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Saw palmetto supplements (SPS) are commonly consumed by men with prostate cancer. We investigated whether SPS fatty acids
and phytosterols concentrations determine their growth-inhibitory action in androgen-sensitive LNCaP cells and hamster flank
organs. High long-chain fatty acids-low phytosterols (HLLP) SPS > 750 nM with testosterone significantly increased and >500 nM
with dihydrotestosterone significantly decreased LNCaP cell number. High long-chain fatty acids-high phytosterols (HLHP) SPS >
500 nM with dihydrotestosterone and high medium-chain fatty acids-low phytosterols (HMLP) SPS > 750 nM or with androgens
significantly decreased LNCaP cell number (n = 3; p < 0.05). Five- to six-week-old, castrated male Syrian hamsters were
randomized to control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups. Testosterone or dihydrotestosterone was applied
topically daily for 21 days to the right flank organ; the left flank organ was treated with ethanol and served as the control. Thirty
minutes later, SPS or ethanol was applied to each flank organ in treatment and control groups, respectively. SPS treatments caused a
notable but nonsignificant reduction in the difference between left and right flank organ growth in testosterone-treated SPS groups
compared to the control. The same level of inhibition was not seen in dihydrotestosterone-treated SPS groups (p < 0.05). Results

may suggest that SPS inhibit 5a-reductase thereby preventing hamster flank organ growth.

1. Introduction

Prostate cancer is the most common non-skin cancer in men
and is projected to account for 21% of US male cancer cases in
2016 [1]. Most prostate cancers rely on androgens for growth
at the initial stages of development; thus inhibiting androgen
production or blocking its action may be useful approaches
in early treatment or prevention of prostate cancer [2]. 5a-
reductase 1, 5a-reductase 2, and 5a-reductase 3 isoenzymes
are potential targets because they convert testosterone to the
more potent dihydrotestosterone (DHT), which binds with
up to 10-fold higher affinity to the androgen receptor than
testosterone [3, 4] to stimulate prostate cancer growth.

Saw palmetto extracts inhibited 5x-reductase and decrea-
sed growth of human prostatic cells in vitro [5-7], decreased
prostate tumor progression and prostate DHT concentra-
tions in transgenic adenocarcinoma of the mouse prostate

(TRAMP) mice [8], decreased prostate growth and hyper-
plasia in castrated, DHT-implanted, sulpiride-treated rats
[9], inhibited testosterone-induced prostate growth [10] and
hyperplasia [11] in rats, and decreased prostate specific
antigen (PSA) levels in men with enlarged prostates [12].
The antiandrogenic action of saw palmetto supplements
(SPS) has been attributed to their fatty acid and phytosterol
content. Most SPS are rich sources of the medium-chain
saturated fatty acids (FA) laurate and myristate [13]. Multiple
studies [14-19] suggest that SPS fatty acids are responsible for
their ability to inhibit 5a-reductase enzymes. However, the
specific fatty acid(s) purported to be responsible for this inhi-
bition differs between publications. For example, y-linolenic
acid inhibited testosterone-treated but not DHT-treated
growth of androgen-sensitive hamster flank organs [17].
Oleate and laurate inhibited 5«-reductase activity in rat
liver [18], and laurate and myristate inhibited epithelial and
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stromal 5a-reductase activity in human benign prostatic
hyperplasia (BPH) [19]. There are also multiple studies that
suggest that SPS phytosterols (campesterol, stigmasterol, and
B-sitosterol) inhibited 5a-reductase in hamster prostate [20]
and decreased human prostate cancer cell/tumor growth [21-
23] and BPH symptoms in men [24].

There is growing evidence to suggest that single-agent
interventions identified using a reductionist approach are
not an effective strategy for decreasing cancer risk [25].
Rather than taking a reductionist approach to try to identify
the bioactive compound(s) in SPS, we set out to determine
the efficacy of SPS with different fatty acid and phytosterol
profiles (high long-chain FA-low phytosterols (HLLP), high
long-chain FA-high phytosterols (HLHP), and high medium-
chain FA-low phytosterols (HMLP)) in decreasing androgen-
sensitive LNCaP human prostate cancer cell number and
androgen-sensitive Syrian hamster flank organ growth.

