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Studies showed that synapses are highly-specialized structures for the communication between pre-
and postsynaptic neurons (Kaeser and Regehr, 2014). Synaptic vesicles carrying neurotransmitters
dock at specialized sites of presynaptic membranes termed active zones, which are closely apposed
to postsynaptic densities, and then undergo one or more priming reactions to prepare them to a
release-ready state. When an action potential invades the nerve terminals, the following membrane
depolarization activates voltage-gated calcium channels to influx Ca2+, thus initiates the fusion of
synaptic vesicles with presynaptic membrane and transmitters release (Wu and Saggau, 1997).

It was reported that synaptic vesicle fusion requires assembly of a conserved proteins
family termed soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs)
(Chernomordik and Kozlov, 2008; Wickner and Schekman, 2008). All SNAREs contain an
evolutionarily conserved coiled-coil SNARE motif of ∼60–70 amino acids that are arranged in
heptad repeats. In synapses, syntaxin and synaptosome-associated protein of 25 kDa (SNAP-
25, contains two SNARE motifs) on the plasma membrane (t-SNAREs on target membrane)
and synaptobrevin/vesicle-associated membrane protein (VAMP) on synaptic vesicles (v-SNARE)
assemble into a tight trans-SNARE complex in a 1:1:1 ratio to bridge synaptic vesicles and the
plasma membrane (Brunger, 2005). The trans-SNARE complex promotes membrane fusion by
pulling the bilayers together as it zippers up, and the remaining SNARE complexes on the fused
membrane are transformed to cis-configuration with lower potential energy, which undergoes
disassembly catalyzed by a specialized adenosine triphosphatase (ATPase) N-ethylmaleimide-
sensitive factor (NSF) and its cofactors soluble NSF attachment proteins (SNAPs) (Jahn et al., 2003).
SNAPs bind directly to the SNARE complex, then recruit and activate NSF to completely dissociate
SNARE complex and recycle individual SNAREs for a new round of fusion reactions (Sudhof and
Rothman, 2009). Thus, it appears that the cycle of SNARE assembly and disassembly is critical for
the occurrence, the fidelity and plasticity of synaptic transmission.

Meanwhile, it has been shown that a wide range of neurodegenerative disorders are
characterized with neuronal dysfunction and neuron loss, which caused by the aggregation
of specific neurotoxic proteins (Caughey and Lansbury, 2003). Typically, α-synuclein (α-syn),
constitutes the amyloid fibril form of Lewy bodies (Wang et al., 2016), is a cytosolic neural
protein consisting of 140 amino acid residues and is abundantly expressed in presynaptic
membrane in monomeric form (Burre et al., 2013). α-syn is closely associated with early-onset
of neurodegenerative diseases prominently in familial Parkinson’s disease, Alzheimer’s disease and
Lewy body disease. Aβ, a peptide of 36–43 amino acids, is a key molecule in the pathogenesis of
Alzheimer’s disease, and Aβ deposition is the necessary prerequisites for synaptic dysfunction and
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cognitive impairment in Alzheimer’s disease (Annaert and De
Strooper, 2002). Studies showed that, in neurodegenerative
diseases, the neurotransmission was profoundly damaged, and
the SNARE protein function and distribution were changed
(Garcia-Reitbock et al., 2010; Shen, 2010). Thus, we propose
that these proteins in pathological confirmation play roles in
SNARE-mediated membrane fusion during neurotransmission
by disrupting the SNARE protein assembling and recycling.

Recent research showed that α-syn can be classified into
spiral membrane binding form, part of folding state, oligomers,
fibrous, and amorphous polymers, etc according to the molecular
formation after polymerization (Breydo et al., 2012). It has been
verified that α-syn oligomerization contributes to the increased
cytotoxicity and thus promotes the dopaminergic neuronal
degeneration (Hogen et al., 2012). However, native α-syn shows
no damage effect on the efficiency of synaptic vesicle exocytosis,
but helps to increase the availability of synthetic vesicles at
the synapse (Diao et al., 2013a). In addition, α-syn knockout
shows little effect on synaptic transmission (Nemani et al., 2010),
while overexpression of α-syn reduces neurotransmitter release
by disturbing vesicle docking in exocytosis (Larsen et al., 2006).
The possible mechanismsmay be due to the reduction of synaptic
vesicle recycling pool size, the reduced synaptic vesicle density at
the active zone and the defects in re-clustering of synaptic vesicles
upon α-syn overexpression. Moreover, exhibiting the supportive
role in the folding/refolding of SNARE proteins, study showed
that α-syn acts as a non-classical chaperone that facilitates the
maintenance of proper SNARE states during SNARE cycle,
and promotes SNARE complex assembly by directly binding
to synaptobrevin-2/VAMP2 (Burre et al., 2010). For example,
monomeric α-syn contributes to neural vesicle aggregation by
simultaneously interacting with synaptobrevin-2 (Diao et al.,
2013a), however, α-syn oligomers inhibits vesicle docking
through interaction with synaptobrevin-2 and negatively charged
phospholipids (Choi et al., 2013; Hu et al., 2016). Therefore, it
appears that the effects of α-syn on neurotransmission are mainly
determined by forms of α-syn polymerization.

