).

In this review, we describe how the unique metabolism of
arginine in the glioma microenvironment leads to the suppression
of the antitumor activity of T lymphocytes, thereby leading to tumor
immune escape.We also discuss how targeting arginine metabolism
in gliomas not only inhibits tumor growth, but also promotes
effective and durable antitumor immunity.
METABOLISM OF ARGININE

Arginine Metabolism in Humans
Arginine is a semi-essential amino acid that is found in adults.
The humans can synthesize arginine, but under certain
physiological stresses, such as burns or severe immune
challenges, the humans needs to supplement dietary arginine
(33–36). Arginine in adult circulation has a short half-life (37).
Plasma arginine concentration is regulated by dietary arginine
intake, endogenous arginine synthesis, arginine catabolism,
hepatic urea cycle, and protein synthesis. It is important to
note that changes in the dietary intake of arginine do not alter
the rate of its endogenous synthesis, which lays the foundation
for targeting arginine metabolism for the treatment of some
specific diseases (38). Endogenous arginine is mainly synthesized
July 2022 | Volume 12 | Article 938847
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through the intestinal–renal axis (39, 40). Although the urea
cycle in the liver can synthesize arginine, there is very little net
arginine synthesis in the liver (41, 42).

CNS tumors, such as gliomas, require more arginine;
however, the CNS cannot increase the synthesis of arginine to
meet the needs of cancer cells, and it can only increase arginine
intake from the blood (43). For infiltrating immune cells,
macrophages can express both ASS1 and ASL to synthesize
arginine from citrulline (44, 45), which may be related to the
fact that macrophages can account for 30%-50% of cells in the
glioma microenvironment (46). However, not all immune cells
simultaneously express all the enzymes required for de novo
synthesis of arginine. For example, T cells rely only on a
circulating supply of arginine or its immediate precursor.

In addition to protein synthesis, arginine has multiple
functions such as vasodilation, neurotransmission, cell
proliferation, and immune regulation (47, 48). The effect of
arginine on the immune system has been gradually discovered
in the last century. In 1968, the inhibitory effect of arginine
deficiency on T lymphocyte activation in vitro was first described
(49). Clinically, arginine is required for wound healing (50–52).
Immune-enhancing diets (IED) use dietary arginine to stimulate
the immune system (53, 54). These diets contain two to six times
the arginine content of a normal diet. IEDs can boost immunity
in trauma patients and reduce infection risk in surgical patients
(55–57). It is important to note that IEDs do not benefit all
patients (58). Determining whether arginine metabolism
modulates immune cell function in specific diseases will
undoubtedly lead to the development of more efficient
individualized treatments.
Frontiers in Oncology | www.frontiersin.org 3
Metabolism of Arginine in Cells
The intracellular arginine concentration is much higher than the
extracellular or plasma arginine concentration. The arginine
transporter in most cells is CAT-1, which transports arginine
into cells to form the arginine pool. Several enzymes can break
down arginine, including arginase, nitric oxide synthase (NOS),
arginine decarboxylase, and arginine: glycine amidinotransferase
(Figure 1) (33, 59).

Quantitatively, arginase is the most important enzyme for
arginine decomposition in the body (60). Intracellular arginase
hydrolyzes arginine to urea and ornithine. There are two arginase
isoenzymes in humans, arginase 1 (Arg1) and arginase 2 (Arg2).
Arginase 1 is located in the cytoplasm, its expression is restricted to
specific cell types. Moreover, it is transcriptionally regulated by
cytokines. Arginase 2 is primarily located in the mitochondria and
exhibits a more ubiquitous and constitutive expression pattern,
independent of cytokine regulation (61, 62). Ornithine is a
metabolite of arginine. Ornithine can enter the urea cycle and is
converted to citrulline by ornithine transcarbamylase (OTC).
Citrulline synthesizes argininosuccinate through ASS1, which in
turn synthesizes arginine through ASL, thus repeating the urea
cycle. Ornithine can also generate polyamines via ornithine
decarboxylase (ODC). Polyamines, including putrescine,
spermine, and spermidine, are important products of the arginase
metabolic pathway and have tumor-promoting effects (60, 63).

NOS is another important enzyme that breaks down arginine.
It breaks down arginine to produce nitric oxide (NO) and
citrulline. Notably, arginine is the only substrate for NO
production (64). Intracellular arginine increases NO production
in a dose-dependent manner (65). There are three distinct
FIGURE 1 | Diagram of the arginine metabolism pattern in normal cells. After entering the extracellular matrix from the circulation, arginine enters the cell through the
CAT-1 transporter on the cell membrane. Arginine can be broken down by NOS into NO and citrulline, or be broken down by arginase into ornithine, thus entering
the urea cycle. Ornithine can also generate polyamines through ODC. Arginase II in mitochondria is also involved in the degradation of arginine. NO, Nitric oxide;
NOS, nitric oxide synthase; ARG, arginase; ODC, ornithine decarboxylase; OTC, ornithine transcarbamylase; ASS1, argininosuccinate synthase; ASL,
argininosuccinate lyase.
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isoforms of nitric oxide synthase in the body: NOS1, NOS2, and
NOS3, which are encoded by different genes. NOS1 and NOS3 are
constitutively expressed in neural and endothelial cells,
respectively. NOS2 is a ubiquitous isoform in immune cells, but
is not constitutively expressed. Instead, its expression is induced by
lipopolysaccharide and inflammatory cytokines; thus, it is called
inducible NOS. The roles of NO in tumors are conflicting andmay
depend on the concentration of NO, type of effector cells, and
duration of exposure (66). In general, low concentrations of NO
may promote carcinogenesis, cancer cell proliferation, and tumor
angiogenesis (67). However, high concentrations of NO can exert
cytotoxic effects on tumor cells by inducing DNA damage (68).
The complex role of NO in tumors suggests that a comprehensive
evaluation of the effect of NO on tumors in vivo is essential when
targeting arginine metabolism for the treatment of gliomas.
REPROGRAMMING OF ARGININE
METABOLISM IN GLIOMA