The cell culture studies determined whether SPS decrease
LNCaP human prostate cancer cell number without induc-
ing cytotoxicity with and without androgen treatment. The
Syrian hamster was selected for further studies because its
flank organs have dermal melanocytes, sebaceous glands, and
hair follicles that are highly dependent on androgens for
development [26, 27]. SPS were applied to castrated, male
Syrian hamster flank organs treated with testosterone or DHT
to determine whether SPS impact androgen-treated flank
organ growth as a measure of antiandrogenic action. We
hypothesized that HMLP SPS would significantly decrease
LNCaP cell number and Syrian hamster flank organ growth
compared to HLLP and HLHP SPS.

2. Materials and Methods

2.1. Saw Palmetto Supplements Fatty Acids and Phytosterols
Extraction and Quantification. Saw palmetto supplements’
(GNC Herbal Plus SPS, GNC Corporation, Pittsburgh, PA;
Jarrow Formulas SPS, Superior Nutrition and Formulation,
Los Angeles, CA; Doctor’s Best SPS, All Star Health, Hunt-
ington Beach, CA) fatty acid and phytosterol profiles were
analyzed according to previously described methods [28]
and categorized into high long-chain FA-low phytosterols
(HLLP), high long-chain FA-high phytosterols (HLHP),
and high medium-chain FA-low phytosterols (HMLP) SPS
groups, respectively.

2.2. Cell Culture and Reagents. LNCaP cells (androgen-
dependent, prostate adenocarcinoma cells derived from
lymph node metastasis (CRL-1740), American Type Culture
Collection, Manassas, VA) were grown in Roswell Park
Memorial Institute- (RPMI-) 1640 medium (GIBCO Invit-
rogen, Carlsbad, CA) containing 2 g/L glucose supplemented
with 10% fetal bovine serum (Atlanta Biologicals, Inc., Flow-
ery Branch, GA) at 37°C in a 5% CO,, 95% air-humidified
atmosphere incubator. LNCaP cells were maintained in T-
75 tissue culture flasks (TPP, Midwest Scientific, Inc., Valley
Park, MO) with media changed every 72 hours.
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2.3. LNCaP Cell Treatment. LNCaP cells (passage number <
18) were plated at a density of 20,000 cells per well in 96-
well plates (Fisher Scientific, Pittsburg, PA) in 6.3 mg/mL
penicillin and 10.1 mg/mL streptomycin antibiotic (both from
Sigma-Aldrich, St. Louis, MO) RPMI-1640 media. Twenty-
four hours after plating, LNCaP cells were treated separately
with different SPS (250 nM-1000 nM) with and without
testosterone (10 nM) or DHT (1nM) for 72 hours. The fatty
acid and phytosterol concentrations of the 3 SPS used for in
vitro studies are shown in Table 2. The SPS concentrations
used were selected to avoid LNCaP cell cytotoxicity. Both
androgens were dissolved in absolute ethanol and the final
ethanol concentration in media was 0.1%. These androgen
concentrations maximally stimulate LNCaP cell prolifera-
tion [29, 30]. SPS stock solution (GNC Herbal Plus SPS
(HLLP), Jarrow Formulas SPS (HLHP), and Doctor’s Best
SPS (HMLP)) was prepared by dissolving supplements to a
total fatty acid concentration of 1M in dimethyl sulfoxide
(DMSO, Sigma-Aldrich, St. Louis, MO) and serial dilutions
were prepared to concentrations of 0.25 M, 0.5 M, and 0.75 M.
Fresh SPS dilutions were prepared and stored at 4°C and used
for the 72-hour treatment duration of each experiment. SPS
treatments were prepared by dissolving SPS stock solutions
(0.25 M-1 M) in media to concentrations of 250 nM-1000 nM
SPS. SPS with androgen treatments were prepared daily
by dissolving respective SPS stock solutions (0.25M-1M)
with testosterone (10,000 nM) or DHT (1000 nM) (both from
Steraloids, Inc., Newport, RI) in media to concentrations of
250 nM-1000 nM SPS with 10 nM testosterone or 1 nM DHT,
respectively. In all cell culture treatments, the final DMSO
concentration in media was 0.0001%. Negative controls were
treated with DMSO in media (0.0001% v/v). Positive controls
for SPS with androgen treatments were treated with 10 nM
testosterone or 1 nM DHT and DMSO in media (0.1% v/v for
androgens and 0.0001% v/v for DMSO).

