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Background/Aims
We aim to evaluate the differences in the microbiome of responders and non-responders, as well as predict the response to probiotic 
therapy, based on fecal microbiome data in patients with diarrhea-predominant irritable bowel syndrome (IBS-D). 

Methods
A multi-strain probiotics that contains Lactobacillus acidophilus (KCTC 11906BP), Lactobacillus plantarum (KCTC11867BP), 
Lactobacillus rhamnosus (KCTC 11868BP), Bifidobacterium breve (KCTC 11858BP), Bifidobacterium lactis (KCTC 11903BP), 
Bifidobacterium longum (KCTC 11860BP), and Streptococcus thermophilus (KCTC 11870BP) were used. Patients were categorized 
into probiotic and placebo groups, and fecal samples were collected from all patients before and at the end of 8 weeks of treatment. 
The probiotic group was further divided into responders and non-responders. Responders were defined as patients who experienced 
adequate relief of overall irritable bowel syndrome symptoms after probiotic therapy. Fecal microbiota were investigated using Illumina 
MiSeq and analyzed using the EzBioCloud 16S database and microbiome pipeline (https://www.EZbiocloud.net). 

Results
There was no significant difference in the alpha and beta diversity between the responder and non-responder groups. The abundances 
of the phylum Proteobacteria and genus Bacteroides significantly decreased after probiotic treatment. Bifidobacterium bifidum, 
Pediococcus acidilactici, and Enterococcus faecium showed a significantly higher abundance in the probiotic group after treatment 
compared to the placebo group. Enterococcus faecalis and Lactococcus lactis were identified as biomarkers of non-response to 
probiotics. The abundance of Fusicatenibacter saccharivorans significantly increased in the responders after treatment.

Conclusions
Probiotic treatment changes some composition of fecal bacteria in patients with IBS-D. E. faecalis and L. lactis may be prediction 
biomarkers for non-response to probiotics. Increased abundance of F. sccharivorans is correlated to symptom improvement by 
probiotics in patients with IBS-D.
(J Neurogastroenterol Motil 2022;28:642-654)
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Introduction  

Irritable bowel syndrome (IBS) is a functional gastrointes-
tinal disorder characterized by recurrent abdominal pain associ-
ated with defecation or a change in bowel habits.1 Approximately 
5-10% of the population is affected by IBS, and its incidence has 
increased.2 The pathophysiology of IBS remains unknown. While 
various therapeutic options are available for alleviating the symp-
toms of IBS, the treatments are only partially effective. Patients 
with IBS have a poor quality of life and increased socioeconomic 
burdens.3,4

Increasing evidence indicates that dysbiosis, which is defined as 
an imbalance in the gut microbiome, plays a key role in the develop-
ment of IBS. Differences in the composition of the gut microbiota 
have been identified between patients with IBS and healthy con-
trols.5 In particular, patients with IBS exhibited decreased micro-
biome diversity and significant changes in several specific bacterial 
taxa compared to healthy controls.6,7 Studies that compared the gut 
microbiota among the IBS subtypes suggest that the microbiome 
may be associated with patient symptoms and disease severity.7-9 
As the relationship between dysbiosis and the development of IBS 
gains increasing attention, therapeutic approaches targeted at the in-
testinal microbiota, such as dietary manipulation and antibiotic and 
probiotic use, are being widely investigated.10 

Probiotics, defined as live microorganisms that confer health 
benefits to the host,11 have been extensively studied. Several studies 
have demonstrated the beneficial effects of probiotics in patients 
with IBS. Single and combination probiotic strains have been 
shown to reduce IBS symptoms.12-15 The possible mechanisms of 
action of probiotics include inhibition of pathogenic bacterial over-
growth, reduction in visceral hypersensitivity, production of short-
chain fatty acids, and improvement of the gut barrier function.16,17 
Despite these data, some patients with IBS still show insufficient 
responses to probiotic therapy. A number of randomized control 
trials involving patients with IBS have suggested that probiotics 
have no beneficial effects,18-20 whereas other studies have proposed 
that probiotics result in negative effects, such as abdominal pain and 

bloating.21,22 Thus, it is unclear whether the common probiotic strat-
egy should be prescribed to all patients with IBS. In our previous 
study, we demonstrated the therapeutic effect of a probiotic mixture 
in patients with diarrhea-predominant IBS (IBS-D).23 In particular, 
8 weeks of treatment with the probiotic mixture improved overall 
IBS symptoms and stool consistency. To better understand the asso-
ciation between probiotic therapy and treatment outcomes, we ana-
lyzed the fecal samples collected from this study. We aim to examine 
the differences in the microbiome based on the overall response to 
probiotic therapy and identify any microbial biomarkers that can 
predict treatment outcomes.

