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Abstract: Dioxins and dioxin-like compounds are environmental pollutants that are hazardous
to human skin. They can be present in contaminated soil, water, and air particles (such as ambient
PM2.5). Exposure to a high concentration of dioxins induces chloracne and hyperpigmentation.
These chemicals exert their toxic effects by activating the aryl hydrocarbon receptor (AHR) which is
abundantly expressed in skin cells, such as keratinocytes, sebocytes, and melanocytes. Ligation of AHR
by dioxins induces exaggerated acceleration of epidermal terminal differentiation (keratinization)
and converts sebocytes toward keratinocyte differentiation, which results in chloracne formation.
AHR activation potently upregulates melanogenesis in melanocytes by upregulating the expression
of melanogenic enzymes, which results in hyperpigmentation. Because AHR-mediated oxidative
stress contributes to these hazardous effects, antioxidative agents may be potentially therapeutic for
chloracne and hyperpigmentation.
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1. Introduction

Health problems induced by environmental pollutants are an important issue. Environmental
polycyclic and halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD),
polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated
biphenyls (PCBs), and benzo[a]pyrene (BaP) are high-affinity ligands for aryl hydrocarbon receptors
(AHRs), namely, dioxin receptor [1–5]. To sense these chemicals, AHR is abundantly expressed in skin
cells, including epidermal keratinocytes [1–5]. Therefore, skin is one of the most important target
organs for these environmental AHR ligands.

The toxic potency of these dioxins and dioxin-like compounds are variable in humans and other
mammals. To estimate the total body burden, the toxic equivalency factor (TEF) has been defined for
each compound by the World Health Organization (WHO) [6]. The body burden of these molecules
is calculated by the sum of toxic equivalency (TEQ) of each compound (TEF × concentration of the
compound) [6,7]. Exposure to high TEQ concentration of dioxins manifests various acute systemic signs
and symptoms, including general malaise, cough/sputum, diarrhea, headache, nausea, arthralgia, and
pain/dysesthesia of extremities [8–11]. In addition, the most prominent clinical findings are chloracne
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and hyperpigmentation [9–12]. Similar skin disorders are induced by other endocrine-disrupting
chemicals [13].

In Japan, chloracne and hyperpigmentation are present in Yusho, which occurred in Japan in 1968
by mass food poisoning with high concentrations of PCDFs and related compounds [12,14,15]. Because
these compounds are extremely lipophilic and structurally stable, high concentrations of PCDF are
still detectable in the blood of those exposed, even 50 years after the outbreak [16–18]. Chloracne
has been typical of other incidents of dioxin poisoning; examples include TCDD exposure from an
industrial accident in Seveso, Italy [9]; the Yucheng illness, a mass poisoning in Taiwan caused by
PCDF [10]; and the poisoning of former Ukrainian President Victor Yushchenko with TCDD [11].
Hyperpigmentation was noted in Asian individuals with darker skin in the Yusho (Japan) and Yucheng
(Taiwan) incidents, but was also recognized in President Yushchenko [9–12]. Air pollutants, including
ambient particulate matter of up to 2.5 µm in diameter (PM2.5), contain high concentrations of polycyclic
aromatic hydrocarbons and BaP [19]. Notably, facial hyperpigmentation is significantly associated
with exposure to PM2.5 in Chinese women [20]. In this article, we will review the current evidence on
chloracne and hyperpigmentation induced by AHR activation.

2. AHR Signals and Oxidative Stress in Epidermal Keratinocytes

AHR is a ligand-activated transcription factor [21]. In the absence of ligands, AHR resides in the
cytoplasm, where it forms a protein complex with heat shock protein 90 (HSP90), hepatitis B virus
X-associated protein 2 (XAP-2), and p23 [22,23]. After ligand binding, AHR dissociates from the
cytoplasmic complex, and a nuclear translocation site of AHR is exposed. Then, AHR is translocated
into the nucleus, where it dimerizes with AHR-nuclear translocator (ARNT), binds DNA-responsive
elements called xenobiotic responsive elements (XRE), and upregulates the transcription of target
genes, such as phase I metabolizing enzyme cytochrome P450 (CYP) members (i.e., CYP1A1, CYP1A2,
and CYP1B1) [1–5,21,24,25].