The fatty acid and phytosterol molar concentrations of
SPS were calculated as follows:

Concentration = (Quantity of fatty acid/phytosterol
in SPS (mg/g) x Weight of SPS (g))/Volume of SPS
(mL),

Molar concentration = (Concentration of fatty acid/
phytosterol (mg/mL))/(Molecular weight of fatty
acid/phytosterol (mg/mmol)).

2.4. Cell Number and Cytotoxicity Assays. LNCaP cell num-
ber and cytotoxicity were quantified using the CellTiter 96
AQueous One Solution Assay and Cytotox 96 Nonradioactive
Cytotoxicity Assay, respectively (both from Promega Cor-
poration, Madison, WI) with a BioTek Synergy HT Plate
Reader (BioTek, Winooski, VT) at 490 nm. Cytotoxicity
was quantified by measuring lactate dehydrogenase (LDH)
released into cell culture media from damaged cells, following
SPS treatment with and without androgens. Cell cytotoxicity
was calculated as experimental LDH release of the treatment
group divided by control and expressed as mean percentage.
Three replicates of experiments were completed.
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TABLE 1: Study design.

+ Testosterone (0.5 pug/day) + DHT (0.5 ug/day)

Control (ethanol only)

GNC Herbal Plus SPS (HLLP)
Jarrow Formulas SPS (HLHP)

Doctor’s Best SPS (HMLP)

Control (ethanol only)

GNC Herbal Plus SPS (HLLP)
Jarrow Formulas SPS (HLHP)
Doctor’s Best SPS (HMLP)

2.5. Syrian Hamsters. Five- to six-week-old, castrated male
Syrian hamsters were purchased (Harlan Laboratories, Inc.,
Indianapolis, IN) and acclimated for one week before treat-
ment was initiated. Hamsters were housed individually in
plastic cages, with free access to Purina LabDiet 5001 (Lab-
Diet, St. Louis, MO) and water, and maintained on a 12-hour
light/12-hour dark cycle. The day before treatment began,
the lower back of each hamster was shaved with electric
clippers to expose flank organs, a procedure that was repeated
weekly during the 21-day study. Hamsters were randomized to
control (n = 4), HLLP, HLHP, and HMLP SPS (n = 6) groups
(Table 1). Testosterone or DHT (0.5 pg/day) dissolved in 5 uL
of ethanol was applied daily to the right hind flank organ
using a pipette and disposable tips. These androgen con-
centrations increased androgen-sensitive flank organ growth
moderately to approximately 15-20 mm? previously, which
is 50-70% maximal stimulation [31]. The left hind flank
organ served as the control and was treated with ethanol
only. Thirty minutes after androgen or ethanol treatment,
SPS or ethanol (5uL) was applied to each flank organ in
treatment and control groups, respectively, using a pipette
and disposable tips [32]. Flank organ area was calculated
weekly by taking 2 diameter measurements 90 degrees apart
with an electronic, digital, high-precision Mitutoyo caliper
(Tokyo, Japan) and using the formula for area of an ellipse:
area = 7 * (length/2) * (width/2), as previously described
[33]. Hamsters were euthanized by CO,-induced asphyxia-
tion.

2.6. Statistical Analysis. Data were analyzed using SAS 9.3
(SAS Institute Inc., Cary, NC) with p < 0.05 considered
statistically significant. LNCaP cell number and cytotoxicity
results were analyzed using ANOVA with Dunnett’s test. For
animal studies, paired t-test was used to analyze the left and
right flank organ areas, and Wilcoxon nonparametric one-
way ANOVA was used to analyze the difference between
left and right flank organ growth between controls and SPS
treatment groups.

3. Results

3.1. Saw Palmetto Supplements’ Fatty Acid and Phytosterol
Quantities. Both HLLP and HMLP SPS had relatively high
total fatty acids quantities compared to HLHP SPS (Table 2).
Total phytosterols quantities in HLHP SPS were 50-fold and
~20-fold higher than in HLLP and HMLP SPS, respectively.
The quantities of laurate and myristate were higher in HMLP
SPS compared to HLLP and HLHP SPS. The quantity of oleate
was high in all three SPS, with the highest quantity observed

in HLLP SPS. Linoleate, campesterol, stigmasterol, and f3-
sitosterol quantities were higher in HLHP SPS compared to
HLLP and HMLP SPS.

