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Bacterial genomes are being sequenced at an exponentially
increasing rate, but our inability to decipher their transcriptional
wiring limits our ability to derive new biology from these se-
quences. De novo determination of regulatory interactions re-
quires accurate prediction of regulators’ DNA binding and precise
determination of biologically significant binding sites. Here we
address these challenges by solving the DNA-specificity code of
extracytoplasmic function sigma factors (ECF σs), a major family
of bacterial regulators, and determining their putative regulons.
We generated an aligned collection of ECF σs and their promoters
by leveraging the autoregulatory nature of ECF σs as a means of
promoter discovery and analyzed it to identify and characterize
the conserved amino acid–nucleotide interactions that determine
promoter specificity. This enabled de novo prediction of ECF σ
specificity, which we combined with a statistically rigorous phylo-
genetic footprinting pipeline based on precomputed orthologs to
predict the direct targets of ∼67% of ECF σs. This global survey
indicated that some ECF σs are conserved global regulators con-
trolling many genes throughout the genome, which are important
under many conditions, while others are local regulators, control-
ling a few closely linked genes in response to specific stimuli in
select species. This analysis reveals important organizing principles
of bacterial gene regulation and presents a conceptual and com-
putational framework for deciphering gene regulatory networks.
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The genomes of medically, industrially, and environmentally
important bacteria are being sequenced at a rapidly in-

creasing rate. However, the utility of these sequences is limited
by our inability to decipher their transcriptional wiring. Because ad-
aptation to new environments or conditions is driven both by changes
in the regulation of existing genes and by acquisition of novel func-
tions, deciphering gene regulation from genome sequences is a key
aspect of understanding cellular lifestyles, the evolution of patho-
genesis, intrinsic antibiotic resistance, and biofilm growth.
In bacteria, a major point of transcriptional regulation is the

use of sigma factors (σs) to direct RNA polymerase (RNAP) to
specific promoters (1). A vast majority of σs belong to the σ70
family, which consists of four phylogenetically and structurally
related groups (2). The Group 1 housekeeping σs are highly
conserved, universally essential, and responsible for recognizing
thousands of promoters in each bacterial genome. The Group 2
to 4 alternative σs are active under specific growth or environ-
mental conditions and effect specialized transcriptional pro-
grams by directing RNAP to a smaller set of distinct promoters.
Group 4 σs, also called extracytoplasmic function (ECF) σs, are
the most abundant and diverse group, often representing 5 to
10% of the regulatory repertoire (3, 4). ECF σs regulate genes
involved in differentiation, metal homeostasis, outer membrane
integrity, oxygen response, and other processes (5–8). Despite
their importance, the vast majority of ECF σs remain

uncharacterized, and no computational method exists for de-
termining the set of genes regulated by an ECF σ (its regulon).
ECF σs are small (∼200 amino acids) and contain two well-

conserved globular domains, σ4 and σ2, that interact respectively
with the -35 and -10 regions of the core promoter (1). ECF σs are
less proficient at promoter melting than other σs, resulting in a
requirement for near consensus promoters, and often regulate
their own promoter (3, 4). Together, these attributes make ECF
σs amenable to computational approaches. Previous work iden-
tified the autoregulatory promoters of some ECF σs by sepa-
rating σs into groups and searching their upstream regions for
overrepresented bipartite motifs (3, 4, 9). However, the promoter
motifs discovered were not suitable for determining individual ECF
σ regulons. First, the groups were broad, often containing multiple
ECF σs from the same genome. Since multiple ECF σs in a single
bacterium are unlikely to regulate identical regulons, these motifs
are likely an ensemble of multiple distinct promoters. Second, this
method cannot determine motifs of nonautoregulatory ECF σs.
Finally, identifying the true regulon requires a method that can
discriminate against the large fraction of false positive sites pre-
dicted by most methods (10–12).
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Bacterial phenotypes require the concerted expression of
multiple genes, usually coordinated by a transcriptional regu-
lator. Although the functions of many genes in sequenced
bacterial genomes can be inferred, the regulatory networks
that coordinate their expression are only known in a few
model systems. Using a bioinformatic and experimental ap-
proach, we solve the DNA-specificity code of extracytoplasmic
function sigma factors (ECF σs), a major class of bacterial reg-
ulators. We develop and use a high-stringency pipeline to
predict the genes regulated by 67% of ECF σs in >10,000 spe-
cies, providing a comprehensive look at the role of a broadly
distributed family of gene regulatory proteins. This conceptual
and computational framework is potentially applicable to
other bacterial regulators.
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Here we overcome these hurdles by computationally and ex-
perimentally analyzing the protein determinants of promoter
recognition to elucidate how amino acid identities at key posi-
tions determine the promoter specificity of ECF σs. This protein-
DNA code enables prediction and rational reengineering of the
promoter specificity of all ECF σs. We then developed a statis-
tically rigorous phylogenetic footprinting pipeline and used it to
predict ECF σ regulons. We identified regulons, which encom-
passed a broad range of functions, for ∼67% of ECF σs. ECF σs
can generally be classified into global and local regulators.
Whereas local ECF σs have small regulons and a sparse

distribution within clades, global ECF σs regulate many pro-
moters and are found in more members of a bacterial clade. Our
analysis reveals important organizing principles of bacterial
regulatory network evolution and provides a truly global survey
of gene regulatory interactions in bacteria.