Materials and Methods  

Study Protocol
We conducted this exploratory post hoc analysis to investigate 

the association between intestinal microbiome and treatment out-
comes to probiotics therapy.23 A randomized, double-blind, place-
bo-controlled clinical trial was conducted. A short questionnaire 
designed to assess daily IBS symptoms was piloted during a screen-
ing period with a 1-week run-in period. Patients who had pain/
discomfort for at least 2 days were included in the study according 
to the Design of Treatment Trials for Functional Gastrointestinal 
Disorders recommendations.24 After completing the screening 
period, the inclusion and exclusion criteria were re-evaluated, and 
eligible patients were randomized to receive the probiotic mixture or 
placebo. Randomization was performed by selecting a card from a 
set of identical cards from the study coordinator. All other investiga-
tors were fully blinded to the randomization until the completion of 
study. 

Duolac7 (Cell Biotech, Co, Ltd, Seoul, Korea) is a multiple-
species probiotic combination that contains 7 species of probiotic 
bacteria, including Lactobacillus acidophilus (KCTC 11906BP), 
Lactobacillus plantarum (KCTC11867BP), Lactobacillus rhamno-
sus (KCTC 11868BP), Bifidobacterium breve (KCTC 11858BP), 
Bifidobacterium lactis (KCTC 11903BP), Bifidobacterium long-
um (KCTC 11860BP), and Streptococcus thermophilus (KCTC 
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11870BP). Each capsule contains a total of 5 billion bacteria, of 
which 7 strains were evenly contained (7 × 108 viable cells for each 
strain). Placebo capsules contained excipients alone and had identi-
cal appearance, color, taste, and consistency with Duolac7 (Cell 
Biotech, Co). 

Patients were administered oral probiotics or placebo twice a 
day for 8 weeks and were followed up for another 2 weeks. Over 
10 weeks, patients recorded daily symptoms including abdominal 
pain or discomfort, urgency, bloating, passage of gas, and stool 
frequency and consistency using self-administered questionnaires. 
They were also asked weekly if their overall IBS symptoms were 
improved or not. They visited the clinic for an assessment of symp-
toms and complications every 4 weeks after the start of treatment. 
Adequate relief of overall IBS symptoms was assessed weekly using 
an interactive voice response by telephone, and responders were 
defined as patients who experienced adequate relief of overall IBS 
symptoms at least 50% of the weeks during 10-week study period. 
The study protocol was approved by the ethics review committee of 
the Chung-Ang University Hospital (C2008032 [1350]) and per-
formed in accordance with the 1964 Declaration of Helsinki and its 
later amendments.

Study Population
As previously described, patients aged between 18 years and 

65 years who were diagnosed with IBS-D based on the Rome 
III criteria were included from a university hospital.23 To exclude 
patients with organic abnormalities, laboratory tests such as a 
complete blood cell count, blood chemistry, and colonoscopy were 
performed during the screening period. Patients with the follow-
ing clinical features were excluded: pregnancy or lactation during 
the study period; abnormal screening laboratory test results; se-
vere systemic illness, such as liver disease, cardiovascular disease, 
renal disease, endocrine disorders, neurologic disorders, or ma-
lignant tumors; history of psychiatric disorders; previous surgery 
except appendectomy and abdominal wall hernia repair; and use 
of drugs that influence the efficacy of intestinal microbiota. In 
addition, patients who were judged to be ineligible by the investi-
gators were excluded from this study. A written informed content 
was obtained from each patient prior to the commencement of the 
study.

