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Abstract

Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common
cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between
susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer
susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer
susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each
differing from strain BALB/cHeA by a different small random subset of 612.5% of genes received from strain STS/A,
suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if
the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci
underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-106CcS-19)F2 mice, co-
localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains
and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P = 0.0036). Finally, the
majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse
Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its
homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data
shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also
demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of
susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in
understanding individual cancer susceptibility.
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Introduction

Cancer is one of the leading causes of morbidity and mortality

worldwide. Individual risk of sporadic cancer in populations varies

greatly and is controlled by numerous low penetrance susceptibil-

ity genes [1]. Genome-wide association (GWA) studies have

revealed common variants associated with risk of cancers of colon

[2–10], lung [11–16], breast [17–23] and prostate [24–30], but

these variants explain only a fraction of population risk [31] and

their organ specificity is unknown. Lung and colon cancer are the

first and second leading causes of cancer death in the United

States, accounting for 28% and 9% of cancer deaths, respectively

[32]. Here we report systematic tests involving three species that

reveal genetic linkage and possible identity of most susceptibility

genes for the two cancers.

We analyzed mouse colon and lung cancer susceptibility genes

using recombinant congenic (RC) strains, which increase the

power of mapping by reducing genetic heterogeneity [33]. The

RC strains were produced by two subsequent generations of

backcrossing of a ‘‘donor’’ parental strain to a ‘‘background’’

parental strain, followed by twenty generations of brother-sister

mating from randomly selected breeding pairs of mice. This

generated a set of about 20 homozygous RC strains. Each RC

strain carries a different, random set of 12.5% of ‘‘donor’’ strain

genes and 87.5% of ‘‘background’’ strain genes (Figure 1) [33,34].

In this way, the number of segregating quantitative trait loci

(QTLs) in crosses between an RC strain and its background strain

is considerably reduced and the power to detect them increased

[34]. RC strains also improve QTL mapping by locating the

mapped loci to relatively short donor strain-derived regions that

can be precisely demarcated. Previously, we mapped 15

Susceptibility to colon cancer (Scc) loci using CcS/Dem (CcS) RC

strains, derived from the ‘background’ strain BALB/cHeA

(BALB/c, resistant) and ‘donor’ strain STS/A (STS, susceptible)

[35–39]. Independently, we mapped 30 Susceptibility to lung cancer

(Sluc) loci using the OcB/Dem (OcB) RC strains, derived from the
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‘background’ strain O20/A (O20, susceptible) and ‘donor’ strain

B10.O20/Dem (B10.O20, resistant) [40–42].

If a sizeable proportion of cancer susceptibility genes for the two

organs are identical or genetically related, a significant number of

colon and lung cancer susceptibility loci would co-localize in the

same chromosomal locations. Indeed, analysis of these loci

strongly indicates that most susceptibility genes for lung and colon

cancer are not genetically independent but are pair-wise linked.

Moreover, this co-localization is observed also between mouse

lung cancer susceptibility loci and colon cancer susceptibility loci

in human and rat. We show five independent sets of data including

interspecies homologies, which collectively strongly suggest that

most susceptibility genes for lung and colon cancer are not

genetically independent as has been believed but are linked pair-

wise and probably functionally related or identical.

Materials and Methods

Ethics Statement
All animal experiments were approved by the IACUC

committee at Roswell Park Cancer Institute (permit number

IACUC M905).

Mice
Mice were maintained in ventilated filter top cages under a strict

light-dark regimen and received acidified drinking water and a

standard laboratory diet (LM-485, Harlan Teklad, U.S.) ad libitum.

RC strains are inbred and form sets of about 20 strains derived

from the same parental strains. Each OcB recombinant congenic

(RC) strain has 87.5% of the genome from the O20 strain – the

‘‘background’’ strain that is relatively susceptible and 12.5% from

the B10.O20 strain – the ‘‘donor’’ strain that is relatively resistant

to lung tumors. Each CcS recombinant congenic (RC) strain has

87.5% of the genome from the BALB/c strain – the ‘‘background’’

strain that is relatively resistant and 12.5% from the STS strain –

the ‘‘donor’’ strain that is relatively susceptible to colon tumors

(Figure 1) [33,34].