Cysteine string protein α (CSPα), a co-chaperone protein,
also plays an important role in maintaining SNARE rapid
cycling and neuronal activity (Garcia-Junco-Clemente et al.,
2010). There were several reports that CSPα expression is greatly
decreased in the forebrain from patients with neurodegenerative
disorders (Tiwari et al., 2015). It was also shown that CSPα

can form a chaperone complex with Hsc70 (Chamberlain and
Burgoyne, 1997) and SGT protein (Nemani et al., 2010), and the
CSPα–Hsc70–SGT complex binds directly to monomeric SNAP-
25 to prevent its polymerization, enabling SNARE complex
formation. Consistently, CSPα knockout mice show defects in
synaptic function that associated with the abnormal formation
of SNAP-25 (Fernandez-Chacon et al., 2004). In contrast,
overexpression of CSP suppresses the degradation of SNAP-
25 under normal physiological condition (Sharma et al., 2011).
Dysfunctional SNAP-25, in the absence of CSPα, is ubiquitinated
and degraded by the proteasome in a synaptic activity–dependent
manner, leading to the reduction of SNAP-25 (Sharma et al.,
2011). In addition, overexpression of α-syn blocks the CSPα

deletion-induced neurodegeneration and ameliorates the CSPα

deficiency-induced inhibition of SNARE complex assembly,
however, the removal of endogenous α-syn deteriorated CSPα

deletion-induced symptoms (Chandra et al., 2005). These
phenomena imply that α-syn may cooperate with CSPα to
maintain SNARE proteins assembly and neurotransmission.

Furthermore, it has been shown that intracellular Aβ

oligomers inhibit SNARE-mediated exocytosis by impairing
SNARE complex formation through direct interaction with
syntaxin 1a (Yang et al., 2015). Aβ42 is reported to regulate
neurotransmitter release, probably by disrupting the complex
formation of Synaptophysin and VAMP2 through the
competitive interaction with Synaptophysin (Russell et al.,
2012). Studies also showed that Aβ oligomers contribute
to the down-regulation of synapse density and decreased
neurotransmission efficiency (Terry et al., 1991; Shankar et al.,
2007). In addition, although aggregations of Aβ and α-syn
are used as the major pathological markers of AD and PD
respectively, these two pathogenic proteins have synergistic
effects on neurodegenerative disorders (Choi et al., 2015).
Study showed that Aβ promotes the formation of large-size
α-syn oligomers, which function to inhibit SNARE-mediated
vesicle fusion, accelerate motor or memory deficits or cognitive
dysfunction in APP/PS1 transgenic mice (Yang et al., 2015). It
suggested that these two proteins may cooperate to suppress
membrane fusion, and that the formation of α-syn aggregates
requires the participation of Aβ. Meanwhile, some other
pathological proteins in Alzheimer’s disease such as amyloid
precursor protein, presenilin, phosphorylated tau protein,
and brain-derived neurotrophic factor are associated with Aβ

deposition and contribute to the regulation of neuronal function
in Alzheimer’s disease (Saura et al., 2004; Schindowski et al.,
2008; Peethumnongsin et al., 2010).

The evidences above support the suggestion that these typical
neurotoxic proteins have negative effects on the assembly and
disassembly cycle of SNARE proteins, and thus on the SNARE-
mediated membrane fusion during neurotransmission. In can be
implied that SNARE-mediated membrane fusion in a functional
state is largely depends on molecular chaperone systems, which
is exhibited by α-syn, CSPα, Aβ, etc (Figure 1). These proteins
directly or indirectly interact with one or more components
of SNARE complex, chaperoning and maintaining appropriate
SNARE protein complex assembly or disassembly under different
pathological conditions.

It was also shown that the mechanism of SNARE-mediated
membrane fusion during neurotransmission has been analyzed
by real time monitoring SNARE protein interactions with single-
molecule FRET (smFRET) imaging (Weninger et al., 2003,
2008; Bowen et al., 2004, 2005). There are two major smFRET
assays applied for SNARE-mediated membrane fusion: Fusion
proteins monitoring during fusion processes (Brunger et al.,
2009) and the lipid molecule mixing between of the fused vesicles
(Diao et al., 2009, 2012). In monitoring proteins, SNARE and
its accessory proteins that are site-specifically conjugated with
fluorescent dyes may be used to analyze the unique protein
structural information (Brunger et al., 2009). In monitoring
fusion, the FRET efficiency value from each pair of vesicles
may be collected to identify different stages of fusion, such
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FIGURE 1 | Scheme of the role of neurodegenerative disease related proteins in SNARE-mediated membrane fusion. In SNARE-mediated membrane

fusion, α-syn monomer interacting with synaptobrevin-2, and α-syn oligomers inhibits vesicle docking through interaction with synaptobrevin-2 and negatively charged

phospholipids. CSPα form a complex with Hsc70 and SGT protein, and the complex binds to monomeric SNAP-25 to prevent its polymerization, enabling SNARE

complex formation. Aβ oligomers impair SNARE complex formation through interaction with syntaxin 1a.

as docking, hemifusion, and full fusion (Diao et al., 2013b).
These supports the suggestion that smFRET approach allows the
detection down to the conformation of a single biomolecule with
two dyes attached, and that smFRET approach is different from
the ensemble fusion assay that averaged FRET signal from the
entire population is obtained.

Finally, mechanistic studies of neurotransmitter release
contribute significantly to clarify the pathogenesis of
neurodegenerative diseases in brain, which will help to illuminate
the underlying pathogenic mechanisms for neurodegenerative
disorders. In recent years, the effects of these neurotoxic proteins
at different stages of SNARE-mediated membrane fusion have
been extensively investigated by single molecule biophysics
technologies, including smFRET imaging (Brunger et al., 2015).
SmFRET techniques will certainly benefit further studies about
SNARE-mediated membrane fusion, and benefit the cross-talk
investigation between neurodegenerative proteins and SNARE
cycling during neurodegeneration. We suggest that future
research should be integrated to the real-time monitoring of

membrane fusion of neurotransmitter release in vivo (Sakon and
Weninger, 2010; Crawford et al., 2013). This helps for the deeper
understanding of neural signaling process and the exploration of
new treatment for neurological disorders.
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