Fecal Sample Collection
All participants provided fecal samples. Fecal samples were 

collected in sterile containers before and after the eighth week of 
treatment for microbial analyses. They were transferred to refriger-

ated containers in the laboratory within 12 hours of collection. We 
extracted the DNA from the samples and stored them at –80°C for 
further analysis. 

Fecal Microbiota Analysis
DNA was extracted from the feces using the FastDNA SPIN 

kit for bacterial DNA (MP Biomedicals, Irvine, CA, USA) ac-
cording to the manufacturer’s instructions. Primers targeting the 
V3 to V4 region of the bacterial 16S ribosomal RNA gene were 
used for polymerase chain reaction (PCR). The primers 341F 
(5’-TCGTCGGCAGCGTC-AGATGTGTATAAGAGACAG-
CCTACGGGNGGCWGCAG-3’) and 805R (5’-GTCTC-
GTGGGCTC GG-AGATGTGTATAAGAGACAGGAC-
TACHVGGGTATCTAATCC-3’) were used for bacterial 
amplification. Initial denaturation was performed at 95°C for 3 
minutes, followed by 25 cycles of denaturation at 95°C for 30 sec-
onds, primer annealing at 55°C for 30 seconds, and extension at 
72°C for 30 seconds. The final elongation was performed at 72°C 
for 5 minutes. An i5 forward primer (5’-AATGATACGGCGAC-
CACCGAGATCTACAC-XXXXXXXX-CGTCGGCAGC-
GTC-3’; X indicates the barcode region) and i7 reverse primer 
(5’-CAAGCAGAAG ACGGCATACGAGAT-XXXXXXXX-
GTCTCGTGGGCTCGG-3’) were used for secondary amplifica-
tion by attaching the Illumina NexTera barcode.

The PCR product was confirmed through 1% agarose gel 
electrophoresis and visualized under a Gel Doc system (BioRad, 
Hercules, CA, USA). Purification of the amplified products was 
performed with the CleanPCR (CleanNA, Waddinxveen, The 
Netherlands). Equal concentrations of purified products were 
pooled together, and short fragments (non-target products) were 
removed by CleanPCR (CleanNA). The quality and product 
size were assessed on a Bioanalyzer 2100 (Agilent, Palo Alto, 
CA, USA) using a DNA 7500 chip. Mixed amplicons were 
pooled, and sequencing was performed at ChunLab, Inc (Seoul, 
Korea) with the Illumina MiSeq Sequencing system (Illumina, 
San Diego, CA, USA) according to the manufacturer’s instruc-
tions.

Statistical Methods
As we mentioned, this study was conducted using fecal samples 

collected in the previous clinical trial. The sample size calculated for 
this study was based on the intent to detect a 25% difference in the 
proportion of responders between the 2 groups with 80% power at 
a = 0.05 while compensating for just over a 20% drop out rate. 

The output data from the Illumina MiSeq sequencing system 
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were analyzed with the EzBioCloud 16S database (ChunLab Inc)25 
and 16S microbiome pipeline (ChunLab Inc, EzBioCloud 16S-
based MTP app, https://www.EZbiocloud.net) for data processing, 
statistical analysis, and data graphing. The Chao1 estimation and 
Shannon diversity index were used to evaluate the richness and 
evenness of the samples. The overall phylogenetic distance among 
the groups was estimated using Bray-Curtis dissimilarity and visu-
alized through principal coordinate analysis.

The group differences in alpha and beta diversity were tested 
using the Wilcoxon rank-sum test and permutational multivariate 
analysis of variance (PERMANOVA) with 9999 permutations, re-
spectively. For specific taxa, the differences in the relative abundance 
between the groups were compared using the Kruskal-Wallis test.

Differential abundance analyses were performed using DE-
Seq226 v1.22.2 (Bioconductor, Buffalo, NY, USA) with default 
parameters to investigate the enriched taxa in the placebo and 
probiotic groups after treatment. The taxa were considered signifi-
cant if the P-value after multiple test correction was < 0.05. The 
potential biomarkers for probiotic response were identified with the 
linear discriminant analysis effect size (LEfSe)27 algorithm, which 
determines the features most likely to explain differences between 
2 groups by coupling standard statistical tests with biological con-
sistency and effect relevance. It was performed with default param-
eters. Only the taxa with logarithmic linear discriminant analysis 
scores > 2.0 were reported.