Results
ECF σs Interact with DNA in a Conserved Fashion. Predicting and
rationally engineering the specificity of a DNA binding protein
requires conserved interactions between specific positions in the
protein and the DNA. To determine whether ECF σs fulfill this
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Fig. 1. MI analysis reveals conserved ECF σ-promoter interaction. (A) Schematic depicting the process for generating an aligned collection of ECF σs and their
putative promoters. ECF σs in the proGenomes database are identified and clustered based on their protein sequence. The upstream DNA sequences asso-
ciated with each cluster are then mined for autoregulatory motifs, which are aligned, resulting in an aligned collection of ECF σ sequences and their aligned
respective putative autoregulatory motifs. (B–E) MI maps (B and D) and distributions (C and E) for the interaction between σ4 domain and -35 promoter motif
(B and C) and for the interaction between σ2 and -10 promoter motif (D and E). The red lines in the distributions of MI values represent 7 SDs (as quantified
using median absolute distance) above the median. High MI values were not due to phylogenetic artifacts and were significantly higher than random (SI
Appendix, Fig. S3). Positions boxed in red are previously identified base-specific interactions.
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requirement, we constructed a large database of ECF σs, de-
termined their putative autoregulatory promoters, and per-
formed a mutual information (MI) analysis to determine
whether specific amino acid positions covaried with specific nu-
cleotide positions across evolutionary time.
We first identified 84,009 nonduplicate ECF σs from 10,503

genomes in the proGenomes database (13). proGenomes im-
plements eggNOG 4.5 (14), a hierarchical gene orthology
framework, to provide consistent functional and taxonomic an-
notations of >25,000 bacterial genomes. We determined the
putative autoregulatory promoter motifs of these ECF σs by
clustering them based on their protein sequences (Methods) and
searching for overrepresented motifs in the upstream sequences
of each cluster. A schematic of this process is depicted in Fig. 1A.
To maximize our chances of identifying motifs, we applied two
distinct clustering methods [K-mer distance and eggNOG
orthology groups (14); Dataset S1], separately searched both the
150 bp and the 300 bp upstream of the ECF σ translation start
site, and considered sequences upstream of the ECF σ operon (if
applicable), and divergently transcribed genes (if applicable). We
identified 91,552 potential promoters belonging to 41,665 unique
ECF σs. Motifs were aligned, and putative promoter sequence(s)
were associated with the respective ECF σ sequences, generating
a single, weighted collection of matched and aligned promoters
and ECF σ sequences (Dataset S2).
We next performed a MI analysis on this collection to identify

interacting amino acid–nucleotide pairs (Methods). This ap-
proach assumes that mutations in a specificity-determining
amino acid are compensated for by mutations in the cognate
promoter position (and vice versa), leading to high covariation
(and therefore MI). Only a few amino acid – nucleotide pairs
had high MI (Fig. 1 B–E), and these were consistent with spec-
ificity determining interactions observed in the crystal structures
of three divergent ECF σs bound to their cognate promoters:
Escherichia coli RpoE (15, 16) and Mycobacterium tuberculosis
SigL (17) and SigH (18, 19) (Fig. 1 B and D, red boxes), sug-
gesting that the mechanism of ECF σ–promoter interaction is
conserved in a majority of ECF σs despite their extensive se-
quence divergence. This implies that our collection of matching
ECF σs and putative promoters can serve as a dictionary in which
the promoter specificity conferred by any amino acid at key
DNA recognizing positions can be determined.

The Identity of Key Amino Acid Positions Determines Promoter
Specificity. Our MI analysis implies that the identity of the
amino acid at key positions should have a predictable effect on
the promoter specificity of an ECF σ, enabling both prediction of
natural ECF σ promoters and the ability to design ECF σs with
arbitrary promoter specificity. We tested this proposition by ex-
perimentally characterizing the effect of all possible substitutions
at each of three amino acid–nucleotide pairs chosen on the basis
of their high MI and presence in ECF σ structures (interactions
equivalent to E. coli RpoE Arg171/-31, Ser172/-34, and Asn84/-
13 and Asn84/-12). For each pair, we constructed all 19 possible
amino acid substitutions and tested them against all four possible
promoter variants using a previously described multiplasmid
system (9) in which a heterologously expressed ECF σ drives
in vivo GFP expression from a test promoter in E. coli (depicted
at the top of Fig. 2). We used a different ECF σ for the muta-
tional analysis of each position to highlight the general nature of
this dictionary. To simplify nomenclature, we will refer to amino
acid positions in ECF σs by the equivalent amino acid in E. coli
RpoE, e.g., Arg171RpoE describes the position aligned with
E. coli RpoE Arg171.
The Arg171RpoE mutants were constructed in ECF32_1122

(from Erwinia amylovora). As expected, mutations at this posi-
tion drastically altered -31 specificity (Fig. 2 and Dataset S3).

Importantly, the experimentally determined -31 nucleotide
preference of most active ECF σ mutants agreed strongly with
the -31 promoter nucleotides of naturally occurring ECF σs with
that same amino acid in the Arg171RpoE position. Similarly,
mutations at the Ser172RpoE position, constructed in ECF14_1324
[from Streptomyces coelicolor A3 (2)], affected -34 specificity (Fig. 2,
Methods, and Dataset S3). Changes in specificity were well corre-
lated to the specificity of naturally occurring ECF σs with the same
Ser172RpoE identity in our dataset (R2 = 0.37; P < 0.02). Finally,
mutations at the Asn84RpoE position, constructed in ECF11_987
(from Vibrio parahaemolyticus), affected both -12 and -13 nucleotide
specificity (Fig. 2, Dataset S3, and Methods), and changes were
strongly correlated to those exhibited by natural ECF σs with that
same amino acid at Asn84RpoE (Fig. 2; R2 = 0.49; P < 10−16).
Taken together, these comprehensive mutagenesis studies,

performed on three distinct ECF σs, from phylogenetically di-
verse clades demonstrate the stringent yet diverse promoter
specificity of ECF σs. All three ECF σs tested were exquisitely
sensitive to both single nucleotide changes to their cognate
promoters and single amino acid changes in both the σ2 and σ4
domains. Importantly, the changes in specificity caused by the
amino acid mutations correlated strongly with the promoter
preferences of natural ECF σs containing those amino acids,
which enables the de novo prediction of ECF σ promoter spec-
ificity based on our aligned collection of ECF σs and promoters.