Lung tumor induction and analysis in the present study
Lung tumor induction in mice has been described previously

[40]. Briefly, on day 17 of gestation, the pregnant (CcS-106CcS-

19)F1 females were given an intraperitoneal (i.p.) injection of

30 mg/kg body weight of the carcinogen N-ethyl-N-nitrosourea

(ENU) dissolved in phosphate-buffered citric acid (pH 5.8) [40].

The offspring of carcinogen-injected F1 females were thus exposed

to ENU transplacentally. This progeny were euthanized at the age

of 16 weeks and their whole lungs were removed, fixed in 10%

neutral buffered formalin and embedded in histowax. For tests of

lung tumor susceptibility of CcS strains, we induced lung tumors in

CcS-19, CcS-11, CcS-10 and CcS-20 mice. We also induced lung

tumors in crosses of CcS-19, CcS-11, CcS-10 or CcS-20 female

mice with (BALB/c6FVB)F1 male mice (due to the small number

of available CcS mice). For linkage tests, lung tumors were induced

in 226 F2 intercross mice produced between CcS-10 and CcS-19

mice.

The embedded lungs were sectioned semi-serially (5-mm sections

at 100-mm intervals). In most cases, we obtained 30 to 35 sections

per lung. All sections were stained with haematoxylin-eosin and

examined microscopically at 50X and 400X magnifications. To

distinguish unequivocally individual tumors, position of a tumor in

the lung lobe in sequential sections, its shape and size, positional

relation to bronchi and blood vessels, and characteristics of tumor

Figure 1. Schematic representation of the genetic composition of recombinant congenic (RC) strains. The major donor-strain regions of
the CcS RC strains that were used to map colon or lung tumor susceptibility genes are shown based on real genotypes.
doi:10.1371/journal.pone.0014727.g001
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cells have been used. The tumors analyzed in this study represent a

continuous histological spectrum from entirely benign adenomas

(a minority) to adenocarcinomas of different degree of progression,

characterized by extent of disorganization of the original organ

architecture, large differences in cell morphology, pronounced

nuclear pleomorphism, intra-nuclear cytoplasmic inclusions,

extensive stromal areas and vascular recruitment. When allowed

to develop for a longer time than in the present study, most of the

tumors form advanced carcinomas with invasion of adjacent

alveoli, and penetration into bronchi and blood vessels (unpub-

lished observatins). Number of tumors, tumor size and tumor load

were scored as described previously [40]. Briefly, tumor size was

expressed as the sum of all measured surfaces (calculated using a

grating in the ocular) in the semiserial sections where the tumor

was present, and it corresponded to tumor volume. Tumors that

did not exceed a diameter of 300 mm in any of the sections were

not included in the data. Tumor load was calculated as the sum of

the sizes (volumes) of all tumors in a mouse and it corresponded to

the total tumor burden of the mouse.

Genotyping
More than 90 % of the genetic material from the ‘‘donor’’ strain

in a RC strain is concentrated in 9 to 13 discrete contiguous

chromosomal regions with intermediate length (5–25 cM), that are

usually located on 7 to 11 different chromosomes [34]. We

determined the positions and length of the majority of the donor-

strain derived chromosomal regions in CcS and OcB RC strains

with 855 and 716 microsatellite markers across the whole genome,

respectively. Based on such information, the donor strain-derived

regions segregating in 226 (CcS-106CcS19) F2 mice were PCR-

genotyped [40] using 23 microsatellite markers: D1Mit291,

D1Mit155, D2Mit99, D2Mit156, D2Nds3, D4Mit53, D4Mit15,

D5Mit68, D6Mit177, D7Mit105, D8Mit17, D8Mit36, D9Mit254,

D10Mit28, D10Mit2, D11Mit316, D14Mit11, D15Mit16,

D17Mit72, D17Mit123, D18Mit17, D18Mit124, D19Mit6

(http://informatics.jax.org). Each known segregating chromosom-

al region is represented by at least one marker. More markers have

been tested in the longer donor chromosomal regions and the

maximal distance between two markers was less than 10 cM.

Statistical analysis
a. Linkage and direction of allelic effects in (CcS-10xCcS-

19)F2 Mice. The dataset of this experiment was submitted to the

PLoS One website as supplemental material (Dataset S1). The

chromosomal regions affecting tumor load, size and number were

determined by analysis of variance (ANOVA) with the use of

individual microsatellite markers listed in ‘‘genotyping’’ above.