3.2. Effect of Saw Palmetto Supplements with and without
Testosterone or DHT Treatment on LNCaP Cell Number.
There was no significant increase in LNCaP cell number with
testosterone or DHT treatment compared to the control (Fig-
ures 1(b), 1(c), 2(b), 2(c), 3(b), and 3(c)). HLLP SPS greater
than or equal to 750 nM with testosterone (Figure 1(b)) and
greater than or equal to 500nM with DHT (Figure 1(c))
treatment significantly decreased LNCaP cell number to 85%
and 86-92% of the control, respectively. Seven hundred and
fifty (750) nM and 1000 nM HLHP SPS treatment without
androgens significantly increased LNCaP cell number to
112% and 113% of the control, respectively (Figure 2(a)). Two
hundred and fifty (250) nM HLHP SPS significantly increased
LNCaP cell number to 160% of the control in testosterone-
treated LNCaP cells (Figure 2(b)), and 500 nM and 1000 nM
HLHP SPS significantly decreased LNCaP cell number to
88% and 76% of the control, respectively, in DHT-treated
LNCaP cells (Figure 2(c)). Seven hundred and fifty (750) nM
and 1000 nM HMLP SPS with and without testosterone or
DHT treatment significantly decreased LNCaP cell number
compared to the control (Figures 3(a), 3(b), and 3(c)).
Overall, HMLP SPS at high concentrations inhibited the
growth of LNCaP cells compared to HLLP and HLHP SPS;
therefore a cytotoxicity assay was performed to determine
whether this growth inhibition was due to the toxic effect
of HMLP SPS at their respective concentrations with and
without androgen treatment. Results showed that HMLP SPS
was not cytotoxic to LNCaP cells with and without androgen
treatment (Table 3).

3.3. Final Body Weights, Food Intake, Flank Organ Areas,
and Growth. There were no significant differences in final
body weights and daily food intake between SPS treatment
groups and the control. There were also no significant
differences between the left and right flank organ areas in
controls and SPS treatment groups (Table 4). However, SPS
treatments caused a notable but nonsignificant reduction in
the difference between the left and right flank organ growth in
the testosterone-treated SPS groups compared to the control.
The same level of inhibition was not seen in the DHT-treated
SPS groups (Table 5). It should be noted that the right flank
organs for controls in both testosterone- and DHT-treated
SPS groups were highly pigmented; the left flank organs were
not. No pigmentation was seen in either of the flank organs
in the SPS treatment groups (Figure 4).

4. Discussion

In LNCaP cells, HLLP SPS significantly decreased cell num-
ber at high concentrations with testosterone or DHT treat-
ment. HLHP SPS on the other hand increased LNCaP
cell number with and without testosterone treatment but
significantly decreased cell number at high concentrations
with DHT treatment. HMLP SPS significantly decreased
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TABLE 2: Saw palmetto supplements’ (SPS) fatty acid and phytosterol quantities (mg/g) and LNCaP cell culture SPS treatment concentrations

based on 1000 nM total fatty acids.

HLLP SPS HLHP SPS HMLP SPS
Fatty acid quantities (concentration)
Laurate (C12:0) 83.3(90.7) 107.2 (133.6) 274.9 (298.8)
Myristate (C14:0) 31.8 (34.6) 42.5 (53.0) 102.9 (111.8)
Palmitate (C16:0) 977 (106.3) 85.7 (106.8) 80.7 (87.7)
Stearate (C18:0) 25.5 (27.8) 323 (40.2) 18.0 (19.6)
Oleate (C18:1) 551.8 (600.6) 224.6 (279.8) 296.5 (322.3)
Linoleate (C18:2) 68.9 (75.0) 259.1 (322.8) 48.6 (52.8)
Other fatty acids 59.7 (65.0) 51.2 (63.8) 98.4 (107.0)
Total fatty acids 918.7 (1000) 802.6 (1000) 920.0 (1000)
Phytosterol quantities (concentration)
Campesterol 0.2 (0.05) 21.5 (5.57) 0.7 (0.16)
Stigmasterol 0.1(0.02) 10.1 (2.62) 0.3 (0.07)
B-Sitosterol 1.0 (0.23) 33.5 (8.68) 2.3(0.52)
Total phytosterols 1.3(0.29) 65.1 (16.86) 3.3(0.75)

TaBLE 3: Relative media LDH levels following HMLP SPS treatment on LNCaP cells expressed as mean percentage relative to 0.0001% DMSO

control'.

