
ORIGINAL RESEARCH
published: 23 November 2021

doi: 10.3389/fneur.2021.762323

Frontiers in Neurology | www.frontiersin.org 1 November 2021 | Volume 12 | Article 762323

Edited by:

Mohd Farooq Shaikh,

Monash University, Malaysia

Reviewed by:

Hua-Jun Feng,

Massachusetts General Hospital,

United States

Yam Nath Paudel,

Monash University Malaysia, Malaysia

Alina Arulsamy,

Monash University Malaysia, Malaysia

*Correspondence:

Bo Xiao

xiaobo_xy@126.com

orcid.org/0000-0001-5204-1902

Qiong Zhan

zhanqiong51@csu.edu.cn

orcid.org/0000-0003-0228-4556

Chang Zeng

echozengchang@csu.edu.cn

orcid.org/0000-0003-2567-9809

Specialty section:

This article was submitted to

Epilepsy,

a section of the journal

Frontiers in Neurology

Received: 21 August 2021

Accepted: 26 October 2021

Published: 23 November 2021

Citation:

Yue Q, Cai M, Xiao B, Zhan Q and

Zeng C (2021) A High-Tryptophan Diet

Reduces Seizure-Induced Respiratory

Arrest and Alters the Gut Microbiota in

DBA/1 Mice.

Front. Neurol. 12:762323.

doi: 10.3389/fneur.2021.762323

A High-Tryptophan Diet Reduces
Seizure-Induced Respiratory Arrest
and Alters the Gut Microbiota in
DBA/1 Mice
Qiang Yue 1, Mingfei Cai 2, Bo Xiao 1*, Qiong Zhan 2* and Chang Zeng 3*

1Department of Neurology, Xiangya Hospital, Central South University, Changsha, China, 2Department of Neurology, The

Second Xiangya Hospital, Central South University, Changsha, China, 3Health Management Center, Xiangya Hospital,

Central South University, Changsha, China

Background and Aims: Central 5-hydroxytryptamine (5-HT) defects are responsible for

the occurrence of sudden unexpected death in epilepsy (SUDEP). The DBA/1 mouse

is an animal model of SUDEP since the mouse exhibits audiogenic seizure-induced

respiratory arrest (S-IRA). The synthesis of central 5-HT is closely related to the gut

microbiota. Moreover, emerging studies suggest a possible role for the microbiota

in mitigating seizure likelihood. Based on this, we aimed to explore the effect of a

high-tryptophan diet (HTD) on SUDEP as well as the synthesis and metabolism of central

5-HT. Furthermore, we investigated the involvement of the gut microbiota in this process.

Methods: All DBA/1 mice were subjected to acoustic stimulation to induce seizures.

Only those mice that exhibited S-IRA were randomly assigned to the normal diet (ND)

group (n= 39) or HTD group (n= 53). After 1 month of dietary intervention, (1) S-IRA rates

were evaluated, (2) the concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic

acid (5-HIAA) in the plasma and brain were determined by ultra-high-pressure liquid

chromatography, and (3) the fecal flora biodiversity and species composition were

analyzed by 16S rDNA microbiota profiling.

Results: The S-IRA rate in DBA/1 mice was significantly reduced in the HTD group

compared with that in the control group. HTD increased the levels of 5-HT and 5-HIAA

in both the telencephalon and midbrain. HTD significantly elevated the species richness

and diversity of the gut microbiota. Moreover, there was a significant difference in the gut

microbiota composition between the two groups, and the intestinal flora was dominated

by Proteobacteria and Actinobacteria after HTD.