Environmental dioxins such as TCDD activate AHR and upregulate CYP1A1, CYP1A2, and
CYP1B1 expression [1,26,27]. Human keratinocytes abundantly express CYP1A1 and, to a lesser extent,
CYP1B1, but not CYP1A2 [28]. As TCDD is structurally stable, the induction of TCDD-AHR-mediated
CYP1A1 expression may be sustained for a long period [26,29]. The metabolizing process of CYP1A1
generates excessive amounts of reactive oxygen species (ROSs) and induces oxidative damage in the
cell [1,26,27,30]. As proof of this, TCDD-induced ROS production was cancelled in AHR-silenced
or CYP1A1-silenced human aortic endothelial cells [26]. Because CYP1B1 silencing did not affect
TCDD-induced ROS generation, the AHR/CYP1A1 axis is likely to be crucial for generating cellular
oxidative stress by environmental dioxins [26]. In mice, a chemical carcinogen, β-naphthoflavone, also
activates CYP1A1 and CYP1A2 via AHR activation [31]. β-naphthoflavone induces mitochondrial
ROS generation; however, this is attenuated by the AHR inhibitor or Cyp1a1/1a2-silencing in mice [31].
CYP1A1-mediated oxidative stress is responsible, at least in part, for the production of proinflammatory
cytokines such as interleukin (IL) 1, IL-6, and IL-8 in human keratinocytes [32,33]. AHR activation also
induces the production of proinflammatory cytokines in sebocytes [34,35].

To counteract the oxidative stress, antioxidative mechanisms operate simultaneously after AHR
activation. Ligation of AHR also activates the antioxidative transcription factor nuclear factor erythroid
2–related factor 2 (NRF2) and upregulates the expression of phase II antioxidative enzymes, such as
glutathione S-transferases, heme oxygenase 1, nicotinamide adenine dinucleotide phosphate (NADPH)
dehydrogenase, quinone 1, glutathione S-transferases, and uridine 5′-diphospho-glucuronosyltransferases
transferases [24,36–42]. Dioxins activate the AHR/NRF2 battery [42–44]; however, their powerful
AHR-mediated CYP1A1 expression may induce far more oxidative stress, such that it cannot be extinguished
by the AHR/NRF2 antioxidative system. ROS-mediated oxidative stress induces DNA damage and
upregulates the production of inflammatory cytokines and chemokines in keratinocytes [27,33,45].

In addition to CYP1A1 and ROS upregulation, AHR exerts a variety of mutually-interacting signal
transduction. TCDD upregulates phosphorylation of epidermal growth factor receptor (EGFR), ERK,



Int. J. Environ. Res. Public Health 2019, 16, 4864 3 of 11

and p38 MAPK, then augments the proliferation and epithelial-mesenchymal transition of human
palatal epithelial cells in an AHR-dependent manner [46]. BaP promotes gastric carcinoma cell
proliferation by c-MYC activation via the AHR-ERK pathway [47]. On the other hand, EGFR signaling
inhibits the AHR-mediated CYP1A1 induction, because EGFR and AHR competitively share a common
coactivator p300 for their transcriptional activity in keratinocytes [48]. The transcription and translation
of AHR and ARNT is regulated by c-MYC, and AHR-ARNT is partly involved in c-MYC-mediated
protein expression [49]. These studies stress the multifaceted and occasionally conflicting role of AHR
in the proliferation and differentiation of epithelial cells.