The effects of each marker, sex and interaction between pairs

(marker-marker and marker-sex) on the corresponding phenotypes

were tested by the PROC GLM (general linear models) procedure

of the SAS 9.1 statistical package for Windows (SAS Institute, Inc.,

Cary, NC). A backward-elimination procedure was followed to

exclude statistically nonsignificant effects (P.0.05). The P-values

of the significant effects were then corrected for multiple testing

using the method of Lander and Kruglyak [43] to construct the

final model. All statistical tests were two-sided. Using least square

(LS) means of each genotype from ANOVA we determined the

number of main effects and interactions, where CcS-19-like

genotypes were associated with susceptibility or resistance

compared to CcS-10-like genotype (differences .30%).

b. Evaluation of tumor susceptibility pattern of RC

strains. Colon tumor numbers and lung tumor loads or

numbers were compared between the RC strains CcS-10, -11,

-19, and -20 by the Wilcoxon (rank sums) two-sample tests using

the PROC NPAR1WAY procedure of the SAS 9.1 statistical

package for Windows (SAS Institute, Inc., Cary, NC).

c. Analysis of previously published Sluc and Scc loci. We

used the published mapping data on the Scc or Sluc loci without

any pre-selection. We identified the overlapping STS and

B10.O20 donor strain-derived chromosomal regions, and

determined which of the 14 Scc (Scc1 and Scc10 are considered

here a single locus because they are less than 1 cM apart) and 30

Sluc loci map into such overlapping STS-B10.O20 donor strain-

derived chromosomal regions. We used the Poisson distribution

with mean parameter (mScc and mSluc), which is equal to the

total number of detected loci of each type divided by the size of the

total length of genome tested for that type. The probability to

observe at least one locus of a particular type k in a region of size s

equals 1-exp(-mk*s). The probabilities that both Scc and Sluc, none

of them, or only a Scc or a Sluc locus are present are {1-exp

(-mScc*s)}*{(1-exp(-mSluc*s)}, exp(-mScc*s)*exp(-mSluc*s), {1-exp

(-mScc*s)}*exp(-mSluc*s), and exp(-mScc*s)*{1-exp(-mSluc*s)},

respectively, assuming the loci of the two types are distributed

independently over the genome. These values were then compared

with the actual data by chi-square.

d. Co-localization of human colon and mouse lung tumor

susceptibility genes. We used published information on

human colon cancer susceptibility loci detected in genome wide

association or linkage studies. Orthologous regions of these loci in

the mouse were compared with known Sluc and Scc loci. We

evaluated by the binomial distribution test possibility of the

observed number of human colon cancer susceptibility loci, whose

orthologous regions were polymorphic in the tested mice, within

an average 3.3cM of the published Sluc loci.

Results

Correlated susceptibility to colon and lung tumors in CcS
RC strains

At the first step, we selected two RC strains highly susceptible

and two RC strains most resistant to colon tumors and tested

their susceptibility to lung tumors. The RC strains CcS-19 and

CcS-11 are highly susceptible and CcS-10 and CcS-20 are very

resistant to colon tumors (p,0.0001, Figure 2B upper) [35,37]

induced by repeated injections of carcinogens 1,2-dimethyl-

hydrazine (DMH) or azoxymethane (AOM). We induced lung

tumors in CcS-19 and CcS-20 or CcS-11 and CcS-10 in two

independent experiments. We observed that, concordant with

the colon tumor susceptibility or resistance, CcS-19 is highly

susceptible to ENU-induced lung tumors compared to CcS-20

(p,0.0001, Wilcoxon test), and CcS-11 is highly susceptible to

ENU-induced lung tumors compared to CcS-10 (p = 0.0012,

Wilcoxon test) (Figure 2B lower). The extreme susceptibility or

resistance to lung tumors observed in the CcS strains, con-

cordant to colon tumor susceptibility, has been supported by

results from crosses of CcS-19, CcS-11, CcS-10 and CcS-20 with

(BALB/c6FVB)F1 mice (tested due to the small number of

available CcS mice) (Figure S1, Table S1). Mice of these crosses

carry at each locus one allele of the pertinent RC strain and

showed similar susceptibility pattern to the homozygous CcS

mice. These data suggest that the small subsets of 12.5% STS

genes received by these RC strains contain either predominantly

susceptible (CcS-11, CcS-19), or predominantly resistant (CcS-

10, CcS-20) alleles at most colon (Scc) and lung cancer (Sluc)

genes, suggesting their pair-wise linkage or identity (Figure 2A

upper). Otherwise, these RC strains would be extremely

susceptible or extremely resistant to one type of tumor, but not

likely to the other (Figure 2A lower).