Conclusions: HTD is efficient in lowering S-IRA rates and elevating the central 5-HT

level in DBA/1mice. The gut microbiota was altered after HTD intervention. The significant

increase in Proteobacteria and Actinobacteria may be related to the SUDEP-protective

effect of HTD. Our findings shed light on a candidate choice of dietary prevention

for SUDEP.
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INTRODUCTION

Sudden unexpected death in epilepsy (SUDEP) is one of the
main causes of death in patients with epilepsy (1–3). It has
become a common public health burden among neurological
diseases (4). However, the pathogenesis of SUDEP remains
elusive. It is generally believed that seizure-induced arousal as
well as respiratory and cardiac dysfunction are major causes of
SUDEP (2, 5). DBA/1 mice have been regarded as appropriate
animal models for studying SUDEP. The mouse can present
generalized audiogenic seizures (AGSz), followed by seizure-
induced respiratory arrest (S-IRA) and sudden death induced
by acoustic stimulation. This is consistent with the respiratory
dysfunction most often witnessed in patients with SUDEP (6, 7).
The susceptibility to AGSz in DBA/1 mice remains high on
postnatal day (PND) 100 (6). Evidence has shown that cardiac
dysfunction in DBA/1 mice lagged behind S-IRA, and dying
animals could be resuscitated by assisted ventilation (7). This
suggests that S-IRA may be the main cause of death in this
SUDEP model.

5-Hydroxytryptamine (5-HT) is an important
neurotransmitter mainly synthesized in the nuclei of the
midbrain and medullary raphe of the brainstem (8). 5-HT
plays a key role in modulating arousal, respiratory, and
cardiac functions by corresponding control centers in the
upper and lower brainstems (8–10). In the brain, tryptophan
hydroxylase 2 (TPH2) catalyzes tryptophan (TRP) to synthesize
5-hydroxytryptophan (5-HTP). 5-HTP is then decarboxylated
by aromatic L-amino acid decarboxylase to form 5-HT. 5-
Hydroxyindoleacetic acid (5-HIAA) is the end product of 5-HT
metabolism (11). Our previous research found that the 5-HTP,
5-HT, and 5-HIAA contents and TPH2 activity in the brainstem
of DBA/1 mice were significantly decreased compared with those
in the brainstem of C57BL/6 mice (12). The intraperitoneal
injection of fluoxetine, a selective 5-HT reuptake inhibitor
(SSRI), or 5-HTP, the precursor of 5-HT, significantly reduced
the incidence of S-IRA in DBA/1 mice (13, 14). In contrast, the
incidence of S-IRA in DBA/1 mice markedly increased after
pretreatment with 5-HT antagonists (15, 16). The above evidence
suggests that central 5-HT deficiency is probably an underlying
reason for SUDEP in DBA/1 mice.

The synthesis of 5-HT is closely related to the gut microbiota
(17). Almost 90% of 5-HT in the human body is produced in
the gut by enterochromaffin cells (18, 19). Furthermore, the
intestinal flora may be connected with the central nervous system
(CNS) through the dynamic two-way “gut-brain axis” (20) and
can affect brain function (21) and central neurotransmitters,
including 5-HT (22). The intestinal flora is therefore involved
in neurological diseases (23). Previous studies demonstrated that
the concentrations of 5-HT and 5-HIAA in the hippocampus of
male germ-free (GF) animals were significantly higher than those
of control animals (24). Supplementation with probiotics largely
increased the level of central 5-HT in animals (25, 26). The above
evidence indicates that the gut microbiota mediates the synthesis
and metabolism of peripheral and central 5-HT.

Mounting evidence suggests that the gut microbiota mediates
seizure susceptibility. Studies have demonstrated that probiotics

have a protective effect on sensitivity to anti-seizure drugs
in patients with drug-resistant epilepsy (27, 28). Moreover,
a retrospective study reported that six patients with drug-
resistant epilepsy achieved temporary seizure freedom during
antibiotic treatment (29). An animal study also found that the gut
microbiota was required for protection against acute electrically
stimulated seizures and spontaneous tonic-clonic seizures caused
by a ketogenic diet (KD) (30).

As an important essential amino acid for 5-HT synthesis, TRP
is mainly obtained from the diet (31). The oral administration
of TRP or chronic high-tryptophan diet (HTD) intervention in
rats can largely increase 5-HT levels in the CNS (32, 33). Based
on the above evidence, we hypothesized that HTD could reduce
the occurrence of SUDEP in DBA/1 mice. Moreover, our study
aimed to explore how 5-HT and its metabolite changed in the
plasma and brain and whether the gut microbiota was altered
during the process.