3. AHR Signaling Accelerates Epidermal Terminal Differentiation

The mammalian epidermis is composed of stratified squamous keratinocytes that protect the
body against injuries caused by external and environmental chemicals. Epidermal keratinocytes
divide in the basal layer and move up into the spinous, granular, and outermost cornified layer, which
plays an essential role in skin barrier formation [50]. This maturation process is accomplished by
sequential and coordinated cross-linking by transglutaminase-1 and -3 of ceramides and various
epidermal differentiation complex (EDC) proteins, such as involucrin (IVL), loricrin (LOR), and filaggrin
(FLG) [50]. Mounting evidence indicates that the AHR signal plays a crucial role in epidermal terminal
differentiation [3,4,51]. In parallel, both Ahr-deficient and Ahr-transgenic mice show an abnormality
in keratinization [52,53], and a severe abnormality in keratinization is also observed in Arnt-deficient
mice [54,55].

In utero exposure to TCDD accelerates the expression of FLG and LOR, together with earlier
maturation of the epidermal permeability barrier in fetal mouse skin [56,57]. In a three-dimensional
skin-equivalent model, TCDD accelerates the differentiation of human keratinocytes [58]. The expression
of FLG is detected only in the granular layer in a vehicle-treated skin equivalent, whereas it is markedly
enhanced and even detected in the keratinocytes of the spinous layer in TCDD-treated samples [58].
The expression of IVL is found only in the suprabasal keratinocytes in vehicle-treated skin equivalents;
however, TCDD accelerates its expression in basal keratinocytes [58].

The upregulated expression of EDC proteins and accelerated terminal differentiation is also
evident in monolayer keratinocyte culture by AHR activation [48,59–62]. Kennedy et al. [59] have
shown that TCDD upregulates the expression of 40% of the EDC genes and 75% of the genes required
for de novo ceramide biosynthesis without affecting the levels of cholesterol and free fatty acids.
The AHR-mediated upregulation of EDC proteins is cancelled in AHR-deficient keratinocytes or by
AHR antagonists [62]. Moreover, the accelerated epidermal differentiation by TCDD is blocked in the
presence of antioxidant agents, indicating the critical role of ROSs generated by AHR activation with
TCDD [59].

In physiological conditions, AHR is continuously activated by endogenous and exogenous AHR
ligands [3,51,63,64]. Ultraviolet radiation induces a photodimerization of endogenous tryptophan and
generates 6-formylindolo[3,2-b]carbazole (FICZ) [65]. Cutaneous commensal microbiota metabolize
tryptophan to indole-3-aldehyde [64]. Intestinal microbiota are a good source of AHR ligands,
such as indirubin [66,67]. Both FICZ and indirubin are high-affinity endogenous AHR ligands
that could feasibly upregulate the expression of EDC proteins, such as FLG and IVL [63,66,68–70].
Therefore, either physiological or environmental AHR ligands accelerate epidermal differentiation.
The physiological and endogenous ligands are rapidly degraded by the AHR-induced CYP1A1 [65] so
that their AHR-activating ability may be transient. Although the mechanism leading to chloracne by
dioxins is not fully understood, structurally-stable dioxins may induce exaggerated and sustained
acceleration of epidermal differentiation.

4. Chloracne Caused by Environmental AHR Ligands

Chloracne is characterized by an acne-like eruption with comedones, cysts, and pustules that
occurs after exposure to high concentrations of environmental AHR ligands, such as TCDD and
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PCDF [9–12,14] (Figure 1; see also [71]). In the Seveso explosion accident, chloracne was also found
in children exposed to contaminated air containing high concentrations of TCDD [72].Int. J. Environ. Res. Public Health 2019, 16, x 4 of 11 
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sebum lipids and constitute sebaceous glands, which are connected to hair follicles [74], and they 
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specific features for sebaceous differentiation, including lipogenesis, keratin 7 expression, and 
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Figure 1. Clinical features of chloracne in patients with Yusho disease, an outbreak that occurred
in Japan in 1968. (A) Chloracne in the perioral area in 1968. (B) Scars and cysts from chloracne
in the axilla in 2008. (C) Severe crateriform, or punched-out scars, from chloracne on the back in 2008.
Inflammatory acneiform eruption still appears frequently (arrow).

The severity of chloracne is significantly correlated with the blood levels of PCDF in Yusho
patients [12]. The histopathology of chloracne, which was well-described by Suskind in 1985 [73], includes
hyperkeratinization of the interfollicular epidermis, hyperproliferation and hyperkeratinization of hair
follicle cells, gradual loss of sebocytes with shrinkage of sebaceous glands, and infundibular dilatation,
eventually leading to comedo or cyst formation [73–75].