Healthy adults obtain arginineprimarily throughdietary intake and
intracellular protein degradation but can also synthesize arginine
when needed. This is sufficient to meet the body’s general arginine
requirements (69). However, owing to metabolic reprogramming,
cancer cells have a greater demand for arginine and rely on the
extracellular pool of arginine to sustain their growth (70, 71).
Moreover, ASS1 and ASL are downregulated in cancer cells,
resulting in the inability to synthesize endogenous arginine,
which makes cancer cells more dependent on the extracellular
arginine pool (21, 72). This has laid the foundation for arginine
deprivation therapy. The expression of ASS1 is varied in different
types of tumors; further, the expression of ASS1 is heterogenous
even within the same tumor, reflecting tumor heterogeneity
(Figure 2). In the case of gliomas, 30% of GBM cell lines lack
ASS1 expression (Figure 3) (73). In general, the downregulation of
ASS1 is mediated by promoter methylation or hypoxia-inducible
factor (HIF) 1a in multiple cancers. ASS1 levels in cancer are
Frontiers in Oncology | www.frontiersin.org 4
differentially regulated under various environmental conditions to
metabolically benefit cancer progression. For example, ASS1 is
downregulated under acidic conditions, and ASS1-depleted
cancer cells maintain a higher intracellular pH, depend less on
extracellular glutamine, and display higher glutathione levels.
Cancer cells in an acidic or hypoxic environment downregulate
the expression of the urea cycle enzymeASS1, which provides them
with redox and pH advantages, resulting in better survival (74). In
response to genotoxic stress, p53 directly promotes ASS1
expression, resulting in increased ASS1 activity. P53-mediated
ASS1 induction is a systemic response to genotoxic stress, which
can lead to the rearrangement of arginine metabolism at the
organism level, as seen in mice (75). Additionally, proline,
creatine, and metabolites related to the arginine synthesis
pathway were upregulated in ASS1-positive GBM cells compared
to ASS1-negative cells. Pyruvic acid, citric acid, and a-ketoglutaric
acid aremetabolites in the initial phaseof the citric acid cycle andare
decreased in ASS1 positive cell lines (32). Similarly, tumor cells
resistant to the arginine deprivation agent ADI-PEG20, which had
upregulatedASS1 expression comparedwith sensitive cells, showed
enhanced expression of glucose transporter-1 and lactate
dehydrogenase-A, reduced expression of pyruvate dehydrogenase,
and elevated sensitivity to the glycolytic inhibitors, 2-deoxyglucose
and 3-bromopyruvate, consistent with the enhanced glycolytic
pathway (the Warburg effect). Simultaneously, these cells showed
higher glutamine dehydrogenase and glutaminase expression (76).
Furthermore, activity-based proteomic profi l ing and
phosphoproteomic profiling were performed before and after
ADI-PEG20 treatment of ADI-PEG20-sensitive and -resistant
sarcoma cells. Proteomic changes that facilitate oxaloacetate
production by enhancing glutamine and pyruvate anaplerosis and
altering lipid metabolism to recycle citrate for oxidative
glutaminolysis have been elucidated (77). However, whether
alterations in these metabolites affect the biological characteristics
of gliomas is unclear. However, there is evidence that ASS1may act
as a tumor suppressor gene. For example, patients with GBM
lacking ASS1 expression have worse prognosis than ASS1-
FIGURE 2 | The expression of ASS1 in human normal tissue and cancer cells.The gene expression profile across all tumor samples and paired normal tissues. The
figure was excerpted from GEPIA2 (http://gepia2.cancer-pku.cn/#index).
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positive patients (32). Consistent with this finding, decreased ASS1
levels were also significantly associated with postoperative lung
metastases and poor clinical outcomes in patients with
osteosarcoma. In preclinical studies, overexpression of ASS1
inhibited tumor growth (78). Epigenetic silencing of ASS1 can
stimulate tumor cell proliferation andmigration (79). These results
suggest that ASS1 is a tumor suppressor gene (80). Interestingly,
ASS1 may have opposite effects on other tumors. For example, the
expression of ASS1 in gastric cancer can promote the invasion of
cancer cells, resulting in poor prognosis in patients with gastric
cancer (81, 82). Additionally, high ASS1 levels are an indicator of
poor disease-free survival in patients with head and neck cancer
(83). The dual role of ASS1 in tumors is not fully understood.
However, these findings indicate that it is essential to fully
understand the expression of ASS1 and its role, before using
arginine deprivation therapy for the treatment of specific tumors.
The influence of individual differences and tumor heterogeneity
should also be considered. The mechanism of ASS1
downregulation, even though not fully elucidated, is undoubtedly
beneficial for tumors if ASS1 acts as a tumor suppressor gene.
Recent studies have shown that epigenetic changes in two genes
involved in arginine biosynthesis in gliomas, namely CpG island
methylation ofASS1 andASL, lead to decreased protein expression.
Frontiers in Oncology | www.frontiersin.org 5
This results in glioma sensitivity to arginine deprivation
therapy (84).