Results  

Baseline Characteristics of Patients With Diarrhea-
predominant Irritable Bowel Syndrome

As previously described, a total of 50 patients with IBS-D were 
enrolled and randomized into the probiotic (n = 25) and placebo 
(n = 25) groups.23 The proportion of responders was significantly 
higher in the probiotics group than in the placebo group, but 
change of individual symptoms were similar in the 2 groups. One 
and 4 patients in the probiotic and placebo groups, respectively, 
were excluded from this study because their fecal samples were not 
collected before and after treatment. In addition, the fecal samples 
of 2 and 3 patients in the probiotic and placebo groups, respectively, 
were not collected after treatment. Prior to the treatment, we ana-
lyzed the fecal samples of 24 and 21 patients in the probiotic and 
placebo groups, respectively. The probiotic group comprised 12 re-
sponders and 12 non-responders. After the treatment, we analyzed 
the fecal samples of 22 and 18 patients in the probiotic and placebo 
groups, respectively. The probiotic group consisted of 12 respond-
ers and 10 non-responders. The characteristics of the patients en-
rolled in this study are summarized in Tables 1 and 2. Patients were 
relatively young and had no underlying diseases. There were no 
significant differences in age, sex, and body mass index between the 
groups. 

Effect of Probiotic Treatment on Microbial Diversity
We utilized microbiome taxonomic profiles and diversity 

indices to determine whether the probiotic or placebo treatments 
resulted in changes to the diversity and composition of the gut mi-
crobiota. No significant differences in alpha diversity (Chao1, P = 

Table 1. Baseline Characteristics of the Patients With Irritable Bowel 
Syndrome

Characteristics
Probiotic group 

(n = 25)
Placebo group  

(n = 25)
P-value

Age (yr) 37.9 ± 12.4 40.3 ± 11.2 0.492
Sex 0.156
  Male 12 (48) 14 (56)
  Female 13 (52) 11 (44)
BMI (kg/m2) 23 ± 3.3 22.9 ± 2.9 0.916
Smoker 2 (8) 4 (16) 0.416
Alcohol intake 6 (24) 9 (36) 0.359

BMI, body mass index.
Data are presented as mean ± SD or n (%).

Table 2. Baseline Characteristics of the Responders and Non-
responders to Probiotic Therapy

Characteristics
Responders

(n = 12)
Non-responders

(n = 12)
P-value

Age (yr) 40.4 ± 13.5 33.3 ± 10.9 0.181
Sex 1.000
  Male 8 (66.7) 8 (66.7)
  Female 4 (33.3) 4 (33.3)
BMI (kg/m2) 23.4 ± 3.9 22.6 ± 2.7 0.559
Smoker 0 (0.0) 2 (16.7) 0.140 
Alcohol intake 4 (33.3) 2 (16.7) 0.346 

Data are presented as mean ± SD or n (%).
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0.878; Shannon, P = 0.644) were observed in the probiotic group 
(Fig. 1A and 1B). The principal coordinate analysis plot of the pre- 
and post-treatment samples demonstrated few variations (Fig. 1C). 
The PERMANOVA also suggested that there were no significant 
differences after probiotic treatment (P = 0.329). The P values of 
the Wilcoxon rank-sum test for the Chao1 and Shannon indices 
and PERMANOVA were 0.955, 0.632, and 0.686, respectively, 
which indicated that there were no significant differences in the di-
versities of the placebo group (Fig. 1D-F). 