Modeling Studies Confirm the Importance of Specificity Determinants.
Although most high MI interactions identified amino acid–
nucleotide pairs previously implicated in promoter recognition,
some highlighted uncharacterized specificity determining interac-
tions. To better understand how these positions may affect pro-
moter specificity, we modeled these noncanonical interactions on
existing ECF σ structures, similar to previous studies (20).
First, MI analysis uncovered covariation between the amino

acid at the Phe175RpoE position and the -32 nucleotide. In our
collection, many natural ECF σs with an arginine at Phe175RpoE

had a nontemplate strand T at the -32 promoter position.
Modeling these changes onto the E. coli RpoE DNA-bound σ4
structure (15), we found that a phenylalanine to arginine sub-
stitution at Phe175RpoE would lead to the loss of three nonpolar
interactions between the phenylalanine side chain and the
methyl, C6, and ribose C2′ atoms of the -32 template strand T.
The compensatory nontemplate strand -32T mutation places the
-32 template strand adenine N7 (a hydrogen bond acceptor) near
the guanidine group of arginine at Phe175RpoE likely forming an
H bond that could compensate for the loss of the nonpolar in-
teractions (SI Appendix, Fig. S1A). This result strongly suggests
that ECF σs with an arginine at Phe175RpoE likely require -32T
to maintain activity, consistent with our predictions.
Second, our analysis identified a correlation between acidic

residues at Lys56RpoE and a -11 A. Previous studies (16) impli-
cated Lys56RpoE primarily in interactions with the -12 nucleotide
and suggested that the -11T was predominantly recognized by
Ile77RpoE, Ala60RpoE, and Asn80RpoE. To better understand the
role of acidic residues at Lys56RpoE, we modeled an acidic sub-
stitution at the Lys56RpoE position onto a preexisting structure
(16). Basic amino acids at Lys56RpoE would form a hydrogen
bond with O4 of -11T, explaining their affinity for -11T. By
contrast, the -11A nucleotide would not be able to form a hy-
drogen bond with a basic residue at Lys56RpoE but could do so
with acidic residues at this position (SI Appendix, Fig. S1B),
explaining the observed correlation.
Taken together, our modeling results strongly support the

hypothesis that the sparse and modular correlations observed in
the MI analysis are causal drivers of ECF specificity and high-
light the importance of previously unappreciated interactions for
the promoter specificity of ECF σs.
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De Novo Prediction of ECF Promoter Specificity. That only a few
specific amino acids in an ECF σ make sequence-specific DNA
contacts suggests that de novo prediction of promoter specificity
based on the primary sequence of a σ may be attainable. Such an
approach is suitable for inferring the promoter motifs not only of
autoregulatory ECF σs but also of nonautoregulatory and re-
cently diverged ECF σs, which cannot be accurately predicted
through clustering-based approaches.
To predict the promoter specificity of ECF σs, we first selected

one or two amino acid positions most correlated to the identity
of each nucleotide position in the promoter based on the results
of our MI analysis and published structures (SI Appendix, Table
S1). We build the putative -35 and -10 PWMs of an ECF σ by
considering nucleotide position separately. At each promoter
position we evaluate the DNA specificity of natural ECF σs that
have the same amino acid(s) at the specificity determining po-
sitions as our ECF σ of interest. By concatenating these indi-
vidual sequence preferences, we determine PWMs representing
the -35 and -10 sequence specificity of a given ECF σ (Fig. 3A).
We determine how efficiently a given ECF σ will activate a given
promoter by scoring every possible position in the promoter se-
quence using the -35 and -10 PWMs and a 16-, 17-, or 18-bp
spacer as previously described (21).
We assessed the predictive power of this model by testing our

ability to predict 2,236 ECF σs–promoter interactions (86 rep-
resentative ECF σs × 26 promoters) for which in vivo

experimental data are available (9) (Fig. 3B). The predicted
activity of these 86 ECF σs was strongly correlated to their ex-
perimentally measured activity (R = 0.44; P < 10−16; Fig. 3C and
Dataset S4). This correlation was comparable to that observed
when scoring the experimentally determined PWM of E. coli
RpoE on its native promoters (21) (in vitro R = 0.45; in vivo R =
0.60), suggesting that the promoter specificity of diverse ECF σs
can be accurately predicted from their primary sequence.

Phylogenetic Footprinting of ECF σ Regulons. Having established an
accurate de novo method for predicting the -35 and -10 promoter
specificity of ECF σs, we next sought to determine the putative
regulons of all 84,009 ECF σs in our dataset. Previous studies on
σ70 and E. coli RpoE highlighted that even when the -35 and -10
PWMs have been experimentally determined, stringently iden-
tifying functional promoters is difficult. For example, using op-
timized -35 and -10 PWMs to scan the E. coli genome recovered
86% of known σ70 promoters and 88% of known RpoE pro-
moters but exhibited an FPR of ∼80% (12) and 92% (11), re-
spectively. Such a high FPR would obfuscate the true ECF σ
regulons and preclude biological interpretation of their function.
To overcome these high FPR rates and precisely determine

which genes may be regulated by a particular ECF σ, we devel-
oped a phylogenetic footprinting approach (Fig. 4A). Phyloge-
netic footprinting determines true ECF σ binding sites by

Fig. 2. Comparison of experimental and predicted effects of single amino acid mutations on promoter specificity. Using a previously described (9) E. coli
multiplasmid system where heterologous ECF σs expressed from one plasmid are used to drive GFP expression from the putative ECF σ promoter in a second
plasmid (Top), we tested the activity of ECF σs variants containing all possible amino acid variants at the position equivalent to E. coli RpoE Ser172, Arg171,
and Asn84 (Middle). Single amino acid changes drastically altered promoter specificity (Bottom) to match the promoter specificity of natural ECF σs with those
amino acid identities (Bottom, gray shading).
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assessing their conservation in related species. Because natural
selection over the course of evolution preferentially maintains
functional DNA elements, such as bona fide ECF σ binding sites,
this method can identify the conserved regulon of an ECF σ of
interest within a set of genomes with a much lower FPR than
other methods. Our pipeline uses precomputed orthologous
groups (OGs) from eggNOG 4.5 (14) as implemented in the
proGenomes+ database (13) to rapidly and robustly identify
orthologous genes between organisms.
Briefly, the 300 bp upstream of each gene in each genome is

scored with the predicted PWMs of the ECF σ ortholog from
that genome. Next, per gene scores are summed for all genes in
an OG. OGs with high scores are likely to be regulated by an
ECF σ of interest in the genomes of interest. To determine the
significance threshold for OG scores, we repeat the pipeline
100+ times using randomized PWMs. This generates a back-
ground distribution that represents the conservation of arbitrary
sequences between the genomes being queried (Methods and
Fig. 4A). OGs with scores substantially higher than those gen-
erated by randomization are likely regulated by the ECF σs
of interest.
The statistical power of phylogenetic footprinting (as assessed