Reprogramming of arginine metabolism in gliomas provides
a new approach for targeted therapy. But the downside is that
this reprogramming also profoundly affects the infiltrating T
lymphocytes. This has often been overlooked by researchers who
use arginine deprivation therapy to treat gliomas. However, it is
not clear whether adaptive changes in T lymphocytes in an
arginine-deficient environment can cause glioma tolerance to
arginine deprivation therapy. In the following discourse, we
explain how gliomas cause a deficit of arginine in the tumor
microenvironment and subsequent immunosuppression.
GLIOMA LEADS TO AN ARGININE-
DEFICIENT IMMUNOSUPPRESSIVE
MICROENVIRONMENT

Glioma Leads to an Arginine-Deficient
Microenvironment
Solid tumors reside in harsh tumor microenvironments together
with various stromal cell types. Tumor cells metabolically
coordinate or compete with their “neighbors” to meet
FIGURE 3 | Arginine reprogramming in glioma cells. In glioma cells, ASS1 expression was downregulated while CAT-1 and arginase were upregulated. The
upregulated arginase is mainly arginase II located in the mitochondria. The use of ADI-PEG20 and HuArgI(CO)-PEG5000 to break down Circulating arginine results in
a significant decrease in arginine concentration in the extracellular environment. Among the downstream metabolites of arginine, polyamines can promote tumor
proliferation and metastasis, low concentrations of NO promote tumor proliferation and angiogenesis, and high concentrations of NO cause DNA damage. NO, nitric
oxide; NOS, nitric oxide synthase; ARG, arginase; ODC, ornithine decarboxylase; OTC, ornithine transcarbamylase. ASS1,, argininosuccinate synthase; ASL,
argininosuccinate lyase.;ADI-PEG20, pegylated arginine deaminase; HuArgI(CO)-PEG5000 ,Pegylated recombinant human arginase I.
July 2022 | Volume 12 | Article 938847
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biosynthetic and bioenergetic demands, while escaping
immunosurveillance or therapeutic interventions. The
consumption of essential nutrients by cancer cells directly
limits the availability of nutrition to the tumor-killing immune
cells; this is observed especially with cytotoxic T cells, leading to
impaired antitumor immunity. In addition to rapid proliferation,
cancer cells outcompete cancer cells by overexpressing
transporters for nutrient uptake, and enzymes for nutrient
catabolism (85). By upregulating amino acid transporters,
glioma cells take up more arginine from the extracellular
environment to meet their own proliferation and metabolism
requirements. As their requirement of arginine is more than
what they are capable of synthesizing, they are highly dependent
on arginine availability in the extracellular environment.
Therefore, arginine is an essential amino acid (86, 87).
Elevated arginine catabolism is a common feature of the tumor
microenvironment. The most important enzyme involved in
arginine catabolism is arginase, which converts arginine into
urea and ornithine. Arginase expression and activity are
increased in patients with cancers including glioma, colon
cancer, lung cancer, breast cancer, thyroid cancer, prostate
cancer, compared to the surrounding healthy tissues in these
patients (Figure 3) (88, 89). Arginase II is a major subtype
expressed by tumor cells (90, 91). Moreover, arginase II is
released from tumor cells, such as acute myeloblastoma, and is
present in patient plasma at high concentrations (91). Whether
arginase II is released outside the cell depends on the type of
tumor, as neuroblastomas do not release free arginase II (90). It is
unclear whether glioma cells that highly express arginase II
release this enzyme. However, regardless of whether tumor
cells release arginase, tumors with high arginase expression
lead to local and systemic arginine deficiency. For example,
patients with renal cell carcinoma and cervical cancer have a
corresponding decrease in plasma arginine concentrations at
diagnosis, which leads to a poorer prognosis (92, 93).

The increased uptake of arginine and high expression of arginase
by tumor cells results in an immunosuppressive phenotype. As
mentioned above, arginine deficiency leads to a series of inhibitory
phenotypes such as decreased T-cell activation, impaired
proliferation, and cycle arrest through multiple mechanisms. It was
found that co-culture ofArg2-expressing cancer cellswithT cellswas
sufficient to induce arginine depletion and lead to impaired T-cell
proliferation, decreased IFN-g release, and PD-1 upregulation (25).
Moreover, T-cell andmyeloid cell infiltration is reduced in head and
neck squamous cell carcinomaswithhigh arginase II expression (94).
Likewise, in acutemyeloid leukemiawith high arginase II expression,
the surrounding monocytes were more polarized to M2-like
macrophages (91). Conversely, arginine replenishment (95) or the
use of small-molecule inhibitors of arginase II (91) can alleviate
arginine-deficient immunosuppression and reduce T-cell
dysfunction (25).