MATERIALS AND METHODS

Animals
The study complied with the guidelines of the Care and Use
of Laboratory Animals (NIH USA), and experimental protocols
were approved by the Animal Ethical and Welfare Committee
and the Institutional Animal Care and Use Committee, Xiangya
Hospital, Central South University, China (No. 202009559).
Wild-type male DBA/1 mice were obtained from the Hunan SJA
Laboratory Animal Co., Changsha, Hunan, China. All DBA/1
mice were housed five to six/cage in a standard animal facility
under controlled conditions (temperature 22± 3◦C, humidity 55
± 5%) with a 12 h light-dark cycle and had free access to food
and water. All efforts were made to reduce the number of animals
used and their suffering.

Seizure Induction and Resuscitation
All DBA/1 mice (from PND 26–28) were subjected to an acoustic
stimulation paradigm and induced daily for three consecutive
days (each interval wasmore than 24 h) to evoke AGSz and S-IRA
(6, 12). Briefly, each mouse was placed in a transparent plastic
chamber and stimulated continuously with a 110 dB electric bell
(Zhejiang People’s Electronics, Zhejiang, China) for 60 seconds or
until the mouse exhibited tonic seizures. DBA/1 mice with S-IRA
were resuscitated by an animal ventilator. S-IRA was defined as
the cessation of movement of the chest, which would lead directly
to the animal’s death unless resuscitation was instituted within
5–6 s. Since the seizure occurrence is easy to detect by behavior
(typically exhibit as wild running, generalized clonus, and tonus,
ending in tonic hind limb extension in most cases), EEG or
other methodology was not used to detect seizure occurrence in
this study. DBA/1 mice with at least one S-IRA were considered
successfully primed. Only primed DBA/1 mice were used in
subsequent experiments.

Experimental Design and Grouping
The primed animals were randomly assigned to the normal diet
(ND) group (n = 39) or HTD group (n = 53) for a 1-month
dietary intervention. The animals in the ND group were fed a
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ND with a TRP level of 2.1 g/kg, while the TRP level of the
HTD group was increased to 4 g/kg, as previously reported (34)
(Supplementary Tables 1, 2). Both diets were prepared by the
Beijing Keao Xieli Feed Co., Beijing, China. After 1 month of
dietary intervention, acoustic stimulation was reapplied in both
groups. Then, the S-IRA rates, levels of 5-HT and 5-HIAA, and
composition and diversity of intestinal flora were examined in
both groups (Supplementary Figure 1).

16S rDNA Microbiota Profiling
The animals were placed into a clean cage lined with sterile filter
paper. Fecal samples were collected immediately after defecation,
quick-frozen in liquid nitrogen, and stored at −80◦C. Microbial
community genomic DNA was extracted from fecal samples
using the E.Z.N.A. R© DNA Kit (Omega Bio-tek, Norcross, GA,
U.S.) according to manufacturer’s instructions. The DNA extract
was checked on a 1% agarose gel, and the DNA concentration
and purity were determined with a NanoDrop 2000 UV-vis
spectrophotometer (Thermo Scientific, Wilmington, USA). The
hypervariable V3–V4 region of the bacterial 16S rRNA gene
was amplified with the primer pairs 338 F (5′-ACT CCT ACG
GGA GGC AGC AG-3′) and 806 R (5

′
-GGA CTA CHV

GGG TWT CTA AT-3
′
) (35) by a PCR thermocycler (ABI

GeneAmp R© 9700, CA, USA). PCR amplification of the 16S
rRNA gene was performed as follows: initial denaturation at
95◦C for 3min, followed by 27 cycles of denaturing at 95◦C
for 30 s, annealing at 55◦C for 30 s and extension at 72◦C
for 45 s, a single extension at 72◦C for 10min, and a final
extension at 4◦C. The PCR mixtures contained 5 × 4 µL of
TransStart FastPfu buffer, 2 µL of 2.5mM dNTPs, 0.8 µL of
forward primer (5µM), 0.8 µL of reverse primer (5µM), 0.4
µL of TransStart FastPfu DNA polymerase, 10 ng of template
DNA, and ddH2O up to 20 µL. The PCRs were performed in
triplicate. The PCR product was extracted from a 2% agarose
gel and purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA) according to the
manufacturer’s instructions and quantified using a QuantusTM