by the randomized distribution of OG scores, above) depends on
the number and diversity of the genomes to which it is applied:
nonfunctional sites may be conserved between closely related
species or randomly in a small number of genomes. Conversely,

regulons in distantly related species may not be conserved.
Therefore, to maximize the size of the conserved regulon, we
reclustered the ECF σs in our dataset within taxonomic families
and orders (Dataset S5) prior to applying this method (Dataset
S1). We found at least one significantly (FDR < 0.05) regulated
eggNOG orthology group (effectively, at least one gene) for a
majority (67%) of ECF σs. Dataset S6 consists of >600,000 ECF
σ–gene interactions occurring at >250,000 specific promoters—a
global survey of ECF σ function.

The Properties of Predicted ECF σ Promoters Are Similar to
Experimentally Characterized Promoters. To assess the accuracy
of these predictions, we explored whether these putative ECF σ
promoters exhibited properties of bacterial promoters. Because
our phylogenetic footprinting approach considers only predicted
-35 and -10 specificities, the presence of additional promoter
characteristics (e.g., 5′UTR length, initiating nucleotide, and
UP-element) would be associated with these predicted ECF σ
promoters only if real promoters were being preferentially
identified.
We first explored 5′UTR length. Previous transcriptome

studies (23) identified a conserved distribution of 5′UTR lengths
across bacterial phyla. The distribution of 5′UTR lengths of our
predicted ECF σ promoters was similar to this distribution
(Fig. 4B), exhibiting a peak around ∼20 to 40 bp, which

C

BA

Fig. 3. ECF σ specificity can be accurately predicted based on the identity of key residues. (A) Schematic depicting the prediction of ECF σmotifs based on the
identity of amino acids at specific positions. For a given ECF σ, its promoter specificity is determined in a piecewise fashion. For each position in the promoter,
the identity of the interacting amino acid(s) is determined. Then, the nucleotide preference of natural ECF σs containing the same amino acid is assigned to
the novel ECF σ. (B) Comparison between the experimentally determined (exp.; Top) and predicted (pred.; Bottom) activity of 86 ECF σs on 26 promoters (exp.
data from ref. 9). (C) Correlation between actual (log-fold activation) and predicted (maximum PWM promoter score) activity of the 86 ECF σs on 26 pro-
moters depicted in B. The solid blue line represents the median log-fold induction of all ECF σs on all promoters, and the dashed blue lines represent 3 SDs (as
qualified by the median absolute distance) from the median.
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corresponds to the minimal ribosome binding footprint (24). As
expected, the distribution of predicted 5′UTR lengths was sim-
ilar in all bacterial phyla, with the exception of extremely short 5′
UTRs corresponding to leaderless mRNAs, whose prevalence is
known to vary across species (23) (Fig. 4B and SI Appendix,
Table S2).
We next explored the region downstream of the -10 element.

Many bacterial promoters contain a pyrimidine at the −1 posi-
tion of the nontemplate strand and a purine at the +1 position,
allowing favorable base-stacking interactions between the −1
template strand purine and the +1 nontemplate strand purine
(25). Consistent with this, we found that a pyrimidine–purine
pair was present at one of the two likely transcription start sites
(TSS; equivalent to the −1 or +1 position counted from the
flipped out -10 base) in 67.3% of putative ECF σ promoters.
Pyrimidine–purine pairs were enriched relative to their purine–
pyrimidine counterparts at the two likely TSS positions but not
before or after (SI Appendix, Fig. S2). For the 67.3% of pro-
moters with pyrimidine–purine pairs, we assumed that the purine
base was the initiating nucleotide (+1). Although both adenine
and guanine are commonly used as initiating nucleotides in all
phyla, the predicted promoters of leaderless mRNA promoters
were highly enriched for adenine initiating nucleotides (SI Ap-
pendix, Table S2), as expected considering the importance of the
AUG codon in recruiting ribosomes to these mRNAs (23).

Finally, we searched for UP elements, which consist of phased
A/T tracts (26) with extremely narrow minor grooves upstream
of the -35 element that enhance transcription by interacting with
the C-terminal domain of one or both alpha subunits of RNAP
(αCTD). UP-element subsites are located on the same face of
the DNA-helix as RNAP, immediately upstream of the -35 ele-
ment (proximal UP-element subsite), one DNA helix turn up-
stream (distal UP-element subsite), or two DNA helix turns
upstream (far distal UP-element subsite). To determine whether
our predicted ECF σ promoters had UP elements, which would
indicate that promoters were correctly predicted, we predicted
DNA shape upstream of all 251,594 predicted ECF σ promoters
using DNAshapeR (27) and defined putative UP-element sub-
sites as two adjacent nucleotides with a minor groove
width <3.5A. We found that ∼25% of putative ECF σ promoters
contained at least one UP-element subsite. UP-element subsites
were predominantly located at the proximal, distal, and far-distal
subsites (Fig. 4C), and the frequency of UP elements was con-
sistent with their reported prevalence by bacterial phyla (28) (SI
Appendix, Table S3).
These data demonstrate that our predicted ECF σ promoters

share many characteristics with experimentally determined pro-
moters, including 5′UTR length, pyrimidine–purine pairs near
the start site, and UP elements upstream of the -35, and suggest
that our phylogenetic footprinting approach correctly identifies
biologically relevant and active bacterial promoters. The strength

