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Chronic hepatitis B virus (HBV) infection remains a major global health problem despite
the availability of an effective prophylactic HBV vaccine. Current antiviral therapies
are unable to fully cure chronic hepatitis B (CHB) because of the persistent nature
of covalently closed circular DNA (cccDNA), a replicative template for HBV, which
necessitates the development of alternative therapeutic approaches. The CRISPR/Cas
system, a newly emerging genome editing tool, holds great promise for genome
editing and gene therapy. Several in vitro and/or in vivo studies have demonstrated the
effectiveness of HBV-specific clustered regularly interspaced short palindromic repeat
(CRISPR)/associated protein 9 (CRISPR/Cas9) systems in cleaving HBV DNA and
cccDNA. Although recent advances in CRISPR/Cas technology enhance its prospects
for clinical application against HBV infection, in vivo delivery of the CRISPR/Cas9
system at targets sites remains a major challenge that needs to be resolved
before its clinical application in gene therapy for CHB. In the present review, we
discuss CRISPR/Cas9 delivery tools for targeting HBV infection, with a focus on the
development of adeno-associated virus vectors and lipid nanoparticle (LNP)-based
CRISPR/Cas ribonucleoprotein (RNP) delivery to treat CHB. In addition, we discuss the
importance of delivery tools in the enhancement of the antiviral efficacy of CRISPR/Cas9
against HBV infection.

Keywords: hepatitis B virus, cccDNA, CRISPR/Cas9, delivery, gene therapy

INTRODUCTION

Genome editing is a novel approach used for manipulating target genes in various cell types
and organisms using engineered nucleases. Zinc finger nucleases (ZFNs), transcription activator-
like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat
(CRISPR)/associated protein 9 (CRISPR/Cas9) nuclease systems are some of the genome-editing
tools that have been extensively studied (Gaj et al., 2013). The CRISPR/Cas9 nuclease system
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has emerged as a potent genome editing tool and has
revolutionized genome editing (Jinek et al., 2012; Cong
et al., 2013; Doudna and Charpentier, 2014; Knott and
Doudna, 2018; Pickar-Oliver and Gersbach, 2019). CRISPR/Cas9,
a naturally occurring RNA-guided endonuclease, has been
primarily discovered in bacteria and serves as a defense tool for
adaptive immunity against bacteriophages (Bolotin et al., 2005;
Mojica et al., 2005; Pourcel et al., 2005; Barrangou et al., 2007).
Compared to ZFNs and TALENs, the CRISPR/Cas9 system is
simple, efficient, and readily reprogrammable, and different DNA
sequences can be targeted simply by redesigning guide RNAs
(gRNAs) (Cong et al., 2013; Hu et al., 2016).

A gRNA has two components, including CRISPR RNA
(crRNA) and trans-activating CRISPR RNA (tracrRNA). crRNA
contains a 20-nucleotide (nt) RNA sequence complementary to
the target DNA sequence, and tracrRNA serves as a Cas nuclease-
binding scaffold (Marx, 2020). A single guide RNA (sgRNA) can
be generated by combining crRNA and tracrRNA for targeting
the gene sequence in the gene-editing tool (Allen et al., 2020).
The targeting specificity of Cas9 enables avoidance of off-target
effects, which is facilitated by the gRNA sequence (20 nt) (Zhang
et al., 2015). Cas9 also requires a specific protospacer adjacent
motif (PAM) localized on the non-target strand of DNA directly
downstream of the target sequence (Figure 1). However, the
possibility of off-target effects due to Cas9 binding to unintended
genomic sites for cleavage cannot be entirely ruled out (Zhang
et al., 2015; Naeem et al., 2020).