Fluorometer (Promega, USA). Purified amplicons were pooled in
equimolar amounts and paired-end sequenced (2 × 300) on an
Illumina MiSeq platform (Illumina, San Diego, USA) according
to standard protocols. The raw 16S rRNA gene sequencing
reads were demultiplexed, quality-filtered by Trimmomatic, and
merged by FLASH. Operational taxonomic units (OTUs) with a
97% similarity cutoff (36) were clustered using UPARSE software
(Uparse v7.0.1001), and chimeric sequences were identified and
removed. The taxonomy of each OTU representative sequence
was analyzed by RDP Classifier against the 16S rRNA database
using a confidence threshold of 0.7. The metagenomic analysis
of intestinal flora was analyzed on the Majorbio I-Sanger Cloud
Platform (www.i-sanger.com). Additionally, alpha diversity was
analyzed using the Chao estimator (an index of species relative
abundance), observed richness (Sobs), and Shannon diversity
index (an index of the complexity of species diversity) to
reflect species diversity and richness. Beta diversity analysis was
calculated through cluster tree analysis to study the similarities
or differences in community structures among different samples,

and principal coordinate analysis (PCoA) was used to compare
group differences in the overall microbiota profile.

Ultra-High-Pressure Liquid
Chromatography
The animals were intraperitoneally injected with 1% chloral
hydrate (400 mg/kg) for deep anesthesia. Cardiac blood (0.5–
1.0mL) was carefully extracted from each mouse. Then, the
mouse was killed by decapitation for the collection of brain
tissue. A mark was made in the anterior fontanel as the
bregma point. The brain tissue was cut at bregma −3mm,
−5.5mm, and −9mm and carefully separated on ice. Blood
and brain samples were rapidly frozen in liquid nitrogen and
stored at −80◦C away from light. The contents of 5-HT and
5-HIAA of each sample were quantified on an ultra-high-
pressure liquid chromatography (UHPLC)-MS/MS platform.
The compounds 5-HT and 5-HIAA were labeled with benzoyl-
13C6 chloride and used as internal standards for quantification.
All analytical standards and internal standards were prepared
individually at a concentration of 1 mg/mL as a stock solution.
The samples of calibration curves were finally obtained by
mixing the calibration curve solution with internal standard
solution (benzoyl-13C6 chloride-derivatized standard mixture)
to generate calibration levels covering a range of 0.0,016–8µM
for 5-HT and 5-HIAA. UHPLC-MS/MS analysis was performed
on an Agilent 1290 Infinity II UHPLC system coupled to
6470A Triple Quadrupole mass spectrometer (Santa Clara, CA,
United States). The samples were injected onto a Waters UPLC
BEH C18 column (100mm × 2.1mm, 1.7µm) at a flow rate
of 0.4 mL/min. The mobile phase consisted of water in 10
mmol/L ammonium formate and 0.15% formic acid (A) and
acetonitrile (B). Chromatographic separation was conducted by
a gradient elution program as follows: 0.5min, 1% B; 1min,
5% B; 4min, 15% B; 6min, 30% B; 7min, 30% B; 7.5min,
50% B; 9.5min, 70% B; 9.6min, 100% B; 10.6min, 100% B;
10.7min, 1% B; and 12.5min, 1% B. The column temperature

FIGURE 1 | The S-IRA rate in DBA/1 mice was significantly decreased in the

HTD group. ND, n = 39. HTD, n = 53. Statistical analysis was performed by

the chi-square test. *p < 0.05. S-IRA, seizure-induced respiratory arrest; ND,

normal diet; HTD, high-tryptophan diet.
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FIGURE 2 | Comparison of the concentrations of 5-HT (A) and 5-HIAA (B) in plasma and brain regions of DBA/1 mice between the HTD and ND groups. Statistical

analysis was performed by the independent samples t-test. Data are represented as the mean ± SD. n = 6 in each group. *p < 0.05, **p < 0.01, ***p < 0.001. ND,

normal diet; HTD, high-tryptophan diet; 5-HT, 5-hydroxytryptamine; 5-HIAA, 5-hydroxyindoleacetic acid.