In addition to tumor cells, immunosuppressive cells
expressing arginase 1 form an inhibitory immune barrier. The
accumulation of ARG1-expressing immunomodulatory cells,
including M2-like tumor-associated macrophages, tolerogenic
DCs, MDSCs, and Treg cells, in the tumor microenvironment
Frontiers in Oncology | www.frontiersin.org 6
(TME) may suppress antitumor immunity by degrading
arginine, thus limiting the availability of this amino acid to T
cells (96, 97). Mouse and human tumor cells can secrete soluble
factors, such as GM-CSF and G-CSF, which lead to the
recruitment and accumulation of MDSCs (98). In GBM
patients, the number of circulating MDSCs with high Arg1
expression increases (99). Overexpression of Arg1 in MDSCs
leads to downregulation of the CD3z chain, which adversely
affects CD4+ and CD8+ T cells (100). Additionally, MDSCs
exhibit functional similarities to M2-like macrophages (101),
including IL-10, TGF-b, and IDO expression (102). This suggests
that immunosuppressive cells are closely linked to arginine
metabolism; however, this requires further investigations.

Depleting important nutrients such as arginine is a key
strategy for cancer cells to evade immunity. Although many
tumors are arginine auxotrophic (21), a large proportion can
tolerate a low-arginine state (91, 103). This suggests that there
must be a unique mechanism that allows these tumors to tolerate
an arginine-deficient environment. These tumor cells can
synthesize arginine from citrulline by upregulating ASS1. In
the absence of arginine, ASS1 transcription is induced by the
binding of ATF4 and CEBPb to the enhancer of ASS1. But in T
cells, the situation is completely different. Arginine deficiency
leads to chromatin compaction and inhibits histone methylation
in T cells, which disrupts the binding of ATF4 and CEBPb to
ASS1 enhancers and prevents the transcription of target genes
(104). These findings help explain the differences in arginine
metabolism between tumor cells and T cells and can aid in the
development of more effective targeted therapies for the
treatment of gliomas.

Arginine Deficiency Suppresses the
Antitumor Function of T Lymphocytes
Tumor-infiltrating immune cells typically experience metabolic
stress as a result of the dysregulated metabolic activity of tumor
cells, leading to impaired antitumor immune responses.
Activated T cells consume a large amount of arginine and
rapidly convert it into downstream metabolites, resulting in a
significant decrease in intracellular arginine levels. T cells are
extremely sensitive to extracellular concentrations of arginine
because of their low or absent expression of arginine synthase
ASS1 and OTC (105, 106). Various studies have demonstrated
that arginine deficiency leads to decreased T-cell activation,
impaired proliferation, cycle arrest, decreased cytokine (IFN-g)
release, and increased expression of immunosuppressive
molecules (PD-1) (Figure 4) (22–25). The low arginine levels
in the TME also impairs the proliferation of chimeric antigen
receptor T cells (CAR-T), limiting their therapeutic effects (107).

In contrast to the lack of arginine, high arginine levels can
increase the antitumor activity of T cells, which may be due to a
combination of phenotypic alterations, including increased T-
cell viability, improved metabolic adaptability, and maintenance
of a central memory-like phenotype (95). Therefore, sufficient
extracellular arginine is critical for T-cell function. Researchers
have exploited the beneficial effects of arginine on T-cell survival
and antitumor function to improve adoptive T-cell therapy. For
July 2022 | Volume 12 | Article 938847
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example, CAR-T cells have been reconstituted to express the
enzymes ASS1 and OTC, which are required for arginine
synthesis. This increases the arginine content in CAR-T cells,
thus enhancing the activity of CAR-T cells in vivo against solid
and hematological tumors (107).

Arginine deficiency-mediated suppression of T-cell function
is caused due to a myriad of factors including downregulation of
the CD3z subunit of the T-cell receptor complex (108–111),
damage to cofilin dephosphorylation (112), blockade of protein
translation by activation of general control nonderepressible 2
(GCN2) (113), blockage of glycolysis (114), decreased expression
of early T-cell activation markers CD25 and CD69 (115), and
aberrant expression of D-type cyclins (22, 116, 117).

It is important to note that most studies on the effects of
arginine on T cells are based on interventions in extracellular
arginine concentrations. For example, change in the
concentration of arginine in the T-cell medium. However,
extracellular and intracellular arginine pools are not freely
interchangeable (118), which means that extracellular arginine
supply may not be a reliable indicator of intracellular arginine
availability. Recent studies on Arg2 in T cells further
demonstrated that the intracellular metabolism of arginine
profoundly alters T-cell function. Pharmacological inhibition
of arginase increases activation and survival of human T cells
in vitro. Since human T cells express ARG2, but not ARG1, this
suggests that such effects are caused by Arg2 (48). Studies have
also found that deletion of Arg2 germline and adoptive transfer
of Arg2−/− CD8+ T cells significantly reduced tumor growth in
preclinical cancer models by enhancing CD8+ T-cell activation,
cytotoxic function, and persistence (48, 119). Importantly, these
experiments were performed under arginine excess conditions
and, therefore, did not depend on extracellular arginine
Frontiers in Oncology | www.frontiersin.org 7
availability. This indicates that the observed changes are
mainly caused by a cellular autonomous mechanism, and that
we should focus on the direct effects of intracellular arginine
pools on T-cell functions.
ARGININE REPLENISHMENT THERAPY
FOR GLIOMA