The Cas9 enzyme cuts both complementary and non-
complementary strands, causing a double-strand DNA break
(DSB), in turn initiating the DNA repair mechanism via
error-prone non-homologous end-joining (NHEJ) or precise
homology-directed repair (HDR) (Doudna and Charpentier,
2014; Figure 1). NHEJ-induced repair can cause undesirable
errors at the target DNA locus, leading to mutagenic insertions
and deletions (indels). In contrast, in the presence of a
homologous donor template, HDR can cause site-specific
insertions, deletions, nucleotide substitutions, or genomic
sequence rearrangements, highlighting its potential application
for accurate genetic editing (Figure 1). CRISPR/Cas9-based
genome editing in eukaryotic cells was first reported in 2013
(Cong et al., 2013). The CRISPR/Cas9 system has become a
widely applicable genome editing tool, and its use is not limited to
cellular organisms, as it is frequently used in acellular organisms,
such as viruses (White et al., 2015; Xiao et al., 2019; Teng et al.,
2021).

Hepatitis B virus (HBV) infection is a major global public
health concern. HBV can cause a spectrum of illnesses in
humans, including acute hepatitis, chronic hepatitis, liver
cirrhosis, and hepatocellular carcinoma (HCC) (Liang, 2009).
HBV is a partially double-stranded relaxed circular DNA
(rcDNA) virus with a genome of 3.2 kb, with four overlapping
open reading frames encoding seven viral proteins, including
polymerase/reverse transcriptase, core, precore, three related
envelope proteins [HBV surface proteins (HBs); large, middle,
and small], and a regulatory X protein (Hu and Seeger,
2015; Seeger and Mason, 2015). Despite the availability of
an effective preventive HBV vaccine, chronic HBV infection
remains a major global health problem affecting millions

of people globally (Mastrodomenico et al., 2021; World Health
Organization, 2021). A recent estimate indicated that 296 million
people were chronically infected with HBV in 2019 (World
Health Organization, 2021). Current therapies consisting of
pegylated interferon alpha and nucleos(t)ide analogs are only
effective at suppressing HBV replication and reducing the risk
of cirrhosis, liver failure, and HCC development; however, they
cannot cure HBV infection owing to the persistent nature of
covalently closed circular DNA (cccDNA) and/or integrated
HBV DNA in hepatocytes (Suk-Fong Lok, 2019; Ezzikouri et al.,
2020). cccDNA, a replicative template for HBV, must be fully
eradicated to completely cure HBV (Nassal, 2015). Therefore,
novel alternative therapeutic strategies need to be developed to
eradicate cccDNA with minimal side effects, and the CRISPR/Cas
system appears to be a promising tool for achieving the goal.

With the advent of the CRISPR/Cas technology, several
studies have reported varying degrees of inhibition of HBV
replication and/or cccDNA formation using the CRISPR/Cas9
system with different delivery tools (Figure 2; Lin et al., 2014;
Seeger and Sohn, 2014; Dong et al., 2015; Lin et al., 2015; Liu
et al., 2015, 2018; Ramanan et al., 2015; Wang et al., 2015; Zhen
et al., 2015; Li H. et al., 2016; Seeger and Sohn, 2016; Zhu et al.,
2016; Li et al., 2017, 2018; Kostyusheva et al., 2019; Kayesh et al.,
2020; Suzuki et al., 2021; Yan et al., 2021; Martinez et al., 2022;
Wang D. et al., 2022). Notably, it is difficult to efficiently quantify
cccDNA (Wang Z. et al., 2022), and accurate quantification of
intrahepatic cccDNA is important for assessing the efficiency of
anti-HBV therapy. Furthermore, in addition to xenografted mice,
murine models are extremely inefficient in cccDNA production
(Ortega-Prieto et al., 2019; Lai et al., 2021).