was 40◦C. The eluted analytes were ionized in an electrospray
ionization source in the positive mode (ESI+). The temperature
of the ESI+ source drying gas was 300◦C, and that of the
sheath gas was 350◦C. Dynamic multiple reaction monitoring
(dMRM) was used to acquire data in the optimized MRM
transition. The total scan time per cycle was 300ms. Agilent
MassHunter software (version B.08.00) was used to control
instruments and acquire data. The raw data were processed
by Agilent MassHunter Workstation Software (version B.08.00)
using the default parameters. The peak areas of the target
compounds were integrated, and the output was used for
quantitative calculation.

Statistics
Statistical analysis was performed using Statistical Product and
Service Solutions 19.0 software. The incidence of S-IRA between
the two groups was compared using the chi-square test. The
concentrations of 5-HT and 5-HIAA between the two groups
were compared using independent sample t-tests and expressed
as the mean ± SD. For gut microbiota analysis, normally
distributed data were compared using Student’s t-test, and non-
parametric data were compared using the Wilcoxon rank-sum
test. Statistical significance was inferred if p < 0.05.

RESULTS

HTD Reduced S-IRA Susceptibility and
Modulated 5-HT Metabolism in DBA/1 Mice
The incidence of S-IRA was significantly lower in the HTD group
than in the ND group (50.94% vs. 71.79%, p < 0.05) (Figure 1).

DBA/1 mice from the HTD group exhibited higher 5-HT
levels in the plasma (69.00 ± 18.72 vs. 42.26 ± 12.28, p < 0.05),
telencephalon (14.56 ± 5.03 vs. 9.21 ± 2.80, p < 0.05), and
midbrain (7.13 ± 2.46 vs. 3.22 ± 0.71, p < 0.01) (Figure 2A).
5-HIAA levels in the telencephalon (9.54 ± 1.36 vs. 6.98 ± 1.15,
p< 0.01) and midbrain (32.84± 4.51 vs. 18.93± 1.37, p< 0.001)
were also higher in DBA/1 mice from the HTD group than in
those in the ND group (Figure 2B).

HTD Altered the Abundance and Diversity
of the Gut Microbiota
Alpha Diversity

The alpha diversity analysis showed significantly higher Chao
(479.29 ± 18.02 vs. 341.95 ± 110.18, p < 0.001) (Figure 3A),
Sobs (412.00± 17.39 vs. 300.20± 99.27, p < 0.001) (Figure 3B),
and Shannon (4.36 ± 0.21 vs. 3.91 ± 0.56, p < 0.05) indexes
(Figure 3C) in the HTD group than in the ND group. This
suggests that HTD treatment significantly increased the number
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FIGURE 3 | Alpha diversity analyses between the HTD and ND groups. Alpha diversity analysis of the gut microbiota was performed using the Chao estimator (A),

Sobs (B) and Shannon diversity index (C) and performed with the Wilcoxon rank-sum test between the two groups. Data are represented as the mean ± SD. n = 10

in each group. *p < 0.05, ***p < 0.001. ND, normal diet; HTD, high-tryptophan diet; Sobs, the observed richness.

FIGURE 4 | Beta diversity analyses between the HTD and ND groups. (A) Hierarchical cluster analysis using Bray-Curtis distances. Each sample was marked with a

branch of different color and divided into diverse cohesive groups according to their distance thresholds. (B,C) PCoA based on Bray-Curtis dissimilarity. The

microbiota of each sample from the ND (red circle) and HTD groups (orange triangle) is represented by different points. n = 10 in each group. ND, normal diet; HTD,

high-tryptophan diet; PCoA, principal coordinate analysis.
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FIGURE 5 | Microbial composition between the ND and HTD groups. Vertical bar charts depict the various species compositions of different samples (A) and groups

(B) at the phylum taxonomic level. n = 10 in each group. ND, normal diet; HTD, high-tryptophan diet.

of observed OTU sequence tags and the observed richness and
species diversity.