Researchers have attempted arginine replenishment therapy to
treat tumors, by increasing the availability of arginine to improve
antitumor immunity. One study found that oral administration
of arginine and an anti-PD-L1 antibody restricted tumor growth
and increased survival in mice, suggesting a synergistic effect of
arginine and PD-L1 blockers. To achieve the desired antitumor
effect, mice must be administered a relatively high dose of
arginine (2 mg/g of body weight). In comparison, an adult
patient weighing 75 kg would require 150g of arginine per day,
which is unrealistic. Therefore, researchers have developed
metabolically engineered bacteria called L-Arg bacteria, to be
planted in the tumors, which will produce large amounts of
arginine. L-Arg bacteria and PD-L1 blockers can synergistically
inhibit tumor growth, increase the infiltration of CD4+ and
CD8+ T cells, and reduce the infiltration of Treg cells in the
tumor. Further studies also found that this combination reduced
the percentage of PD-1+LAG-3+ T cells, indicating the
persistence of effector T-cell function with the simultaneous
increase in the formation of tumor-specific memory T cells
(120). Similar studies have found that arginine increases
radiosensitivity in patients with brain metastases. Additional
oral administration of arginine before standard radiotherapy in
31 patients with brain metastases significantly improved the
FIGURE 4 | Arginine-deficient glioma microenvironment suppresses T-cell function.
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therapeutic effect of radiotherapy. This therapeutic effect is due
to NO-induced metabolic inhibition, which increases the
susceptibility of NOS2-expressing cancer cells to DNA damage
(121). NOS2 activity is required for tumor brain metastasis and it
can decompose arginine to NO. Arginine increases
radiosensitivity through an NO-mediated mechanism, and
high intratumoral NO concentrations lead to a decrease in
tumor glycolysis and thus a decrease in lactate levels. These
metabolic changes ultimately impair the repair of radiation-
induced DNA damage in cancer cells. In addition, the authors
suggested that the enhanced overall antitumor effect may also be
due to immune activation. In mouse tumor models, oral
administration of arginine improved the metabolic adaptability
of T cells, which is critical for antitumor responses (95).
Administration of arginine prior to radiation therapy reversed
radiation-induced T-cell and B-cell dependent immune
dysfunction in mice (122). Although this mechanism has not
been fully elucidated, it is speculated that arginine-induced
reduction in lactate levels may also contribute to the enhanced
antitumor activity of tumor-infiltrating lymphocytes (123).
ARGININE DEPRIVATION THERAPY
FOR GLIOMA

Arginine deprivation therapy is a novel antimetabolic strategy
that exploits the differential expression of key urea cycle enzymes
to treat arginine auxotrophic tumors. Arginine deaminase (ADI),
a metabolic enzyme extracted from Mycoplasma (124), catalyzes
the conversion of arginine to citrulline. Owing to its instability,
strong immunogenicity, and short half-life (5 h), ADI is
combined with polyethylene glycol (ADI-PEG20) to reduce
antigenicity and prolong half-life (125). Synthetic human
arginase 1 (HuArgI) is another arginine deprivation agent used
to treat arginine auxotrophic tumors. Its activity is also enhanced
by adding polyethylene glycol and replacing Mn2+ with Co2+,
resulting in HuArgI(CO)-PEG5000. HuArgI(CO)-PEG5000 lasts
longer in serum, has better catalytic activity, and is less exposed
to the immune system (126–128).

If the cells were not rescued by adding citrulline after arginine
depletion, these cell lines were completely auxotrophic to arginine;
however, when rescued after adding citrulline, the cell lines became
partially auxotrophic. Pegylated recombinanthumanarginase Iwas
used to target nineGBM cell lines and human fetal glial cells (SVG-
p12), and was found to be cytotoxic to all GBM cell lines except
SVG-p12 cells, which shows selective cytotoxicity induced by
arginine deprivation. Subsequent addition of citrulline rescued
these six GBM cell lines. The ability of citrulline to rescue cells
was dependent on argininosuccinate synthase 1 expression, and
cells that were not rescued were negative for ASS1 expression.
KnockdownofASS1 reversed the ability of citrulline to rescueGBM
cells, further illustrating the dependence onASS1 expression (129).
Approximately 30% of GBMs lack ASS1 expression and can be
targetedbyarginase I,whichhasnocytotoxicity tonormal glial cells.
Likewise, depletion of arginine using pegylated arginine deaminase
resulted in cell death in vitro and tumor regression in orthotopic
Frontiers in Oncology | www.frontiersin.org 8
xenograft models, whereas ASS1-expressing GBM cells were
unaffected (84, 130). In addition, researchers also found that the
use of arginine deprivation agents in combination with other
treatments showed better therapeutic effects. Many studies have
described the molecular mechanism of arginine deprivation in
ASS1 deficient tumors, thereby uncovering additional
vulnerabilities in these tumors. This has prompted the use of
other drugs in combination with arginine deprivation therapy for
more effective killing of tumor cells. For example, TRAIL is used for
mesothelioma (131), cisplatin is used for various tumor types (132),
and chloroquine is used for sarcoma (133). The combination of
arginine deprivation and canavanine, a plant-derived arginine
analog, is a novel approach to glioma treatment. This
combination therapy profoundly affects cell viability,
morphology, motility, and adhesion. It also disrupts the
cytoskeleton and mitochondrial network, thereby inducing
apoptosis. At the molecular level, canavanine inhibits pro-survival
kinases such as FAK, AKT, and AMPK. Importantly, these effects
are selective toGBMcells, as shown by their less pronounced effects
on rat glial cells (134). Similarly, the combination of ADI and
Palomid 529, an inhibitor of mTORC1 and mTORC2 complexes,
showed a potent cytotoxic effect in glioma cell lines. In addition,
ADI combined with chloroquine showed an enhanced antitumor
effect. In vivo, ADI alone and the combination ofADI and SAHA, a
protein deacetylase inhibitor, effectively inhibited the growth of
xenograft tumors (135). A recent phase I clinical trial preliminarily
verified the therapeutic effects of arginine deprivation therapy. Ten
patients with severe ASS1-deficient recurrent high-grade gliomas
were treated with ADI-PEG20 in combination with pemetrexed
and cisplatin. The treatment was safe and well tolerated by the
patients. The best overall response was stable disease in eight
patients (80%). The results showed that the treatment was well
toleratedand80%ofpatientshad stable overall efficacy,withplasma
arginine significantly suppressed below baseline levels. However,
the titers of anti-ADI-PEG20 antibodies in patients increased,
indicating the production of neutralizing antibodies, which may
affect the therapeutic effect ofADI-PEG20 (136).Additional clinical
studies on arginine depletion in glioma treatment are presented
in Table 1.