A

B C

Fig. 4. Phylogenetic footprinting identifies real ECF σ promoters. (A) Schematic of phylogenetic footprinting pipeline and its use for ECF σ regulon deter-
mination. The score of each OG in each species is the score of the best match of the predicted PWMs in the 300 bp upstream of the gene(s) assigned to the OG
in that genome. These scores are normalized within species (which also normalized for GC%) and summed across species for each OG. OGs with high scores in
many species are highly conserved targets. To determine the significance of scores, PWMs are shuffled and rescored multiple times to assess how often high
scores occur by chance in the specific set of genomes queried. This corrects for genomic diversity (or lack thereof) and the number of genomes queried. (B)
Distribution of 5′UTR lengths in predicted ECF σ promoters in all clades (black), Actinobacteria (orange), and Firmicutes (blue). The distribution of 5′UTR
lengths is consistent with known bacterial promoters, exhibiting a peak (gray) at 20 to 40 bp, likely representing the minimal ribosome binding site.
Leaderless transcripts (5′UTR length ∼ 0) are found in Actinobacteria but not in Firmicutes, as expected for these classes. (C) UP-element subsites are phased
upstream of predicted ECF σ promoters and preferentially found at the distal subsite, consistent with previous work on E. coli RpoE which suggested that the
distal site is more effective at activating transcription for this ECF σ (22).
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of these signals indicates that our pipeline achieves a low false
positive rate when identifying promoters, a prerequisite for
biological interpretation.

ECF σ Regulons Are Accurately Predicted. Since our putative ECF σ
promoters share many properties with active bacterial pro-
moters, we next assessed whether the specific regulon predic-
tions were correct. Although no regulon information exists for
the overwhelming majority of ECF σs, ∼50% of ECF σs have
been reported to autoregulate (3, 9) (Fig. 1). Taking advantage
of this positive control, we assessed the fraction of ECF σs
predicted to autoregulate. We found that 52.9% of ECF σs with
significant regulons (P < 0.05) included themselves in their
regulon, a percentage which did not vary substantially when the
p-value threshold for significance was raised (55.3% autor-
egulatory at P < 0.01). As expected, ECF σs for which autor-
egulatory promoters were previously identified (Fig. 1) were
more likely to autoregulate than ECF σs for which we did not
previously identify autoregulatory promoters (70% for ECF σs
with previously identified autoregulatory promoters, 33% for
other ECF σs), highlighting the accurate and precise regulons
determined by combining our DNA-specificity predictions and
phylogenetic footprinting pipeline.
To more specifically probe the accuracy of regulon predic-

tions, we assessed coexpression of predicted ECF σ regulons in
13 diverse bacterial species using publicly available gene ex-
pression data (29). We reasoned that the expression of genes in
true ECF σ regulons, likely including the ECF σ itself, should be
correlated across experimental conditions, as quantified by
comparing the correlation between the expression of the pre-
dicted ECF σ regulon and the same number of randomly se-
lected genes. We found that 41% of the predicted ECF σ
regulons examined (37 out of 90; Dataset S7) were significantly
more correlated than expected by random chance, suggesting
coregulation. The lack of significant correlations for the
remaining ECF σs may be due to incorrect regulon predictions,
an insufficiently diverse set of gene expression data (i.e., no
conditions that activated the σ), or small but correctly predicted
regulons that fail to reach the threshold of statistical significance.
Consistent with the idea that small regulons may be difficult to
validate using this method, significantly correlated regulons had
more genes on average (15.7) than regulons without significant
correlations (7.3; P < 0.01). Taken together these data strongly
suggest that our model of ECF σ promoter specificity combined
with our phylogenetic footprinting approach to regulon deter-
mination correctly identifies the promoter regions and members
of ECF σ regulons.

ECF σs Function as Both Global and Local Regulators. Studies of
genome-wide gene regulatory networks in eukaryotes (30), ar-
chaea (31), and bacteria (32) have identified hierarchical net-
work structures consisting of global and local transcriptional
regulators. These differ in the number of regulated genes, their
conservation, and the diversity of conditions in which they exert
their effects. That some ECF σs may regulate small regulons was
suggested in the original manuscript identifying the ECF σ family
(33), but most of the well-characterized ECF σs such as RpoE in
γ-proteobacteria and SigR/SigH in Actinobacteria are global
regulators that control the expression of many genes in response
to diverse conditions (11, 34–36). To determine whether most
ECF σs function as global regulators, we first quantified the
number of promoters they regulated and then examined whether
they possessed the properties of global and local regulators. We
found that ECF σs had regulons varying from 1 to 85 promoters
(Fig. 5A). As expected, ECF σs known to have large regulons
also had large average predicted regulons (e.g., RpoE, 17 pro-
moters; SigR/SigH, 41 promoters; Dataset S8). However, nearly
half of ECF σs in our dataset (47.8%) were predicted to regulate
three or fewer promoters. We eliminated the two most obvious
technical explanations for this observation, small ECF σs clusters
or low-information motif predictions, by assessing the correlation
between these factors and predicted regulon size. Although both
motif information content and cluster size were significantly
correlated to regulon size (all P < 10−16), together these pa-
rameters only explained a small amount of the variability in
regulon size (R2 < 0.1), suggesting that much of the variation in
regulon size is biologically meaningful. We therefore sought to
determine if the ECF σs predicted to have large regulons are
bona fide global regulators.
A key feature of global regulators is their importance under

diverse conditions. To determine whether ECF σs with large (>3
promoters) predicted regulons are important in more conditions
than ECF σs with small (≤3 promoters), we used a previously
published dataset (37) in which 5,647 genome wide transposon
fitness experiments were performed on 37 diverse bacterial
species. A total of 136 ECF σs from our dataset, 77 of which had
regulon predictions, were represented in these experiments,
allowing us to determine if predicted regulon size correlated to
the number of conditions in which each ECF σ affects cellular
fitness. We found that the number of regulated promoters was
significantly (P < 0.0001) correlated to the fraction of conditions
in which the ECF σ was important for cellular fitness (t < −3).
On average, ECF σs predicted to regulate large regulons had
significant phenotypes in 4.2% of tested conditions, whereas
ECF σs with small regulons had significant phenotypes in 0.4%
of conditions (t test P < 0.0001). Several RpoE and RpoE2 ho-
mologs in Shewanella species were predicted to regulate large
regulons but exhibited few significant phenotypes. Since these