Beta Diversity

The hierarchical cluster analysis showed that all samples
were divided into three distinct subgroups based on fecal
bacterial community composition (Figure 4A), indicating that
the composition of the bacterial community in the HTD group
was markedly different from that of the ND group. PCoA of
sequencing data showed significantly separate clustering of the
gut microbiota structure between the ND and HTD groups.
PC1, PC2, and PC3 accounted for 25.09, 17.75, and 9.63%
of the variation, respectively (Figures 4B,C). The microbial
composition of the samples from individuals fed with the same
diet was similar.

HTD Altered the Composition of the Gut
Microbiota
As shown in Figures 5A,B, Bacteroidetes and Firmicutes were the
most abundant phyla observed in all samples. At the phylum
level, the relative abundances of Proteobacteria (p < 0.01) and
Actinobacteria (p < 0.05) were significantly increased, and that
of Cyanobacteria (p < 0.05) was strikingly decreased, in the
HTD group compared with the ND group (Figure 6A). In
addition, at the order level, there was an increase in the relative
abundance of Campylobacterales (p < 0.05), Desulfovibrionales
(p < 0.05), and Burkholderiales (p < 0.01) and a decrease in
the relative abundance of Gastranaerophilalesa (p < 0.05) and
Anaeroplasmatales (p < 0.05) in the HTD group compared with
the ND group (Figure 6B).

DISCUSSIONS

Diet therapy as a treatment strategy for epilepsy has a long
history. For instance, KD, as a well-known low-carb, high-
fat diet, is widely used in the treatment of epilepsy, autism
spectrum disorders, and Alzheimer’s disease (37, 38). However,
to date, effective diet intervention for SUDEP prevention
may be limited; although a previous study has reported
that S-IRA evoked by acoustic stimulation in DBA/1 mice
could be significantly reduced by 5-HTP, a precursor of
serotonin synthesis (14). However, 5-HTP was administered
intraperitoneally, rather than orally; whether the bioavailability
of intraperitoneal administration of 5-HTP is equivalent to that
with oral administration is unclear. Alteration of dietary TRP
is often used as a non-invasive method to manipulate the TRP
levels of the body, thereby affecting 5-HT neurotransmission in
the CNS (39). HTD has been applied in the treatment of fatty
liver disease (40), diabetes (41), Alzheimer’s disease (42), and so
on, which indicates that HTD may be safe and feasible as an
adjunctive therapy. Our study is the first to demonstrate that
HTD is an effective diet intervention in preventing SUDEP in
DBA/1 mice.

In this study, we found that an HTD significantly increased 5-
HT and 5-HIAA levels in the telencephalon. The previous studies
showed that SSRIs significantly increased the 5-HT content in
the frontal cortex of rats (43). Extensive synaptic connections
were found between the cortex of the telencephalon and 5-
HT neurons in the dorsal raphe of the midbrain sublattice
(44). In addition, some scholars found that the telencephalon
was also involved in the arousal mechanisms of consciousness
disorders (45). Therefore, we hypothesized that the increase in
telencephalon 5-HT levels may affect S-IRA occurrence in DBA/1
mice through the neural network between the telencephalon and
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FIGURE 6 | Group differences in the gut microbiota between the ND and HTD groups. The horizontal bar charts depict the taxonomic differences between the two

groups at the phylum (A) and order (B) levels. Statistical analysis was performed by the Wilcoxon rank-sum test. n = 10 in each group. *p < 0.05, **p < 0.01. ND,

normal diet; HTD, high-tryptophan diet.