In the case of in vivo clinical applications, genome editing
using the CRISPR/Cas system requires an efficient and reliable
delivery tool for transporting CRISPR/Cas into target cells or
organs. Different delivery tools, such as physical, chemical,
or biological methods, can be used to deliver CRISPR/Cas9
to the host target site. The components of the CRISPR/Cas9
genome editing system are delivered in one of three forms:
DNA, RNA, or ribonucleoprotein (RNP) (Luther et al., 2018;
Eoh and Gu, 2019; Yip, 2020). However, a practical, safe, and
effective method of delivering genome-editing components for
in vivo genome editing and gene therapy against HBV infection
has not yet been developed. Although different delivery tools,
such as viral and non-viral tools, are under development (Xu
et al., 2021), extensive investigations on potential in vivo animal
models are required to devise suitable delivery tools to address
the issues impeding the clinical application of the CRISPR/Cas
system in the treatment of chronic hepatitis B (CHB). Therefore,
CRISPR/Cas9 delivery systems with low immunogenicity and
high efficiency are required. Moreover, the low efficiency of
in vivo delivery must be improved before it can be effectively used
in therapy (Behr et al., 2021; Taha et al., 2022). Delivery plays an
important role in the CRISPR/Cas-mediated inhibition of HBV
replication (Suzuki et al., 2021). Against such a background, in
the present review, we provide an overview of CRISPR/Cas9-
mediated inhibition of HBV, with major focus on delivery
systems, particularly adeno-associated virus (AAV) vector-based
delivery of CRISPR/Cas9 targeting HBV. In addition, we discuss
other tools, including non-viral delivery tools.
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FIGURE 1 | Genome editing using CRISPR/Cas9 system. The CRISPR/Cas9 system is composed of a gRNA and Cas9 protein. gRNAs provide target specificity by
sequence complementarity. gRNA and Cas9 proteins form a complex and cleave target DNA at a specific site and produce a double-strand DNA break (DSB). DSBs
are repaired through non-homologous end joining (NHEJ) and homology-directed repair (HDR) mechanisms, and during the repair process insertions, deletions,
nucleotide substitutions, or gene insertion may occur.

VIRAL VECTORS FOR CLUSTERED
REGULARLY INTERSPACED SHORT
PALINDROMIC REPEAT/ASSOCIATED
PROTEIN 9 DELIVERY

Viral vectors are considered some the most promising delivery
tools for gene therapy considering their relatively small genome
size, genome organization, and evolutionary plasticity (Lukashev
and Zamyatnin, 2016). They have shown great promise for
application in the delivery of CRISPR/Cas9 for gene editing (Taha
et al., 2022). Different viral vectors, including AAV, full-sized
adenovirus, and lentivirus vectors, have been investigated for
CRISPR/Cas9 delivery (Lino et al., 2018), with varying degrees
of success. However, viral vector applications are limited by

a number of issues, such as their oncogenic effects, toxicity,
immunogenicity, and insertional mutagenesis, which should be
addressed in future investigations.

ADENO-ASSOCIATED VIRUS
VECTOR-BASED DELIVERY OF
CLUSTERED REGULARLY
INTERSPACED SHORT PALINDROMIC
REPEAT/ASSOCIATED PROTEIN 9 TO
TARGET HEPATITIS B VIRUS

AAVs are the most common viral vectors currently being
investigated for application in in vivo gene therapy, owing
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FIGURE 2 | Vectors used for the delivery of CRISPR/Cas9 targeting the HBV genome in different in vitro and in vivo studies.

to their properties, such as high titer, low immunogenicity,
transduction of a broad range of target tissues, and low genomic
integration rate (Colella et al., 2018). AAV is one of the most
commonly used viral vector systems to date and has attracted
considerable attention for use in in vivo CRISPR/Cas delivery.
AAVs are small viruses that require the presence of a helper virus,
including adenoviruses, herpes simplex virus, vaccinia virus,
or human papillomavirus, to achieve a productive replication
cycle (Geoffroy and Salvetti, 2005). AAV belongs to the family
Parvoviridae and genus Dependovirus (Daya and Berns, 2008).
They are single-stranded DNA viruses with a genome of
approximately 4.7 kilobases (Wu et al., 2010). The AAV genome
encodes several proteins, including four non-structural Rep
proteins (Rep78, Rep68, Rep52, and Rep40) required for viral
replication, three capsid proteins (VP1–VP3), and an assembly-
activating protein (Sonntag et al., 2010). To date, 12 human
serotypes of AAV, designated AAV-1 to AAV-12, and over 100
serotypes in non-human primates, have been identified. Nearly
all AAV serotypes exhibit natural hepatic tropism and efficiently
accumulate in the liver following intravenous administration
(Palaschak et al., 2019). AAV vectors have been successfully
used to treat patients with bleeding disorders and blindness
(Nathwani et al., 2011; Tuddenham, 2012; Vandenberghe and
Auricchio, 2012; George et al., 2017; Li and Samulski, 2020).
Although AAV vectors are restricted by their limited packaging
capacity (Grieger and Samulski, 2005), by using dual AAV
vectors or triple AAV vectors, the transfer capacity of AAV
can be expanded from 4.7 kb to approximately 9 or 14 kb,
respectively (Yang et al., 2016; Bak and Porteus, 2017; Maddalena
et al., 2018). One strategy of overcoming the size limit of AAV
vectors is splitting large transgenes into two or three parts to
generate dual or triple AAV vectors (Akil, 2020). Transduction of