BA C

Fig. 5. ECF σ regulon size and distribution within species. (A) Number of genes in ECF σ regulons. Red line separates ECF σs with three and four promoters. (B)
Scatterplot of ECF σs eggNOG orthology groups showing the median number of regulated promoters and the fraction of genomes within a clade that have
the ECF σ. (C) Boxplot of fraction of genomes with each ECF σ group separated by ECF σs with large or small regulons.
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ECF σs have been reported to be important under a wide range
of growth and stress conditions (38), the lack of significant
phenotypes is likely due to experimental issues (such as com-
pensatory mutations or lack of relevant conditions). Notably, the
regulons of these ECF σs appear to be correctly predicted
(Dataset S6) (38).
Another important characteristic of global regulators is their

conservation within bacterial clades. To determine whether ECF
σs with large predicted regulons are more conserved than those
with small predicted regulons, we grouped ECF σs by their
eggNOG orthology groups and assessed the fraction of genomes
within the relevant bacterial clade encoding a member of each
orthology group (Fig. 5B). ECF σs with large regulons were
present on average in 28% of genomes, while those with small
regulons were found on average in 16.9% of genomes within a
clade (Fig. 5C). Due to the varying diversity within clades and
within eggNOG orthology groups, our measure of penetrance
within clades likely underestimates the ultimate conservation of
ECF σs. Despite this, the statistically significant (t test P < 10−5)
difference in distribution suggests that ECF σs with large reg-
ulons, such as RpoE in the γ-proteobacteria and SigR/SigH in
the Actinobacteria, are conserved in a more species within those
clades, while ECF σs with smaller regulons tend to have a
patchier distribution.
One explanation for the patchier distribution of ECF σs with

small regulons is that they were acquired through horizontal
gene transfer (HGT). To determine whether ECF σs are com-
monly horizontally acquired, we applied tetranucleotide profiling
(39) to all genomes in our dataset to identify regions of atypical
sequence content associated with HGT events and assessed
whether ECF σs were present in these regions. Regions of
atypical sequence content, which canonically include rRNAs and
tRNAs, were efficiently identified (69% of rRNAs and 46% of
tRNAs), but ECF σs were not more likely to be horizontally
acquired than other genes in most bacterial phyla (Dataset S9).
However, ECF σs in both Bacteroidetes and Cytophagia (both
members of the Fibrobacteres, Chlorobi, and Bacteroidetes
superphylum) were more frequently horizontally acquired (21
and 18%, respectively) than the already high HGT rate of all
genes in these phyla (16 and 13%, respectively). Many ECF σs in
Bacteroidetes have been implicated in the regulation of carbo-
hydrate utilization pathways, raising the possibility that these
ECF σs are being transferred as part of carbohydrate utilization
loci. Across all clades, ECF σs with small (≤3 promoters) reg-
ulons were more likely to be horizontally acquired than ECF σs
with large (>3 promoters) regulons (9.7 vs. 7.9%, t test P < 10 to
12), suggesting that these ECF σs may be transferred together
with their regulon. Consistent with this idea, we found that many
of the genes regulated by ECF σs with small regulons were lo-
cated within 2 kb of the ECF σ (25.0%, compared with 7.8% for
ECF σs with >3 regulated promoters).
Taken together, these data suggest that ECF σs function both

as local regulators, controlling the expression of a few promoters
often located nearby in the genome, likely in response to specific
stimuli and as global regulators, controlling the expression of
many promoters and functioning to maintain cellular homeo-
stasis under diverse conditions.

The Role of ECF σs in Bacterial Clades. In addition to providing a
database of putative ECF σs regulon predictions across clades to
guide future discovery, our analysis also revealed specific regu-
latory interactions of biological interest which confirm and ex-
tend previous analyses. The full dataset (Dataset S6) provides
additional intriguing connections.
A major finding of our study was that almost half of the ECF

σs function as local regulators. This regulatory function is ex-
emplified by two broadly distributed groups of σs: ECF41 and

ECF42 groups. Previous work had noted the conserved synteny
of the genes surrounding these ECF σs and had experimentally
validated the small regulon of these ECF σs in a model organism
(40, 41). Our analyses support these findings and expand them to
numerous bacterial clades, highlighting the local nature of these
regulators. Our recapitulation of these results also highlights the
high stringency of our ECF σ regulon prediction.
The Actinobacteria are an expansive, diverse phylum of high-

GC gram-positive organisms canonically associated with soil
ecosystems but also relevant in human health and disease:
Streptomyces produce antibiotics, Bifidobacteria are microbiome
constituents, and Mycobacteria are important pathogens. Despite
their varied niches, all Actinobacteria contain a homologous
ECF σ, known as SigR in Streptomyces species and SigH in My-
cobacterium species, which responds to redox and translation
stress. We identified a core regulon consisting of 6 genes (iscA,
trxB, clpC, SCO3296, rbpA, and sigH/R) which were significantly
regulated in all six orders and an additional 18 genes predicted to
be regulated in four to five orders (Dataset S8). Many of these
conserved regulon members encode classical oxidative stress
response proteins, such as thioredoxins, members of the Clp
complex, and Fe-S cluster repair proteins. The regulon of this
ECF σ in the Corynebacteriales (which includes Mycobacterium)
contains six unique genes. Intriguingly, three of these (Rv3054c,
Rv3463c, and Rv1334) were among the most strongly activated
genes in a recent overexpression study (42). Both Rv3054c and
Rv3463c (the two most SigH activated proteins in M. tubercu-
losis) encode reductases, and Rv1334 has been shown to be es-
sential for survival in macrophages (43). Although the functions
of these genes remain to be determined, their integration into
the SigH regulon of Corynebacteriales, but not of the other or-
ders, suggests a role for these proteins in responding to redox
and translation stresses unique to the Corynebacteriales, po-
tentially signaling a role for these proteins in infection.
SigX, an important ECF σ in Pseudomonas species (44), il-

lustrates another aspect of regulon evolution. This ECF σ is
important for growth, biofilm formation, and virulence. It is
predicted to regulate 28 genes, many of which are involved in
fatty acid synthesis and other membrane functions, consistent
with previous work (44, 45). SigX is also predicted to regulate
nearby genes cmpX, a conserved transmembrane protein, and
oprF, the major Pseudomonas outer membrane porin. Despite its
importance in Pseudomonas, SigX is found only in a few other
closely related γ-proteobacterial clades (Paraglaciecola, Glacie-
cola, and Colwellia). Surprisingly, a SigX homolog is found in
Flavobacterium, a class in the Bacteroidetes phylum, where it is
predicted to regulate nearby genes homologous to cmpX and
oprF but not genes involved in fatty acid metabolism. These
regulatory patterns, combined with the atypical tetranucleotide
profile of SigX in a majority (84%; Dataset S9) of γ-proteo-
bacterial genomes, suggest that SigX and neighboring genes may
have been horizontally acquired by Pseudomonas, possibly from
a member of the Flavobacteria. If this is the case, regulation of
fatty acid synthesis by SigX in Pseudomonas may reflect regula-
tory capture over a relatively short time span, raising important
questions about the evolutionary pressures that led to
this outcome.