Effect of Probiotic Treatment on Microbial Taxonomic 
Composition

We examined the specific taxa previously associated with IBS 
and assessed whether their abundances changed after probiotic 
treatment.28 The phylum Proteobacteria (median relative abundance 
in the probiotics and placebo group at baseline: 1.98% vs 0.44%, 

P = 0.285) and genus Bacteroides (0.31% vs 0.53%, P = 0.633), 
which are known to be abundant in patients with IBS, significantly 
decreased in abundance in the probiotic group (P = 0.022 and 
P = 0.003, respectively), whereas no significant differences were 
noted in the placebo group (P = 0.215 and P = 0.063, respec-
tively) (Fig. 2A and 2B) after treatment. In contrast, the family 
Enterobacteriaceae and genus Faecalibacterium, which reportedly 
exhibit increased and decreased abundance, respectively, in patients 
with IBS, showed no significant differences between the probiotic 
(P = 0.062 and P = 0.186, respectively) and placebo (P = 0.775 
and P = 0.143, respectively) groups (Fig. 2C and 2D). 

Differentially abundant taxa were identified by comparing 
the taxonomic profiles between the probiotic and placebo groups. 
Analysis of the pre-treatment fecal samples demonstrated that the 
probiotic group exhibited abundance of Lactobacillus ruminis, 
Streptococcus gallolyticus, Clostridium ramosum, Flavonifractor 
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Figure 1. Alpha and beta diversity data of the probiotic and placebo groups. The plots depict the differences in the diversity of the pre- and post-
treatment samples in the (A-C) probiotic and (D-F) placebo groups. The boxplots represent the alpha diversity using the (A, D) Chao1 and (B, E) 
Shannon indices, and (C, F) the principal coordinate analysis plots demonstrate the beta diversity based on the Bray-Curtis dissimilarity. No sig-
nificant differences in alpha diversity (Chao1, P = 0.878; Shannon, P = 0.644) were observed in the probiotic group (A, B). The permutational 
multivariate analysis of variance (PERMANOVA) showed that there were no significant differences after probiotic treatment (P = 0.329, C). P-
values of the Wilcoxon rank-sum test for the Chao1 and Shannon indices and PERMANOVA were 0.955, 0.632, and 0.686, respectively, in the 
placebo group (D-F). PC, principle component.
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plautii, Eubacterium eligens, and Escherichia coli, whereas the pla-
cebo group exhibited abundance of Megamonas rupellensis (Fig. 
3A). Among these species, only L. ruminis remained abundant in 
the probiotic group after treatment. In contrast, several taxa, includ-
ing Faecalimonas umbilicata, Bifidobacterium bifidum, Pediococ-
cus acidilactici, and Enterococcus faecium, which did not differ in 
abundance between the 2 groups in pre-treatment samples were 
abundant in the post-treatment fecal samples of the probiotic group 
(Fig. 3B). There were no significant differences in alpha and beta 
diversity between the 2 groups in pre-treatment samples (Supple-
mentary Figure). 

Comparison Between the Responders and Non-
responders to Probiotic Treatment

We examined the probiotic group to determine whether there 
were significant differences in the microbiomes of responders and 

non-responders. The Chao1 and Shannon indices did not demon-
strate any significant differences between the responder and non-
responder groups before (Fig. 4A and 4B) and after (Fig. 4D and 
4E) probiotic treatment (P = 0.248, 0.729, 0.291, and 0.429). In 
particular, the PERMANOVA did not demonstrate any signifi-
cant differences in beta diversity before and after treatment (P = 
0.885 and P = 0.626, respectively) (Fig. 4C and 4F). Additionally, 
there were no significant differences in the alpha and beta diversity 
before and after probiotic treatment in the responder group (data 
not shown). 

Potential Biomarkers Associated With the Response 
to Probiotics

We utilized LEfSe algorithm to identify the potential biomark-
ers for the response to probiotic treatment. Analysis of the pre-
treatment fecal samples identified S. gallolyticus, Alistipes putre-
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Figure 2. Relative abundance of the taxa related to irritable bowel syndrome (IBS). The boxplots represent the relative abundance of (A) Proteo-
bacteria, (B) Bacteroides, (C) Enterobacteriaceae, and (D) Faecalibacterium in the pre- and post-treatment samples. The abundances in the pro-
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dinis, Bacteroides coprophilus, Bacteroides vulgatus, and Alistipes 
shahii as potential biomarkers for treatment response among the 
responders, whereas Lactococcus lactis and Enterococcus faecalis 
were the identified biomarkers among the non-responders (Fig. 
5A). Analysis of the post-treatment fecal samples identified Vel-
lonella rogosae as a biomarker among the responders and Dorea 
longicatena and Weissella confusa among the non-responders (Fig. 
5B). The post-treatment samples of the responder group had a 
higher abundance of Fusicatenibacter saccharivorans and lower 
abundance of B. vulgatus, Coprobacillus cateniformis, A. shahii, 
and Bacteroides ovatus than the pre-treatment samples in the same 
group (Fig. 5C).