target cells with these two or three AAVs, through homologous
recombination or other mechanisms, results in the transcription
of a full-length Cas9 mRNA (Bak and Porteus, 2017; Akil, 2020).
In our previous study, full-length Streptococcus pyogenes Cas9
(SpCas9) was obtained by splitting the SpCas9 transgene using
dual AAVs (Figure 3) modified from a previous study (Kayesh
et al., 2020). Moreover, a smaller Cas9, Staphylococcus aureus
Cas9 (SaCas9), has been discovered, containing 1,082 amino acid
residues, with 286 residues less than that of SpCas9, and has been
used for delivery by AAV vectors. However, delivery with dual
AAVs requires a high viral dose, which raises potential safety
concerns and can reduce the editing potential (Hayashi et al.,
2020; Fang et al., 2021). Although most AAV vectors exist in an
extrachromosomal state, a fraction of AAV vectors can integrate
into pre-existing DSBs (Miller et al., 2003, 2004). Notably, a
recent study has reported high levels of AAV integration (up
to 47%) in Cas9-induced DSBs (Hanlon et al., 2019). However,
genome integration is greatly reduced in recombinant AAVs
(rAAVs), which are devoid of the rep gene, and ITRs are the
only viral origin sequences used to guide genome replication
and packaging during vector production (Wang et al., 2019). As
prolonged expression of Cas9 may increase the possibility of off-
target effects, which can cause safety concerns, delivery in DNA
form is advantageous if sustained Cas9 expression is required
(Ishida et al., 2015; Yip, 2020).

Cas9 is an endonuclease that contains two nuclease domains,
RuvC and HNH. The RuvC domain cleaves non-complementary
DNA strands and the HNH domain cleaves complementary
DNA strands (Liu et al., 2017). The SpCas9 is the most widely
used endonuclease and has been demonstrated to effectively
inactivate HBV sequences (Hille et al., 2018; Moyo et al.,
2018). However, different Cas9 orthologs, such as SaCas9,
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FIGURE 3 | Schematic representation of the larger transgene Streptococcus pyogenes Cas9 (SpCas9) incorporation by splitting into AAV vectors. Two vectors
pAAV-Guide-it-Up and Guide-it-Down were used to express full-length SpCas9 and gRNA. gRNA sequence is located downstream of the U6 promoter of the
Guide-it-Down vector for binding to the target DNA sequence.

Streptococcus thermophilus Cas9 (StCas9), Neisseria meningitidis
Cas9 (NmCas9), and SpCas9 variants, have been optimized
(Kleinstiver et al., 2015). A recent study reported preexisting
adaptive immune responses in humans against SaCas9 and
SpCas9 proteins (Simhadri et al., 2018; Charlesworth et al.,
2019; Wagner et al., 2019), suggesting previous exposure of
these bacterial Cas9 proteins from microbes in humans. Pre-
existing immunity against Cas9 may negatively impact its
clinical use by affecting its efficacy and posing significant safety
issues (Mehta and Merkel, 2020). Therefore, it is essential to
fully characterize the impact of pre-existing immunity against
Cas9 for its successful use in in vivo genome editing. SaCas9
and sgRNA-8 delivered using single-stranded adeno-associated
viral vectors (ssAAVs) resulted in HBV DNA and cccDNA
suppression in HepG2.2.15 and HepG2-hNTCP cells (Scott et al.,
2017). gRNA/SaCas9 delivered by AAV inhibited HBV antigen,
pgRNA, and cccDNA in different cell lines, including Huh7,
HepG2.2.15, and HepAD38 cells (Liu et al., 2018). As expected,
the dual expression of gRNAs/SaCas9 was more efficient for HBV