The pathomechanism of chloracne is not fully understood, but current experimental results indicate
that it is closely associated with exaggerated acceleration of terminal differentiation of keratinocytes,
especially sebocytes (Figure 2). Sebocytes are specialized keratinocytes that produce sebum lipids and
constitute sebaceous glands, which are connected to hair follicles [74], and they express high amounts
of AHR [74,76,77]. Ligation of AHR by dioxins causes sebocytes to lose their specific features for
sebaceous differentiation, including lipogenesis, keratin 7 expression, and epithelial membrane antigen
expression [34,74,76,77]. Instead, AHR activation converts sebocytes toward keratinocyte differentiation,
upregulating keratin 10 and peroxisome proliferator-activated receptor-δ [74]. Consistent with in vitro
sebocyte culture results, ex vivo sebaceous gland cultures show that dioxin induces the shrinkage and
disappearance of sebaceous glands [74]. In addition, topical application of TCDD induces epidermal
hyperplasia, hyperkeratosis, and sebaceous gland metaplasia toward keratinocyte differentiation
in hairless mice [78]. These in vitro, ex vivo, and in vivo results coincide well with the already
mentioned histopathological loss of sebocytes and shrinkage of sebaceous glands in chloracne
in humans [73,75]. Taken together, dioxin–AHR signaling induces exaggerated acceleration of terminal
differentiation in keratinocytes, which results in hyperkeratinization of keratinocytes and conversion
of sebocytes to keratinocytes.
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transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related proteins 1 and 2 (TYRP1 and 
TYRP2), and increases melanogenesis in melanocytes, resulting in hyperpigmentation. It is not clear 
whether ROSs are involved in dioxin-induced hyperpigmentation. Cinnamaldehyde, cinnamon, and 
the cinnamon-containing herbal drug Keishi-bukuryo-gan inhibit the AHR-mediated CYP1A1 
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Figure 2. A schema of the pathogenesis of chloracne and hyperpigmentation by dioxins. Dioxins
bind to the aryl hydrocarbon receptor (AHR) and induce production of xenobiotic metabolizing
enzyme cytochrome p450 1A1 (CYP1A1). CYP1A1 tries to degrade the dioxins, but has little success
because dioxins are structurally stable. These unsuccessful efforts give rise to enormous production
of reactive oxygen species (ROSs). AHR signaling, together with the oxidative stress, accelerate the
epidermal terminal differentiation (i.e., keratinization) in keratinocytes. This also converts sebocytes
toward keratinocytic differentiation, which results in the development of chloracne. AHR activation by
dioxins also upregulates the expression of melanogenic genes, including microphthalmia-associated
transcription factor (MITF), tyrosinase (TYR), and tyrosinase-related proteins 1 and 2 (TYRP1 and
TYRP2), and increases melanogenesis in melanocytes, resulting in hyperpigmentation. It is not clear
whether ROSs are involved in dioxin-induced hyperpigmentation. Cinnamaldehyde, cinnamon,
and the cinnamon-containing herbal drug Keishi-bukuryo-gan inhibit the AHR-mediated CYP1A1
expression. They also activate nuclear factor erythroid 2-related factor 2 (NRF2), upregulate gene
expression of antioxidative enzymes, neutralize ROSs, and inhibit chloracne formation.