Linked Colon-Lung Cancer Genes
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Figure 2. Correlated lung and colon cancer susceptibility in the CcS RC strains. A. Expected susceptibility to colon and lung tumors under
different hypotheses. Concordant susceptibility or resistance to colon and lung tumors is expected when the majority of the susceptibility genes of
the two cancers are closely linked or identical (upper panel); but not when the susceptibility genes of the two cancers are independent of each other
(lower panel). B. Observed susceptibility to colon and lung tumors in the CcS RC strains with extreme susceptibility phenotype. Each dot represents a
mouse. Mean tumor number of each strain is indicated. Upper panel: colon tumor numbers for CcS-19, CcS-11, CcS-10 and CcS-20 mice. Colon tumor
number is directly proportional to colon tumor load, since in our experiments colon tumor sizes did not differ significantly among the CcS strains [35].

Linked Colon-Lung Cancer Genes
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Scc-Sluc linkage in (CcS-106CcS19)F2 hybrids
To elucidate the concordant extreme susceptibility of CcS-19

and resistance of CcS-10 mice to both colon and lung tumors, we

mapped Sluc loci in ENU-treated intercross (CcS-106CcS-19)F2

mice. We compared locations of these Sluc loci with locations of Scc

loci previously detected in the CcS strains.

Mapping of Sluc loci. We detected 1191 lung tumors in 226

(CcS-106CcS-19)F2 mice. The 21 STS-derived regions

segregating in the cross (about 23.5% of the genome) were

defined in the CcS strains using 855 microsatellite markers (data

not shown) and scanned in F2 hybrids with 23 microsatellite

markers spaced on average 10cM apart. Mapping data of all

significant linkages is in Figure 3, including p values corrected for

genome-wide testing [43] and least-square means of susceptibility

phenotypes of each locus. We detected 15 Sluc loci that affect

tumor size, load and number (Figure 3A&B, Table S2). Eight of

these loci had individual effects (Figure 3A) and seven loci were

detected only in inter-locus interactions. We found 17 pair-wise

inter-locus interactions (Figure 3B), in which the effect of one Sluc

locus depends on the genotype of a second interacting Sluc locus

[40,42]. Five of these 15 Sluc loci are novel loci: Sluc31 – Sluc35,

linked to D2Mit99, D17Mit72, D5Mit68, D15Mit16 and

D19Mit6, respectively (Figure 3A&B, Table S2). The other 10

Sluc loci are very close (0–1.5 cM, five loci) or relatively close (6–

12 cM, five loci) to the positions of previously published Sluc or Pas

loci (Table S2), so we could not rule out that they are duplicate

detections rather than novel loci and did not assigned them novel

symbols.

Effects of alleles of these loci support the hypothesis that they

are responsible for the high susceptibility and resistance,

respectively, of CcS-19 and CcS-10, because with few exceptions

the allele obtained from CcS-19 confers a higher susceptibility

than that from CcS-10 (Figure 3C). Similarly, the combination of

alleles in interacting pairs of Sluc loci that is present in CcS-19 is

more susceptible than that present in CcS-10 (Figure 3D).

Scc-Sluc co-localization. We compared the map location of

the 15 Sluc loci detected in the (CcS-106CcS-19)F2 hybrids with

location of Scc loci detected previously in crosses of CcS strains -3,

-5, -11, -19, with BALB/c (Table S3)[36,38,39]. Seven of the 15

Sluc loci, linked to D1Mit291, D2Mit99, D8Mit17, D10Mit28,

D11Mit316, D17Mit72 and D18Mit17, mapped to regions that

had been previously tested for colon cancer susceptibility. Without

exception, they all co-localized with Scc loci and formed linked

pairs of Scc3/Sluc5, Scc1/Sluc31, Scc8/Sluc20, Scc14/Sluc29, Scc15/

Sluc4, Scc4/Sluc32 and Scc5/Sluc14 (Figure 4, Table S2). Five of

these Sluc loci mapped less than 1cM from the paired Scc locus; one

locus 2 cM and one 5 cM. The other eight newly detected Sluc loci

are located in regions that were not yet tested for colon tumor

susceptibility in RC strains and could pair with presently unknown

Scc loci. These data show that the Scc and Sluc loci underlie the

concordant extreme susceptibility or resistance to colon and lung

tumors and are pair-wise clustered.