Treatment group Control (%) T control (%) DHT control (%) 750 nM (%) 1000 nM (%)
HMLP SPS 100.0 £ 6.5 — — 95.6 £2.2 104.4 +4.7
HMLP SPS + T 100.0 £ 9.6 104.4 £ 8.5 — 107.0 + 8.1 106.2 + 8.3
HMLP SPS + DHT 100.0 £ 6.6 — 99.7 £ 6.6 974 £ 6.6 100.0 £ 74

"Data are expressed as mean percentage + SEM (p < 0.05).

T:10 nM testosterone; DHT: 1 nM dihydrotestosterone; —: not applicable; LDH: lactate dehydrogenase.

TABLE 4: Final body weights, daily food intake, and flank organ area in testosterone- and DHT-treated SPS groups'.

Treatment of right flank organ with

Flank organ area (mm?)

testosterone or DHT + ethanol or SPS Final body weights (g) Daily food intake (g) Left (untreated) Right (treated)
Testosterone + ethanol (control) 104.0 + 2.4 8.7+0.3 19.8 +0.7 22.7+29
Testosterone + HLLP SPS 110.7 £ 3.5 81+0.2 19.2+1.6 189+13
Testosterone + HLHP SPS 106.4 + 4.4 8.1+0.2 18.0 £ 0.9 20.2+1.3
Testosterone + HMLP SPS 109.9 + 4.8 8.3+0.2 176 + 1.4 191+1.2
DHT + ethanol (control) 103.6 + 2.5 79+0.2 224 +12 235+ 1.6
DHT + HLLP SPS 103.9 + 4.3 81+0.3 19.0 £ 2.2 223+24
DHT + HLHP SPS 100.9 + 5.8 8.4+0.3 18.0 + 1.4 191+15
DHT + HMLP SPS 108.4 + 5.2 79+0.2 204 £1.1 21.9+1.9

10.5 ug testosterone or DHT was dissolved in 5 4L ethanol. Data are expressed as mean + SEM (p < 0.05).

LNCaP cell number at high concentrations with and without
testosterone or DHT treatment. The antiandrogenic action of
SPS has been attributed to their ability to block the conversion
of testosterone to DHT by inhibiting 5a-reductase or prevent
the binding of DHT to androgen receptors [34, 35]. In our
study, SPS reduced LNCaP cell number more effectively in
the presence of androgens than without them. This result is
consistent with the greater inhibition of LNCaP cell growth
with saw palmetto berry extract (SPBE) and DHT compared
to SPBE alone [36].

It is also important to note that there was no significant
difference in LNCaP cell number between testosterone and
DHT positive controls and the DMSO control in all SPS treat-
ment groups. Given that fetal bovine serum used in media
preparation lacked androgen (personal communication with
company), we expected there would be a significant increase
in cell number between the androgen-treated LNCaP cells
and the control. Previously, LNCaP cell growth was inhibited
with 10 nM or 500 nM testosterone added to 10% fetal bovine
serum supplemented media [37]. The proposed mechanism
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FIGURE 1: LNCaP cell number after treatment with HLLP SPS with and without 10 nM testosterone (T) or 1nM DHT for 72 hours. (a) No
androgen. (b) Testosterone. (c¢) DHT. Data obtained from three replicates of each experiment and expressed as mean percentage (+ SEM)

relative to 0.0001% DMSO control (n = 3; * P < 0.05 versus control).

for this androgen-mediated growth inhibition is that high
DHT prevents stabilization of androgen receptor during
mitosis, thus inhibiting cell growth [38-40].

Another possibility is that testosterone and DHT are
metabolized so rapidly [41-44] that they are ineffective in
stimulating LNCaP cell growth. Synthetic androgens, which
have a similar affinity for the androgen receptor as testoste-
rone or DHT and are not metabolized (e.g., methyltrienolone
and mibolerone) [33, 45], can be used for in vitro studies
to stimulate growth of LNCaP cells. It is important to note
that these synthetic androgens would not be useful in a study
where 5a-reductase inhibition is a suspected mechanism,

because they will not be acted on and converted to a
more potent androgen like testosterone. We performed some
studies with 10 nM DHT, but this concentration was not as
effective as InM DHT in stimulating LNCaP cell growth,
which is consistent with LNCaP cells grown in charcoal-
stripped media [29].