In addition to the acceleration of keratinization, an immunohistological study revealed an
activation of EGFR in chloracne [79]. AMP-activated protein kinase (AMPK) is activated by AHR and
downregulates protein turnover of the mature sterol regulatory element-binding protein (mSREBP-1),
leading to a decrease in the size of sebaceous glands and the number of sebocytes within each gland
in the skin [80]. TCDD may affect the stem cells in sebaceous glands [81]. AHR activation stimulates
keratinocytes and sebocytes to produce proinflammatory cytokines, such as IL-1α, IL-1β, IL-6, and
IL-8, which play an additional role in the development of chloracne [32,33,77]. AHR-mediated
cytokine production is dependent on ROS generation [32,33]. Because the AHR-mediated acceleration
of keratinocyte differentiation is also dependent on oxidative stress [59], antioxidants may be
efficacious for chloracne. We have found that cinnamon (20 µg/mL) and its major constituent,
cinnamaldehyde (25µM), are potent antioxidants and have dual activities: suppression of AHR-induced
CYP1A1 expression and activation of the NRF2 antioxidative system [82]. Keishi-bukuryo-gan is
a cinnamon-containing herbal drug and 100 µg/mL of Keishi-bukuryo-gan showed the similar level
of inhibitory action on the AHR-induced CYP1A1 expression, as did 20 µg/mL of cinnamon in vitro [82].
In a clinical setting, three months of oral administration of Keishi-bukuryo-gan (3.75 g/day, bis in die)
improved general fatigue, chloracne, and cough/sputum in Yusho patients [15]. Keishi-bukuryo-gan
also improved their quality of life as assessed by the self-reported questionnaire SF-36 [15]. Although
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the in vivo dose of cinnamon is much less than its in vitro effective dose, the daily intake of cinnamon
may be beneficial for those exposed to high levels of dioxins.

5. Hyperpigmentation Caused by Environmental AHR Ligands

Cutaneous hyperpigmentation was one of the diagnostic hallmarks in the Yusho and Yucheng
diseases [10,14] (Figure 3; see also [71]). PM2.5 contains various amounts of dioxin-related compounds
and could feasibly activate the AHR signal [19,77]. It has been reported that facial hyperpigmentation
is high in people living in air-polluted areas with high PM2.5 concentrations in China [20]. Although
hyperpigmentation is not functionally problematic, it causes significant cosmetic and psychological
distress. In melanocytes, melanin granules are produced by sequential enzymatic reactions by
tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2). The expression of these
melanogenic enzymes is upregulated by the microphthalmia-associated transcription factor (MITF),
which is a key transcriptional regulator in melanogenesis [83,84]. Human and murine melanocytes
express functional AHR [85–88].
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Figure 3. Clinical features of hyperpigmentation in patients with Yusho disease. (A) Hyperpigmentation
and chloracne on the face. (B) Ungual hyperpigmentation. (C) Gingival hyperpigmentation.

Tobacco smoke contains environmental AHR ligands, such as BaP [33,89]. AHR activation by tobacco
smoke activates MITF and upregulates the expression of TYR, leading to increased melanogenesis [88,89]
(Figure 2). Luecke et al. [87] have also reported that TCDD enhances the expression of TYR and TYRP2 in an
AHR-dependent manner and induces the production of melanin. In addition, Abbas et al. [86] showed
that the oxidative AHR ligand benzanthrone upregulates TYR activity and increases melanin production
in murine melanocytes in vitro [86]. Moreover, topical application of benzanthrone or TCDD induces
cutaneous hyperpigmentation and increases histological melanin deposits, together with upregulated
protein expression levels of MITF, TYR, TRP1, and TRP2 [86]. These in vitro and in vivo studies
support the notion that AHR signaling directly augments melanogenesis and induces hyperpigmentation.
However, the involvement of ROSs in melanogenesis is controversial [90,91]. ROS production may not be
a prerequisite factor for AHR-mediated hyperpigmentation.

6. Conclusions

Skin is exposed to numerous environmental pollutants. Some of these, such as halogenated
aromatic hydrocarbons, including dioxins, are hazardous and induce chloracne and hyperpigmentation
in high-concentration exposure. These environmental chemicals strongly activate AHR, which is abundantly
expressed in keratinocytes, sebocytes, and melanocytes. Accumulating evidence indicates that AHR
ligation by dioxins accelerates epidermal terminal differentiation (keratinization) of keratinocytes and
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converts sebocytes to a keratinocytic phenotype, leading to chloracne formation. Dioxins also increase the
melanogenesis of melanocytes via AHR activation, leading to clinical hyperpigmentation.
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