Discussion  

While probiotics are widely used, its efficacy in patients with 
IBS remains in question, because studies have shown inconsistent 
results. Recent systematic reviews and meta-analyses did not pro-
vide definitive conclusions on the efficacy of probiotics for IBS.29,30 

Our study aimed to determine the differences in the microbi-

omes of the responders and non-responders to probiotic treatment, 
as well as to elucidate how to predict the efficacy of probiotic therapy 
among patients with IBS.

Probiotic therapy did not significantly change the alpha and 
beta diversity, and the responder and non-responder groups 
demonstrated similar results. However, the relative abundance 
of some bacterial taxa, such as B. bifidum, P. acidilactici, and 
E. faecium, was significantly increased in the probiotic group 
compared to the placebo group. B. bifidum is a well-known and 
widely used probiotic. A recent study indicated that it has an anti-
inflammatory effect.31 The increased abundance of B. bifidum in 
this study may be associated with the ingested probiotics strain. 
Some strains of P. acidilactici can be used as probiotics because 
they produce bacteriocins that have beneficial effects for the 
host.32-35 A randomized clinical trial demonstrated that a probiotic 
containing P. acidilactici improved IBS-related quality of life.36 
While some safety issues remain, specific strains of E. faecium 
have been used as probiotics in the treatment and prevention 
of diarrhea or IBS. Probiotics was administered in a very small 
amount compared to the amount of fecal bacteria, thus it could 
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not easily change the overall composition of fecal microbiota, but 
may change the abundance of some bacterial taxa into a beneficial 
direction in patients.

We did not identify significant differences in the relative abun-
dance of B. bifidum, P. acidilactici, and E. faecium between the 
responders and non-responders; however, these species were sig-
nificantly more abundant after probiotic treatment. They may have 
induced the response through other microbial modulatory pathway, 
rather than direct effect in the responder group, and it supports for 
the hypothesis that probiotics can modulate the gut microbial com-
munity of patients with IBS. 

E. faecalis and L. lactis were identified as biomarkers that 
could predict non-response to probiotic treatment. Patients with 
IBS who did not respond to probiotic therapy demonstrated sig-
nificantly higher abundances of E. faecalis and L. lactis before 
treatment. E. faecalis is known to have a controversial role as a 
commensal pathogenic bacterium in the human gut. Similar to 

E. faecium, specific strains of E. faecalis are used as probiotics;37 
however, the poor safety profile and pathogenicity of the species is 
increasingly gaining attention. In addition, E. faecalis is predomi-
nantly identified in the mucosa of patients with IBD, including 
ulcerative colitis and Crohn’s disease. Research has proposed that 
the number of mucosal E. faecalis is correlated with disease activ-
ity.38,39 The proinflammatory effect of E. faecalis was identified in 
animal studies. E. faecalis induced inflammation in an IL-10−/− 
mice model.40,41 E. faecalis produces metalloprotease, which was 
suggested as the contributing factor that resulted in epithelial bar-
rier dysfunction and chronic intestinal inflammation.42 The bacte-
rial environment was shown to play a key role in E. faecalis gene 
expression modulation, which induces inflammatory activity.43 In 
contrast to E. faecalis, A. putredinis was identified as a biomarker 
that could predict a positive response to probiotic therapy. Alis-
tipes is a recently isolated genus from the phylum Bacteroidetes. 
Although the role of this taxon in human health has not been fully 
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understood, some species demonstrated anti-inflammatory activ-
ity in patients with liver disease. Alistipes has also demonstrated a 
protective role against colitis in an animal model.44-46 Low-grade in-