genome cleavage (Liu et al., 2018). Although not significant,
the levels of HBsAg, HBV DNA, and pgRNA were decreased
in mice with persistent HBV replication and a higher titer
of AAV injection when compared with that in controls (Liu
et al., 2018). In addition, a recent study showed inhibition of
HBV by CRISPR/SaCas9 delivered using hepatotropic AAV8 in
C57BL/6 mice (Yan et al., 2021). In another study, C57BL/6
mice were administered 2 × 1011 AAV8 vector genomes (vg)
via tail vein injection to deliver SaCas9 in a volume of 200 µL
(Yan et al., 2021).

CRISPR generates knockouts at the DNA level, whereas RNA
interference (RNAi) silences genes by generating knockdowns at
the mRNA level. RNAi has been shown to exert antiviral effects
against HBV (Mccaffrey et al., 2003). A single administration
of a double-stranded AAV8-pseudotyped vector (dsAAV2/8)
carrying HBV-specific shRNA reportedly effectively suppressed
HBV protein, mRNA, and replicative DNA in the liver of
HBV transgenic mice, and the effect was sustained for at least
120 days after vector administration (Chen et al., 2007). However,
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the suitability of the dsAAV2/8 vector for CRISPR/Cas9-based
therapies and the treatment of chronic HBV infection remains
to be investigated. Notably, AAV vectors obtained using the
pseudotyping method are often referred to as AAV2/n, where
the first number refers to the ITRs and the second to the capsid.
Capsids are responsible for different transduction abilities (i.e.,
cell tropism and kinetics of transgene expression), and users
can choose accordingly (Asokan et al., 2012; Balakrishnan and
Jayandharan, 2014). Varying hepatocyte transduction efficiencies
have been reported among AAV serotypes, and an engineered
AAV3 capsid has been reported to exhibit much greater
efficiency for human hepatocytes than AAV5, AAV8, and AAV9
(Vercauteren et al., 2016). Another recent study reported a
mutant AAV vector candidate, AAV3B, with greater hepatocyte
tropism and reduced seroreactivity (Biswas et al., 2020).
Development of mutant AAV variants with human hepatocyte
tropism and neutralizing antibody escape capacity is paramount,
and further investigation is required to obtain a suitable
vector for CRISPR/Cas9-mediated inhibition of HBV infection
(Pei et al., 2020).

In our previous study, we investigated the potential of AAV2-
mediated delivery of guide (g) RNAs/Cas9 to inhibit HBV
replication both in vitro and in vivo. For in vivo experiments,
1 × 1012 vg copies of AAV2-WJ11/Cas9 were injected through
the tail vein into persistent HBV genotype C-infected humanized
chimeric mice. We observed that AAV2-WJ11/Cas9 significantly
inhibited HBV DNA replication and reduced cccDNA levels
both in vitro and in vivo (Kayesh et al., 2020); however, the
effect required high multiplicity of genome (MOG) copies of
the AAV2 vector, suggesting low transduction efficiency of the
AAV2 vector. Using an immunocompetent tree shrew model
of HBV infection (Kayesh et al., 2021), we observed a much
lower transduction efficiency of the AAV2 vector in liver tissues
(unpublished data) than in humanized chimeric mice (Kayesh
et al., 2020). Stone et al. demonstrated the antiviral efficacy of
SaCas9 in humanized FRG mice chronically infected with HBV
genotype C, which resulted in decreased total liver HBV DNA
and cccDNA levels (Stone et al., 2021). Mice were administered
with 5 × 1011 AAV vector genome copies generated with capsid
LK03 via tail vein injection to deliver SaCas9 in a volume of
100 µL (Stone et al., 2021). Although AAV is one of the most
commonly used vector systems, a very high dose is required for
its transduction (Kayesh et al., 2020). Despite years of research,
AAV production is still expensive and remains one of the main
barriers for AAV-based gene therapy (Naso et al., 2017; Wang
et al., 2019), making it impractical to implement programs to
treat HBV-infected individuals with AAVs globally. Moreover,
problems such as liver toxicity at high doses, immunogenicity,
off-target effects, and genomic integration remain to be resolved.