The above findings suggest that arginine deprivation therapy is
only effective inASS1-negative glioma and has little effect onASS1-
positive glioma (including adaptive transcriptional upregulation of
ASS1 after treatment), which greatly limits the clinical applications
of ADT. Therefore, researchers have attempted to combine ADT
with other treatmentmodalities to improve the curative effect of the
treatment for ASS1-positive gliomas. Animals bearing intracranial
human GBM tumors of varying ASS status were treated with ADI-
PEG20 alone or in combinationwith temozolomide andmonitored
for tumor growth and regression. ADI-PEG20 monotherapy
significantly reduces intracranial growth of ASS1-negative GBM
and extends survival of mice carrying ASS1 negative GBMwithout
obvious toxicity. ADI-PEG20 combined with temozolomide shows
enhanced antitumor effects in both ASS1-negative and ASS1-
positive backgrounds. The mechanism underlying this effect is
unclear, but these results suggest that ADI-PEG20 in
combination with TMZ may be clinically useful in both ASS1-
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negative and ASS1-positive settings (130). In addition, ADT
combined with radiotherapy may be a new treatment strategy for
patients with GBM. ADT caused significant radiosensitization,
which was more pronounced in a GBM cell model with loss of
function of p53 than in its p53- wildtype counterpart. This
synergistic effect was independent of basic and induced ASS1 or
ASL expression (137). ADI-PEG20 also significantly enhanced the
efficacy of radiotherapy for ASS1-positive GBM in vivo (73).
However, ADT combined with radiotherapy has not yet been
studied in clinical trials.

The mechanism of glioma cell death in the absence of
arginine has not yet been fully elucidated. GBM exhibits
caspase-independent, non-apoptotic cell death upon arginine
deprivation. The latter, a process known as autophagy,
provides a temporary but limited supply of arginine through
the destruction of intracellular organelles. Therefore, this process
protects against cell death, but leads to non-apoptotic death in
the long run. The autophagy inhibitor, chloroquine, was added to
GBM cells treated with HuArgI(CO)-PEG5000. As expected, the
inhibition of autophagy increased the sensitivity of cells to
HuArgI(CO)-PEG5000 (129, 138). After emphasizing the effect
of arginine deficiency on cell viability, it is important to observe
the effect of arginine deficiency on cell motility and migration
ability. Arginine deficiency affects tumor cell morphology and
inhibits motility, invasiveness, and adhesion. Moreover, it has
little effect on normal glial cells. This is because of specific
changes in actin assembly caused by arginine deprivation in
gliomas. Arginine deprivation reduces b-actin filament content
and affects N-terminal arginylation. This suggests that arginine
deprivation-based therapeutic strategies can inhibit the invasive
process of highly malignant brain tumors (139).

The combined treatment with ADI-PEG20 significantly
enhanced the efficacy of GBM radiotherapy in a non-arginine
auxotrophic background. This combination results in a durable,
complete radiological, and pathological response. It also
prolonged disease-free survival in an in situ model of GBM
with no apparent toxicity (73). Further studies found that the
combination treatment resulted in downregulation of Arg1 and
upregulation of inducible NOS. Under arginine-deficient
conditions, inducible NOS has a higher affinity for arginine
Frontiers in Oncology | www.frontiersin.org 9
than for Arg1. Combination therapy increased the production
of NO, which further formed cytotoxic peroxynitrite (140). This
could enhance the sensitivity of ASS1-positive GBM to ionizing
radiation (141). In addition, arginine deficiency greatly reduces
vasogenic edema and neovascularization, which are typical
features of GBM (142, 143). The antiangiogenic activity of ADI
appears to be partly due to the twisting of actin filaments, which
prevents blood vessels from sprouting, blooming, and growing.
ADI-PEG20 also inhibits HIF, particularly HIF-1a (144). HIF-
1a is associated with a decrease in the expression of vascular
endothelial growth factor, which induces blood vessel growth.
HIF has also been implicated in the pathogenesis of GBM (145).
High HIF-1a levels also reduce glioma responsiveness to TMZ
(146). Thus, ADI-PEG20 has antitumor effects, at least in part,
due to its anti-HIF effects.