Discussion
Predicting gene regulatory interactions from the amino acid se-
quence of transcriptional regulators is a long-standing goal in
biology. To do so requires both the ability to predict the se-
quence specificity of a novel regulator and the ability to deter-
mine significant interactions. Because of the difficulty of meeting
both of these challenges, previous work has focused primarily on
engineering modular regulatory proteins such as zinc-finger
(ZFs) and transcription activator-like (TALs) rather than on de
novo prediction of biological targets, a problem that remains
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largely unsolved (46, 47). In this work, we solve the DNA-spec-
ificity code of ECF σs and build a computational pipeline that
enables us to use these rules to determine statistically significant
putative regulons for ∼67% of bacterial ECF σs.
That the amino acids at a few key conserved positions largely

determine promoter specificity is surprising and suggests signif-
icant constraints on the evolution of ECF σ DNA binding do-
mains. Such constraints may be imposed by extensive
protein–protein interactions of ECF σs with both RNAP and
negative regulators (anti-σs), which likely limit the ability of σs to
evolve novel DNA specificities through conformational changes.
The conservation of DNA determining amino acid positions al-
lows prediction and rational engineering of ECF σ specificity,
with exciting implications for tuning bacterial regulation to in-
crease stress resistance or metabolic productivity in industrial
settings (48).
To leverage our ability to predict ECF σ promoter specificity,

we built a high-throughput, computationally tractable, and sta-
tistically rigorous phylogenetic footprinting pipeline using pre-
computed orthology groups derived from a kingdom-wide
analysis of protein evolution (14) and a robust statistical method
based on randomized motifs. This pipeline stringently identified
real ECF σ promoters in genome sequences, as evidenced by the
presence of UP elements, pyrimidine–purine pairs at the TSS,
and the 5′UTR length distribution of predicted ECF σ pro-
moters (Fig. 4). The resulting dataset of putative ECF σ regulons
is the first of its kind: a comprehensive look at the role of a
broadly distributed family of gene regulatory proteins, revealing
the breadth of ECF σ regulation, the presence of conserved
global regulators and variable local regulators, and opening a
window into the evolution of ECF σ regulon membership in
different niches.
Although the regulons of most ECF σs were accurately pre-

dicted, FecI-like σs were overrepresented among ECF σs without
statistically significant predictions. Previous studies have sug-
gested that FecI-like ECF σs may function differently from other
ECF σs: FecI is unable to drive transcription without its anti-σ,
FecR (5), and mutagenesis of a PvdS (a Pseudomonas aeruginosa
FecI-like ECF σ) suggests that the stringency of -35 element
recognition is weak (49). Taken together, these data and the lack
of statistically significant predictions for FecI-like ECF σs sug-
gest that their promoter recognition properties may substantially
differ from those of canonical ECF σs and merit further study.
The approach demonstrated here, which combines covariation

analyses with powerful phylogenetic footprinting tools, is not
limited to ECF σs but can be broadly applied to study protein–DNA
interactions, bridging experimental and computational approaches.
By allowing future studies to associate novel genes with known
regulators, infer bacterial ecology by the coregulation of disparate
stress responses, and reveal the principles of gene regulatory
network evolution, this approach will lead to mechanistic and
conceptual understanding of bacterial gene regulatory network
function and evolution.

Methods
Identifying ECF σs and Their Regulatory Sequences.
Identifying ECF σs. ECF σs from the proGenomes database (13) were identified
by using hmmer (50) to search for protein sequences that contained both a
σ2 domain (Pfam:Sigma70_r2, PF004542) and a σ4 domain (Pfam:Sigma70_r4,
PF004545 or Pfam:Sigma70_r4–2, PF008281) but lacked a σ3 domain
(Pfam:Sigma70_r3, PF004539), as previously described (3). Sequences with
more than 65 amino acids between the σ2 domain and the σ4 domain were
excluded due to the likely presence of a cryptic σ3 domain (SI Appendix, Fig.
S4). The resulting set contained 133,424 ECF σ sequences, which were
aligned using hmmalign to custom ECF σ2 and ECF σ4 hmm models. Because
alignments frequently contained gaps due to the sequence diversity of ECF
σs, alignments were collapsed on either side of conserved residues in do-
mains σ2 and σ4 (positions equivalent to E. coli RpoE Gln51, Phe64, Trp73,