ADENOVIRAL VECTORS AS A DELIVERY
TOOL FOR GENE THERAPY

Adenoviruses belong to the Adenoviridae family, and comprise a
wide group of human and animal viruses that share functional,
genetic, and structural characteristics (Smith et al., 2010).

Adenoviruses have a linear double-stranded DNA genome that
ranges from 26 to 46 kb in length (San Martin, 2012). The
adenovirus genome encodes more than 40 different proteins,
12 of which are mature viral particles (Lehmberg et al., 1999).
The episomal nature, large cloning capacity, high titers, and
transducing ability of dividing and non-dividing cells make
adenoviral vectors (AdVs) interesting candidates for exploitation
in RNA-guided nuclease (RGN) delivery (Goncalves and De
Vries, 2006). High-capacity adenoviral vectors (HCAdVs) lacking
all the coding genes are considered powerful tools for the delivery
of large amounts of DNA cargo into cells (Ehrke-Schulz et al.,
2017). HCAdVs possess high packaging capacity (up to 35 kb),
low immunogenicity, and low toxicity (Xu et al., 2019). Schiwon
et al. (2018) demonstrated that co-delivery of multiple gRNA
expression cassettes along with the Cas9 expression cassette
through one HCAdV resulted in a significant reduction in HBV
Ag and HBV cccDNA production.

LENTIVIRUS VECTOR-BASED DELIVERY
OF CLUSTERED REGULARLY
INTERSPACED SHORT PALINDROMIC
REPEAT/ASSOCIATED PROTEIN 9 FOR
HEPATITIS B VIRUS INHIBITION

Lentiviral vector (LV) is a single-stranded RNA virus with a
packaging capacity of approximately 8 kb (Vogt and Simon,
1999). Although LVs can mediate potent transduction and stable
expression in dividing and non-dividing cells both in vitro
and in vivo, their use in clinical research is limited by several
issues related to safety, ethics, and public health concerns, and
significantly lower transduction efficiency in non-dividing cells
that are quiescent in the G0 state (Connolly, 2002; Kuhn et al.,
2002). To address such challenges, non-integrating lentiviral
vectors (NILVs) are under development (Uchida et al., 2021).

LV-mediated delivery of CRISPR/Cas9 has been shown to
efficiently cleave viral DNA and suppress HBV in HepG2.2.15 and
HepG2-hNTCP cells (Ramanan et al., 2015). Dual expression of
gRNA/CRISPR/Cas9 results in greater reductions in HBsAg and
HBV RNA when compared with the expression of single guide
RNAs (Ramanan et al., 2015). An anti-HBV effect in a mouse
model was observed upon introduction of HBV and Cas9/sgRNA
plasmids into the liver of immunodeficient mice (NRG) by
hydrodynamic injection (HDI) (Ramanan et al., 2015), which
suggests the efficacy of CRISPR/Cas9 system-based targeting
of the HBV genome. Another study identified conserved HBV
sequences in the S and X regions of the HBV genome, which
were targeted for precise and effective cleavage by Cas9 nickase
(Karimova et al., 2015). Base editing has advanced CRISPR/Cas-
based technologies, and can be used to directly initiate point
mutations in cellular DNA without a DSB (Kantor et al., 2020).
The CRISPR/Cas9-mediated non-cutting editing strategy in the
base-editing system has been shown to have the potential to cure
CHB by permanent inactivation of integrated HBV DNA and
cccDNA without off-target effects (Yang et al., 2020). Another
recent study also reported efficient silencing of HBV following
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targeting of the HBV S gene using CRISPR-mediated base editing
(Zhou et al., 2022).