testinal inflammation is considered as one of the main mechanisms 
behind the development of IBS.47,48 Thus, these findings suggested 
that responsiveness to probiotics may be correlated with intestinal 
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barrier function and inflammatory activity. 
Dorea spp. are carbohydrate-dependent gastrointestinal bac-

teria that are responsible for producing much of the gas in the hu-
man intestine.49 Overproduction of gases may lead to abdominal 
discomfort, such as bloating. Increased bowel gas production also 
induces rapid colon transit, which results in diarrhea.50 Several stud-
ies have shown that Dorea spp. promote an inflammatory response 
by degrading intestinal mucin.51-53 Previous studies indicated that 
patients with IBS showed significantly higher abundance of Dorea 
spp.54 In our study, the non-responder group showed significantly 
higher abundance of D. longicatena than the responder group. It 
was unclear why D. longicatena was significantly more abundant 
in the non-responder group; however, this finding may help us 
understand how the microbiome interferes with the beneficial ef-
fect of probiotic therapy and results in persistent IBS symptoms.  
The patients who responded to probiotic therapy had a significantly 
increased abundance of F. saccharivorans in their post-treatment 
samples than their pre-treatment samples. F. saccharivorans belongs 
to Clostridium subcluster XIVa, which participates in maintaining 
the immune system homeostasis associated with regulatory T cells. 
F. saccharivorans produces short-chain fatty acids, such as lactic 
acid and acetic acid, through glucose fermentation,55 which are the 
key factors for improving intestinal barrier function and the host’s 
immune system. An animal model demonstrated that F. sacchariv-
orans produce an anti-inflammatory effect by modulating cytokine 
production. In a mouse colitis model, administration of F. saccha-
rivorans reduced the production of inflammatory cytokines, such as 
interleukin (IL)-13, and induced anti-inflammatory cytokines such 
as IL-10.56 The abundance of F. saccharivorans negatively cor-
related with disease activity in patients with ulcerative colitis.56 Our 
study results are consistent with these previous reports. Patients that 
responded to probiotic therapy may have experienced symptom-
atic improvement through anti-inflammatory effects. This finding 
has important implications for developing novel treatment targets 
against IBS. 

One interesting finding was the change in the abundance of 
B. vulgatus, which decreased significantly after probiotic treatment 
in the responder group. B. vulgatus was identified as a biomarker 
that could predict the response to probiotic treatment. The role of 
B. vulgatus in the pathogenesis of IBD has been suggested.57,58 B. 
vulgatus has recently been shown to activate nuclear factor-κB in 
the epithelial enterocyte-like cell line;59 however, conflicting data 
exist about their relation with the inflammatory response.60,61 Fur-
ther studies that account for these diverse roles need to be under-
taken.

This study has several limitations. First, the relatively small 
sample size may be a potential for bias. Second, diet was not con-
trolled, but the participants were recommended to continue their 
usual diet during the study period. Diet is considered as one of the 
main factors associated with symptom development and the gut 
microbiome. Third, it took a relatively long time from fecal sample 
collection to analysis. However, we extracted the DNA from the 
samples, and stored them at –80°C. Recent study showed that long-
term storage of human fecal microbiota samples at –80°C has only 
limited effect on the microbial community.62 These results therefore 
need to be interpreted with caution. Further studies with larger 
sample sizes and that take lifestyle considerations, including diet, 
into account are required to validate our findings. To the best of 
our knowledge, only a few studies have evaluated the differences in 
the microbiome of the responders and non-responders to probiotic 
treatment. Moreover, only a few studies have examined the taxa that 
may predict the response of patients with IBS. We demonstrated 
significant changes in the abundance of several taxa among the re-
sponders and non-responders, as well as identified potential predic-
tive biomarkers for probiotic treatment. 

In conclusion, probiotics can alter bacterial composition in 
patients with IBS-D. E. faecalis and L. lactis can be considered as 
biomarkers for non-response to probiotic treatment among patients 
with IBS-D. The efficacy of probiotic treatments may be improved 
by reducing the abundance of D. longicatena and increasing that 
of F. saccharivorans. F. saccharivorans spp. can be one of the novel 
therapeutic targets for the treatment of IBS-D. 
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