In Syrian hamsters, SPS treatments did not significantly
reduce the difference between the left and right flank organ
growth in testosterone- and DHT-treated SPS groups; how-
ever, it caused a notable reduction in the difference in the
testosterone-treated SPS groups. The same level of inhibition
was not observed in the DHT-treated SPS groups. It is
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FIGURE 2: LNCaP cell number after treatment with HLHP SPS with and without 10 nM testosterone (T) or 1nM DHT for 72 hours. (a) No
androgen. (b) Testosterone. (c) DHT. Data obtained from three replicates of each experiment and expressed as mean percentage (+ SEM)

relative to 0.0001% DMSO control (1 = 3; *P < 0.05 versus control).

possible that these differences would have been significant
if we had larger group sizes. Our group sizes were based
on Liang and Liao that reported a greater hamster flank
organ growth of 24.9mm? and 32.1mm? for testosterone
and DHT-stimulated treatment groups, respectively [17],
compared to 20.2 mm? and 22.3mm? for testosterone and
DHT-stimulated treatment groups, respectively, in our study.
It is possible that part of the reason we did not see as
great of a response to treatment was that the flank organ
growth was less responsive to androgen treatment. The right

flank organs for controls in both testosterone- and DHT-
treated SPS groups were highly pigmented, an observation
seen previously [17], indicating that the androgens were
stimulating flank organ growth and causing pigmentation in
the hair shaft and near the orifice of the hair follicles [31]. The
lack of pigmentation of flank organs in the treatment groups
may indicate that SPS were to some extent inhibiting, or neu-
tralizing, testosterone and DHT stimulation of the androgen-
responsive sebaceous glands, dermal melanocytes, and hair
follicles [26, 27], all of which contribute to flank organ
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FIGURE 3: LNCaP cell number after treatment with HMLP SPS with and without 10 nM testosterone (T) or 1nM DHT for 72 hours. (a) No
androgen. (b) Testosterone. (c¢) DHT. Data obtained from three replicates of each experiment and expressed as mean percentage (+ SEM)

relative to 0.0001% DMSO control (1 = 3; *P < 0.05 versus control).

pigmentation. Alternatively, SPS may interfere with cellular
mechanisms in flank organs responsible for the response to
androgenic hormones.

In general, the lack of difference in the efficacy of SPS with
different nutrient profiles could mean that laurate, myristate,
oleate, linoleate, campesterol, stigmasterol, and f-sitosterol
are not the only bioactive components, or there is a synergistic
effect of specific or all fatty acids and/or phytosterols in SPS
responsible for their antiandrogenic activity.

5. Conclusions

Overall, we did not find much difference in the efficacy of
the SPS with different nutrient profiles in inhibiting and-
rogen-sensitive LNCaP human prostate cancer cells and
impacting androgen-sensitive Syrian hamster flank organ
growth. Further studies are required to clarify our findings
and determine if SPS with different nutrient profiles have
differing antiandrogenic efficacy.
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TaBLE 5: Difference between left and right flank organ growth in testosterone- and DHT-treated SPS groups'.

Treatment of right flank organ with

Flank organ growth (mm?)

Difference between left and

testosterone or DHT + ethanol or SPS Left (untreated) Right (treated) right flank organ growth (mm?)
Testosterone + ethanol (control) 14+27 85+18 71+2.3
Testosterone + HLLP SPS 32+15 21+12 -1.2+19
Testosterone + HLHP SPS 22+17 28+2.6 0.6+£15
Testosterone + HMLP SPS 18+15 32+18 14427
DHT + ethanol (control) 02+17 48+32 46+41
DHT + HLLP SPS 52+22 74 +£1.8 21+13
DHT + HLHP SPS 0.7 £2.0 41£20 34+29
DHT + HMLP SPS 46+19 83+34 37+24

10.5 ug testosterone or DHT was dissolved in 5 uL ethanol. Data are expressed as mean + SEM (p < 0.05).

T or DHT +
ethanol

(a)

Ethanol +
<SPS

(b)

FIGURE 4: Androgen stimulation and the effect of SPS on androgen-dependent flank organ pigmentation. Right flank organs for controls
in both testosterone- (T-) and DHT-treated SPS groups were highly pigmented, as shown with red arrow; the left flank organs were not
pigmented, as shown with white arrow (a). No pigmentation was seen in either of the flank organs in the treatment groups, as shown with

white arrows (b).
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