NON-VIRAL VECTORS FOR CLUSTERED
REGULARLY INTERSPACED SHORT
PALINDROMIC REPEAT/ASSOCIATED
PROTEIN 9 DELIVERY

Although viral vector-mediated gene delivery results in higher
transduction efficiency and long-term gene expression, viral
vectors suffer from a number of limitations, including oncogenic
effects, toxicity, immunogenicity, poor target cell specificity,
inability to transfer large genes, insertional mutagenesis, and high
costs (Wang et al., 2013). Non-viral vectors are based on the
collective delivery of naked RNA or DNA using chemical or
physical methods, resulting in efficient delivery of nucleic acids
into the target cells (Wang et al., 2013; Jin et al., 2014). Non-viral
vectors, particularly cationic lipid-based biomaterial approaches,
show high potential because of their relative safety, ease of
preparation, cell/tissue targeting, and low immunogenicity.
However, the clinical application of non-viral methods is limited
by their low transfection efficiency and poor transgene expression
(Wang et al., 2013). In recent years, non-viral vectors have been
found to be effective for CRISPR/Cas9 delivery to cells and
tissues in vivo and in vitro. Various promising non-viral tools
for CRISPR/Cas9 gene therapy have been developed, including
liposomes (Liu et al., 2019), nanocarriers (Miller et al., 2017; Finn
et al., 2018), and cell-penetrating peptides (Suresh et al., 2017).
Nanoparticles targeting hepatocytes have been developed using
endogenous and exogenous targeting ligand-based mechanisms
using glycans, proteins, or modifications of the nanoparticle

surface (Barrett et al., 2014; Detampel et al., 2014; Li M. et al.,
2016). In the case of CRISPR/Cas9 gene therapy against HBV
using a non-viral vector as a delivery tool, strong hepatotropism
of the vector is essential for targeting the liver. In addition, lipid
nanoparticles (LNPs) have been found to be efficient carriers of
short-interfering RNAs (siRNAs) to hepatocytes in vivo (Akinc
et al., 2010), which suggests the hepatotropism of LNPs.

A previous study showed that CRISPR/Cas9-delivered by
lipid-like nanoparticles (LLNs) (Li et al., 2015) could suppress
HBV DNA in a mouse model (Jiang et al., 2017). In a
previous study, we also developed LNP as a non-viral delivery
tool to deliver the CRISPR/Cas9 system and guide RNA, and
investigated its usefulness in CRISPR/Cas9-mediated inhibition
of HBV in HBV-replicating HepG2.2.15 cells (Suzuki et al., 2021).
Furthermore, LNP-based CRISPR/Cas RNP delivery has been
found to significantly enhance the inhibition of in vitro HBV
replication (Suzuki et al., 2021) when compared with viral vector
(AAV2) delivery (Kayesh et al., 2020), highlighting the relevance
of the delivery tool in enhancing antiviral effects. Another
recent study showed that the RNP delivery of CRISPR/Cas9
in HBV-infected HepG2-NTCP cells induced DSBs in cccDNA,
which affected HBV replication. Moreover, Cas9-induced effects
were sustained even after RNP degradation/loss of detection,
suggesting stable changes due to transcriptional interference
(Martinez et al., 2022). However, the efficacy of LNP-based
CRISPR/Cas RNP delivery targeting the HBV genome remains
to be investigated using a bona fide in vivo HBV infection model.

A previous study reported the synthesis and development
of zwitterionic amino lipids (ZALs) that can co/deliver long
RNAs, including Cas9 mRNA and sgRNAs (Miller et al., 2017).
However, their use in the delivery of CRISPR/Cas9 to target the
HBV genome remains to be investigated. A near-infrared (NIR)

TABLE 1 | Advantages and disadvantages of the various delivery tools used for CRISPR/Cas9 delivery.