midbrain. We also found that the HTD significantly increased
5-HT and 5-HIAA levels in the midbrain. A previous study
showed that the occurrence of S-IRA was significantly inhibited
by selectively activating 5-HT neurons in the midbrain through
optogenetic technology in transgenic DBA/1 mice (46). We
speculated that the HTD-reduced S-IRA in this SUDEP model
may due to the elevation of the 5-HT concentration in the
midbrain. Interestingly, the 5-HT level was not significantly
altered in the pons and medulla of DBA/1 mice after the HTD.
In Zhan’s study, multiunit recordings showed decreased firing of
neuron populations both in the medullary and midbrain raphe,
and single-unit recordings of serotonergic neurons revealed
consistently decreased firing in themedullary raphe but amixture
of increased and decreased firing in the midbrain raphe during

the ictal and postictal periods of an established Sprague Dawley
rat seizure model (47). However, the 5-HT level is not equal
to 5-HT neuron firing, and neuron firing will increase in one
region, thereby leading to 5-HT release in another site (48, 49).
In addition, as the literature stated, the midbrain raphe is more
likely involved in the mechanism of unconsciousness, and the
medullary raphe is considered to be involved in cardiorespiratory
dysfunction during and after epileptic seizures (47). In the future,
the specific roles of these two nuclei and whether selectively
activated 5-HT neurons in the medulla are associated with a
reduced incidence of SUDEP should be studied further.

We found that the HTD significantly increased the species
abundance and diversity of the gut microbiota compared with
ND. In addition, the gut microbiota of the HTD-treated
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mice was dominated by Proteobacteria and Actinobacteria. The
mechanisms underlying bacterial-induced 5-HT signaling are
not well understood. Studies proved that some Proteobacteria
and Actinobacteria species were closely related to the increase
in short-chain fatty acid (SCFAs) (50), which were reported
to be capable of promoting 5-HT production in peripheral
blood (51). Since we did not test the SCFA differences between
treatment groups, we did not know if the HTD reduced the
S-IRA rate by affecting the gut microbiota and then elevating
SCFAs and eventually peripheral and central 5-HT. In addition,
some studies found that gut metabolites mediated by certain
intestinal flora can regulate brain activity through the autonomic
nervous system (52), and the stimulation of peripheral vagal
nerves could modulate the concentration of central 5-HT (53).
Other bacterial species have also been reported to be capable of
regulating 5-HT metabolism. For example, the administration
of lipopolysaccharide, a cytoderm component of gram-negative
bacteria, significantly increased the production of 5-HT in the
prefrontal cortex, striatum, and midbrain of animals (54, 55),
possibly via the modulation of TPH activity (55). In addition,
some bacterial metabolites, such as acetic acid (an SCFA), can
regulate the expression of serotonin receptors in the gut and brain
as well as change behaviors in animals (56). Generally, the exact
mechanism by which the gut microbiota mediates the changes in
5-HT levels in the CNS through the “gut-brain axis” is relatively
complicated and still needs further exploration.

Taking into consideration the important role of central
5-HT synthesis in SUDEP, it is meaningful to detect 5-HT
deficiency in patients with epilepsy, which is helpful in
differentiating those who are at high risk for SUDEP. Recent
studies found that Positron Emission Tomography(PET)/Single-
Photon Emission Computed Tomography(SPECT) could
monitor alterations of the 5-HT receptor/5-HT transporter
in associated brain regions by serotonergic probes (57)
or regional blood flow (58) and had been applied in
neuropsychiatric and neurodegenerative disorders (59, 60).
Therefore, screening high-risk patients with serotonin-
targeted Positron Emission Tomography(PET)/Single-Photon
Emission Computed Tomography(SPECT) may be a promising
strategy for the prevention and treatment of SUDEP in
the future.

CONCLUSIONS

To our knowledge, our research was the first to demonstrate that
a HTD significantly reduced the incidence of S-IRA and affected
the synthesis and metabolism of 5-HT as well as the diversity

and composition of the gut microbiota in DBA/1 mice. However,
the specific molecular mechanism remains to be further clarified.
Our findings may open another window for the pathogenesis
of SUDEP, and a HTD is expected to be a promising candidate
for the prevention of SUDEP in clinical practice, especially for
patients with central serotonin deficiency.
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