The antitumor properties of ADT have been extensively
investigated. ADT inhibits the growth of auxotrophic cancers in
vitro and in vivo. However, its impact on immune cells in the tumor
microenvironment remains, largely, unknown. The removal of
arginine can theoretically impair the immune function of T cells.
Interestingly, ADI-PEG20 led to a marked increase in tumor-
infiltrating CD4+ and CD8+ T cells in a syngeneic B16-F10-
melanoma mouse model (147). Similarly, arginine deprivation
combined with radiotherapy increased recruitment of microglia
into tumors in a glioma model and enhanced their activity and
phagocytic phenotype. Arginine deprivation switched the activation
of tumor-associated macrophages/microglia from a tumor-
supporting phenotype to a more phagocytosis-competent and,
hence, tumor-inhibiting phenotype. Simultaneously, a significant
increase in the number of CD4+ and CD8+ T cells and a
corresponding decrease in FoxP3+ regulatory cells was observed
in the glioma microenvironment (73). Despite the increased
number of infiltrating T cells, it remains unknown whether T-cell
function is affected. It is important to further explore changes in the
tumor immune microenvironment after ADT treatment.

Studies on the potential mechanism of ADT resistance have
found that the re-expression of ASS1, production of neutralizing
antibodies to arginine deprivation agents, and autophagy are the
main causes. ADT, by nutrient starvation or exposure to ADI-
PEG20, induces adaptive transcriptional upregulation of ASS1 and
TABLE 1 | Clinical studies on arginine depletion in glioma treatment.

Disease Treatment Clinical
phase

No. of patients Status Clinical Trials.gov
Identifier

Recurrent high-grade
glioma
(ASS1-deficient)

ADI-PEG20 with pemetrexed and cisplatin Phase I 10 Terminated NCT02029690

Glioblastoma multiforme ADI-PEG 20 with Radiotherapy and Temozolomide Phase I 32
(Estimated)

Recruiting NCT04587830

Advanced solid cancers ADI-PEG 20 with pembrolizumab Phase I 33 Terminated NCT03254732
High-grade gliomas
and others

rhArg1peg5000 phase I/II 64
(Estimated;

Children and Young
Adults)

Unknown NCT03455140

Advanced/Metastatic
solid tumors

INCMGA00012 (PD-1 Inhibitor), INCB001158(Arginase
Inhibitor), and the combination

Phase I 18 Completed NCT03910530

Advanced/Metastatic
solid tumors

INCB001158 with chemotherapy phase I/II 149 Active, not
recruiting

NCT03314935
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ASL in glioma cells in vitro, thereby conferring resistance to ADI-
PEG20 treatment. The specific mechanism of the adaptive
transcriptional upregulation of ASS1 and ASL is unknown, but
studies in melanoma suggest that accumulated cMyc can induce
ASS1 expression by interacting with the ASS1 promoter (148, 149).
Although themodification of ADI by conjugation with polyethylene
glycol can reduce its immunogenicity, the production of anti-ADI
antibodies has also been observed in patients enrolled in clinical
trials. This suggests that long-term treatment may lead to the
development of resistance due to the production of neutralizing
antibodies. This phenomenon may explain the negative correlation
between plasma neutralizing antibody levels and duration of
arginine depletion after ADI-PEG20 treatment (136). When
arginase I was combined with the autophagy inhibitor,
chloroquine, to treat GBM in vitro, the inhibition of autophagy
increased cellular sensitivity to arginase I. This finding suggested
that autophagy plays a supporting role in ADI resistance (129).
Arginine deprivation agents for cancer treatment should have low
toxicity, non-immunogenicity (to prevent antibody production and
allergic reactions), rapid action (to delay the emergence of
resistance), and long circulating half-lives (to achieve sustained
arginine consumption) (150). It is worth investigating whether
low arginine levels during arginine deprivation therapy can
adversely affect antitumor immunity, since T-cell function is
regulated by arginine. In addition, the reconstruction of adaptive
immune function against the background of arginine-mediated
tumor immune escape is a promising therapeutic strategy.

Metabolic reprogramming is often mediated by oncogenic
signaling pathways. In particular, mTOR signaling is commonly
activated in tumors and controls cancer cell metabolism by altering
theexpressionand/or activity of several keymetabolic enzymes (151).
Conversely, metabolic alterations affect mTOR signaling. mTORC1
isoneof themechanisms that checks cellular aminoacid levels and/or
nutritional deprivation in cells. For example, arginine activates
mTORC1 through the GATOR1/2-Rag pathway by directly
binding to the arginine sensor CASTOR1 (Cellular Arginine
Sensor for mTORC1) (151). Interestingly, ASS1 knockdown results
in increasedmTORC1 activity in osteosarcoma cells, potentially due
to increased aspartate levels (86). Treatment with rhARG reduces
mTORC1 activity and induces cytotoxicity and apoptosis in non-
SCLC cells (152). However, resistance to arginine deprivation agents
has been observed. ADI-PEG20-resistant tumor cells exhibited
reduced mTOR signaling but enhanced AKT signaling, which led
to the stabilizationofMYC.MYC in turn inducesASS1 expressionby
competing with HIF1a for ASS1 promoter-binding sites (76). The
molecular mechanism underlying the downregulation of mTOR
signaling in ADI resistance remains unclear.
ADVANTAGES AND DISADVANTAGES OF
TARGETING ARGININE THERAPIES
FOR GLIOMA