Delivery tools Advantages Disadvantages

Adeno-associated virus
vectors

• Widely studied
• Safe
• Broad tissue tropism, and some AAV serotypes, including AAV8,
AAV8-pseudotyped vector (dsAAV2/8), and AAV3B exhibit high
hepatocyte tropism

• Difficulty to produce
• Limited packaging capacity
• Low transduction efficiency
• Serotype-dependent preexisting immunity
• Repeated injections may be required
• Liver toxicity at high dose (>1014 vg/kg)

Lentivirus vectors • High transduction efficiency
• Long-term gene expression

• Can cause insertional mutagenesis
• Do not efficiently transduce quiescent (G0) cells in the adult liver

Adenovirus vectors • High infection efficiency
• Large cloning capacity
• Ability to transduce both dividing and non-dividing cells
• Can be produced at high titer

• Transient expression
• Toxicity at high dose
• Serotype-dependent preexisting immunity
• Repeated injections may be required
• Induction of both innate and adaptive immune response

Lipid nanoparticle
(LNP)-based
CRISPR/Cas
ribonucleoprotein (RNP)

• Easy scalable production
• High delivery efficiency
• Low toxicity
• Transient expression resulting in lower off-target risk

• Repeated injections may be required
• Poor efficiency in penetrating into the nucleus

NIR-responsive

biomimetic
nanoparticles

• Minimal off-target effects
• Good biocompatibility

• Multiple interactions are required
• Increased concentrations can cause cytotoxicity

Electroporation • Suitable for all cell types
• High transfection efficiency
• Suitable for all CRISPR/Cas9 strategies

• Can cause significant cell death
• Non-specific transfection
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light-responsive nanocarrier, CRISPR/Cas9, was developed to
target cancer therapeutics using upconversion nanoparticles
(UCNPs) (Pan et al., 2019). NIR-responsive biomimetic
nanoparticle (UCNPs-Cas9@CM)-based delivery of Cas9
RNP was found to inhibit HBsAg, HBeAg, HBV pgRNA,
HBV DNA, and cccDNA both in vitro (HBV-infected cells)
and in vivo (HBV-Tg mice) (Wang D. et al., 2022).
A recent study reviewed the suitability and efficiency of
nanoparticle-based delivery of CRISPR/Cas9 for genome
editing (Duan et al., 2021), and the study could facilitate
the selection of nanoparticle-based delivery of CRISPR/Cas9
to target HBV infections. Although CRISPR/Cas9 has
been employed in clinical trials targeting host genes or
viruses, to date, no study has been conducted to target
the HBV genome using CRISPR/Cas9 (ClinicalTrials.gov;
accessed on May 20, 2022), suggesting that further expanded
preclinical investigations are still required before engaging in
clinical trials.

PHYSICAL METHODS FOR CLUSTERED
REGULARLY INTERSPACED SHORT
PALINDROMIC REPEAT/ASSOCIATED
PROTEIN 9 DELIVERY

Electroporation
Electroporation is widely used to deliver nucleic acids and
proteins to mammalian cells (Mali et al., 2013; Tebas et al.,
2014). Although electroporation can be used to deliver all types of
CRISPR/Cas9 systems, including plasmid-based CRISPR/Cas9,
Cas9 mRNA and sgRNA, and Cas9/sgRNA RNP, its use is limited
because of the low plasmid DNA integration (approximately
0.01% of the target cells) and induction of significant cell death
(Liu et al., 2017). Recently, Zhen et al. (2021) reported that
combination therapy with anti-HBV and anti-PD1 gRNA/cas9
delivered using electroporation produces a synergistic antiviral
effect against HBV infection.

Based on the available data and findings, the main advantages
and disadvantages of various tools that have been investigated to
date for the delivery of CRISPR/Cas9 targeting the HBV genome
are summarized in Table 1.

CONCLUSION

A suitable delivery tool is crucial for the achievement of the
desired CRISPR/Cas9 effects against HBV infection. Therapeutic
translation of the CRISPR/Cas system remains a challenge
because of the lack of a suitable delivery tool (Tong et al.,
2019; Wilbie et al., 2019). Researchers are actively pursuing the
development of efficient CRISPR/Cas delivery systems, which
may address the issue in the near future. Although AAVs are
the most widely investigated delivery tools for CRISPR/Cas9
targeting of the HBV genome, no clinical trials have been
conducted to date with AAVs. Non-viral nanoparticle-based
delivery tools, which may supersede the use of viral vectors in the
near future, can be considered for extensive future investigations
and could open new avenues for nanoparticle-based effective
delivery of CRISPR/Cas9 against HBV infection.
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