and Glu158, respectively) to generate the final alignments (Dataset S2) and
manually adjusted where necessary.
Retrieving upstream sequences. To maximize the chance of finding conserved
binding sites, up to three sequences at two lengths were retrieved for each
ECF σ. For all ECF σs, sequences were retrieved upstream from the translation
start site of the ECF σ (1). If the ECF σ was in an operon (defined as codir-
ectional ORFs < 50 nucleotides apart), the sequence upstream of the first
gene in the operon was also retrieved (2). If a divergent gene was located
either upstream of the ECF σ or of an operon containing the ECF σ, its up-
stream sequence was also retrieved (3). Sequences of both 150 and 300 bp
were retrieved and analyzed, to increase the statistical power for small
clusters (150 bp) and to increase the probability of determining downstream
motifs (300 bp).
Duplicate removal. The genomes of certain organisms (e.g., M. tuberculosis,
Streptococcus pneumoniae, and E. coli) are grossly overrepresented in se-
quence databases such as proGenomes (13). To minimize the influence of
duplicate sequences, we only considered one ECF σ from groups in the same
phylogenetic clade that were identical in protein sequence, upstream se-
quence, operon sequence, and divergent gene sequence. The remaining set
contained 84,009 ECF σs (Dataset S1).
Clustering. ECF σs were clustered solely on the basis of their protein sequence.
We used two distinct methods to cluster ECF σs. First, we used the eggNOG
orthology group of each ECF σ. This clade-specific identifier is based on
all-by-all Smith–Waterman alignments of protein sequences from repre-
sentative genomes (14). Our set contained 1,196 distinct eggNOG orthology
groups. Second, we used k-mer distance, as implemented in ClustalW. Be-
sides the advantage of being a distinct clustering method, k-mer distance
does not take into account phylogeny, allowing similar ECF σs from distinct
bacterial clades to be interrogated together.
Motif discovery and weighting. For each ECF σ cluster, up to six libraries of
upstream regulatory sequences were searched for putative two-block motifs
using BioProspector (51). These libraries consisted of 150- and 300-bp se-
quences from upstream of the ECF σs, upstream of an operon containing the
ECF σs, and upstream of a divergently transcribed gene. Motif searches with
BioProspector were performed only on the forward strand. Typical searches
were of the form W7 w5 G18 g15, where W and w denote the size (bp) of
the -35 and -10 motifs, and G and g denote the largest and smallest spacer
size. For each cluster in each library, the highest scoring two-block motif was
examined and aligned manually. Because an ECF σ could potentially be as-
sociated with as many as 12 motifs (150 and 300 bp; k-mer & eggNOG
clusters; upstream, operon, and divergent sequences), or as few as 1, motifs
were weighted by the reciprocal of the total number of motifs associated
with each ECF σ (e.g., the only motif of an ECF σ has a weight of 1, whereas
all 12 motifs of an ECF σ with 12 motifs are assigned weights of 1/12). These
weights were considered in all downstream analyses.

MI Analysis. MI analysis was performed on every possible nucleotide position
and amino acid position pair. We used the MI formula but accounted for the
weights associated with each DNA motif (Motif discovery and weighting)
when computing probabilities.

ECF σ Substitution Experiments. The σ‐promoter GPF measurements were
performed as previously described (9). Briefly, assays were performed in
E. coli (DH10β) using a three-plasmid system consisting of 1) an IPTG‐induc-
ible T7 RNAP (pN565), 2) a plasmid carrying the σ under the control of an T7
promoter, and 3) a plasmid series carrying a σ promoter driving to sfgfp.
Assays were performed using 1 mM IPTG, except those using ECF11_987,
which were performed at 10 μM IPTG to avoid toxicity. All assays were
performed in a 96‐well format. Overnight liquid transformants were diluted
into fresh prewarmed LB +Spec, Amp, Kan, and PTG in a 96‐well cell culture
plate and covered with a breathable membrane. Cultures were incubated in
a Tecan infinite M1000Pro plate shaker for 37 °C at 582 rpm. OD600 and GFP
fluorescence were tracked, and the maximum GFP synthesis rate/OD600 was
calculated and used for downstream analysis.

Modeling Studies. Previously solved ECF σ structures (2MAP and 2H27) were
modified using PyMOL and manually assessed for likely interactions.

Predicting ECF σMotifs.Motifs were predicted by concatenating the sequence
preferences for individual nucleotides based on the alignments described
above. Briefly, at each nucleotide position, the log fraction of each DNA base
in ECF σs sharing the same amino acids at relevant positions (SI Appendix,
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Table S1) are taken. Code is available at https://github.com/horiatodor/
predictECF.

Phylogenetic Footprinting Pipeline. A custom pipeline (https://github.com/
horiatodor/ECFGenome-Rcpp) was built to perform phylogenetic foot-
printing based on eggNOG orthology (14). Input consisted of genomes of
interest and the predicted -35 and -10 PWMs for each genome. Briefly, each
set of PWMs was scored on the upstream sequences (−332 to +2) of each
gene in the appropriate genomes. Genes in operons were allowed to take
the score of upstream genes, if higher. The score for each orthologous group
(OG) was calculated by summing the score of the highest scoring member in
each genome, weighted by the relative phylogenetic similarity of all ge-
nomes in the set. FDR thresholds were set by randomizing the order of the
columns in the PWMs 200× and recomputing ortholog scores.

Using Gene Expression Patterns to Evaluate Regulon Predictions. To evaluate
the accuracy of the predicted regulons of ECF σs, regulons from 13 diverse
bacterial species were used: M. tuberculosis H37Rv, S. coelicolor A3 (2),
Caulobacter crescentus CB15, Rhizobium etli CFN 42, Rhodobacter sphaer-
oides 2.4.1, Bacillus subtilis subsp subtilis str. 168, Bacteroides thetaiotao-
micron VPI-5482, Porphyromonas gingivalis W83, Bordetella pertussis
Tohama I, Burkholderia cenocepacia J2315, E. coli str. K-12 substr W3110, P.
aeruginosa, and Shewanella oneidensis MR-1. For each species, the program
COnTORT (29) was used to download all publicly available gene expression
data from NCBI GEO in order to capture as many unique experimental
conditions as possible. Since the precise conditions required to activate each

ECF σ are unknown, we used the large dataset of all gene expression data
with the idea that the more varied experimental conditions, the more likely
the genes in the regulon would have correlated expression patterns. For
each predicted regulon with at least two predicted members, the gene ex-
pression profiles for all members of the regulon were correlated across all
available gene expression datasets. To determine if the correlation was due
to random chance, the analysis was performed using the same number of
randomly selected genes (repeated 1,000 times). A Wilcoxon rank sum test in
the software package R (version 3.6.1) was used to determine statistical
significance between the correlation values of the genes within the pre-
dicted regulon and the randomly selected genes, with P value of 0.05 being
significant.

Tetranucleotide Profiling to Identify HGT Regions. Tetranucleotide profiling
was performed as previously described (39). Regions whose distance from the
genomic median was >2.5 MAD higher than normal were considered to
have atypical sequence content (and therefore likely horizontally acquired).

Data Availability. All study data are included in the article and SI Appendix.
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