We now summarize the advantages and disadvantages of
Arginine deprivation therapy and Arginine replenishment
therapy as follows:
Frontiers in Oncology | www.frontiersin.org 10
Advantages of Arginine deprivation therapy (1): There are
mainly five enzymatic agents catabolizing free arginine in theory
(NOS, glycine amidinotransferase, arginine decarboxylase,
arginase, and arginine deiminase) (153). This provides a
variety of options for arginine deprivation therapy (2).
Arginine deprivation therapy achieves its therapeutic effect by
lowering the plasma arginine concentration, which is especially
appropriate for intracranial tumors and is no longer hindered by
the blood-brain barrier (3). Arginine deprivation therapy has
completed different clinical trials in patients with metastatic
melanoma and mesothelioma with promising results (154, 155)
(4). Arginine deprivation therapies have different mechanisms in
tumors, such as induction of autophagy, ROS overproduction,
cell cycle arrest, and caspase-dependent/independent apoptosis
in cells. Thus, AD therapy has the potential to treat tumors in
combination with other treatments.

Disadvantages of Arginine deprivation therapy (1): The
resistance of tumors to arginine deprivation agents is currently
the biggest obstacle, mainly due to the re-expression of ASS1,
production of neutralizing antibodies to arginine deprivation
agents, and autophagy. We urgently need to elucidate the
underlying mechanisms of drug resistance to increase their
therapeutic efficacy against tumors (2). The therapeutic effect
of arginine deprivation depends largely on whether the tumor is
auxotrophic. In other words, it depends on the expression of
ASS1 in tumor cells. This greatly limits the application of
arginine deprivation agents. However, there are ongoing
research studies to circumvent this problem. For example, a
combination of arginine deprivation therapy with radiotherapy
or TMZ has shown a good therapeutic effect on ASS1-
positive gliomas.

Advantages of Arginine replenishment therapy: Arginine is
an inexpensive, readily available amino acid that cancer patients
only need to consume orally. This greatly increases the
convenience of this treatment. Moreover, arginine is a nutrient
needed by the body and does not produce toxic side effects like
other chemotherapeutic drugs.

Disadvantages of Arginine replenishment therapy: Arginine
replenishment therapy requires a high concentration of arginine
in the tumor microenvironment in order to achieve a good
therapeutic effect. Achieving the required concentration poses a
challenge that needs to be addressed urgently.
DISCUSSION

The advantages of targeting arginine in the treatment of gliomas
are evident. It kills tumor cells directly or indirectly by interfering
with tumor cell metabolism, without affecting normal cell
function. Concurrently, it can bypass the blood-brain barrier,
which is especially suitable for intracranial diseases. Arginine
deprivation therapy works directly on tumor cells. The
combination of arginine deprivation with other treatments has
shown great potential and application value, and requires further
in-depth research. Arginine replenishment therapy is more likely
to act on immune cells and affect tumor cells, which is an indirect
July 2022 | Volume 12 | Article 938847
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mechanism. Although the two treatments seem contradictory,
differences in their mechanisms of action make us interested in
finding ways to combine them. Currently, targeting arginine
metabolism to treat glioma faces the dilemma of choosing
arginine deprivation therapy or arginine replenishment
therapy. The former achieves tumor inhibition by “starving”
tumor cells, but its negative effects are often ignored by
researchers. The arginine-deficient extracellular environment
created by arginine deprivation agents undoubtedly exerts a
strong inhibitory effect on antitumor T cells. Further studies
are required to determine whether the suppressed T cells are
responsible for the poor effects of arginine deprivation therapy.
The latter increases the antitumor activity of T cell by fulfilling
their arginine requirements. Likewise, the arginine
replenishment therapy “feeds” tumor cells. The direct effect of
excess arginine on glioma cells is unclear, but we do not want
tumor cells to be “nutrient-rich.” Another strategy to increase
arginine levels in the body is to prevent its breakdown. In mouse
tumor models, ARG1 inhibitors, which prevent the breakdown
of arginine, increase CD8+ T-cell infiltration and stimulate the
production of inflammatory cytokines in the TME (97, 156).
Further studies are needed to determine the therapeutic effect of
ARG1 inhibitors on glioma. Most existing studies describe
arginine deprivation therapy as the chosen method to treat
brain tumors; however, a few studies have also described
arginine replenishment therapy to treat brain tumors. Here, we
hope to adopt a suitable strategy to combine the two strategies,
both “starving” tumor cells and enhancing antitumor immune
response. CAR-T therapy combined with arginine deprivation
therapy may be an effective strategy to circumvent this pitfall.
Frontiers in Oncology | www.frontiersin.org 11
CAR-T cells can recombinantly express ASS1 and OTC,
increasing the arginine content in cells. This increases the
persistence of CAR-T cells in vivo (107). However, we still
need to conduct extensive preclinical studies to determine the
effectiveness of this therapy. We hope that this will open new
avenues for comprehensive treatment for glioma.
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