Scc-Sluc linkage in independent strains
We performed an analysis of map locations of Scc loci and Sluc

loci that were previously mapped in two completely independent

projects using crosses of four CcS strains to map Scc genes

[36,38,39] and five OcB strains to map Sluc genes [40–42],

respectively (Table S3). The donor strain chromosomal regions of

the CcS strains tested for colon tumor susceptibility comprised

together about 40–50% of the genome, which is similar to the total

proportion of the genome of the OcB strains tested for lung tumor

susceptibility. The ‘overlap’ regions screened for both lung and

colon tumor susceptibility can be used to evaluate the possible co-

localization of Scc and Sluc genes, whereas the ‘non-overlap’

regions were studied for only one tumor type and hence are not

informative (Figure 5A). We identified 23 ‘overlap’ chromosomal

regions with a total length of 430 cM (‘overlap’ in Table 1),

containing 9 Scc loci and 14 Sluc loci (Table 1). We found that the

‘‘concordant ‘overlap’ regions’’ containing either both a Scc and a

Sluc locus (n = 9) or none of them (n = 11) outnumber vastly the

‘‘discordant ‘overlap’ regions’’ that contain either only a Scc (n = 0)

or only a Sluc locus (n = 3) (Table 1). These observed frequencies

are significantly different from the expected frequencies assuming

independent distribution of Scc-Sluc loci, as calculated from Poisson

distribution based on length of the overlap regions (P = 0.0036,

modified 262 test–Materials and Methods). These data indicate

that the genetic relatedness between a large number of colon and

lung cancer susceptibility genes that we observed in the CcS RC

strains is likely common in other mouse strains as well. In fact, the

p value 0.0036 likely underestimates the actual significance of the

co-localization, because in the nine overlap regions that contain

both a Scc locus and a Sluc locus, the distances between the markers

for these loci are about 75% shorter than the length of the overlap

regions (derived from Table 1, Figure 5B).

Several laboratories carried out productive searches for colon

[44–46] and lung [47–52] cancer susceptibility genes. However,

we could not include these published cancer susceptibility loci into

the present analyses because the candidate regions of most of them

cannot be defined as precisely as the donor-strain regions in RC

strains, so the extent of their overlaps cannot be evaluated

statistically. Also, the detection of co-localization depends on the

power of the mapping test, which is less in whole genome crosses

than in RC crosses [34]. Nevertheless, these data showed that the

colon cancer susceptibility locus Ccs1 detected in ICR6C57Bl/6

backcross [44], maps only 1cM from the lung cancer resistence

locus Par3 detected in SMXA6A backcrosses [50] on mouse

chromosome 12.

Mouse Sluc loci co-localize with mouse orthologues of
human and rat colon cancer susceptibility loci.

Co-localization of colon and lung cancer susceptibility genes in

mouse suggests that many of them may be related or identical. We

therefore investigated possible parallels of this finding in humans

and rats (Figure 6A).

Human colon cancer susceptibility loci. Genome-wide

association and linkage studies in humans detected 13

susceptibility loci for colorectal cancer and four for lung cancer

[2–10]. The orthologous regions of 11 out of 13 human colon

cancer susceptibility loci are polymorphic in the OcB or CcS

strains that were tested for lung tumor susceptibility. Surprisingly,

nine of these 11 regions are close to previously detected Sluc loci

(Figure 6B). Six are very close (0–2.5 cM): 8q24/Sluc25, 9q22.2–

31.2/Sluc23, 10p14/Sluc16, 3q21–24/ Pas1c-D6mit177 (or Sluc11),

14q22.2/Sluc13 and 6q23–25(both colon and lung)/Scc14/ Sluc29

[2,3,5,6,8,10,11,39,42,51]; Three are relatively close(5–7cM):

8q23.3/Sluc25, 16q22.1/Sluc9 and 19q13.1/Sluc30 [8,10,42]. No

Sluc locus was detected near orthologues of 15q13 or 20p12.3

[7,8]. The fact that nine of the 11 human colon cancer

susceptibility loci, whose orthologues have been tested in mouse

Lower panel: lung tumor loads for CcS-19, CcS-11, CcS-10 and CcS-20 mice. The same extreme susceptibility or resistance to lung tumors observed
here has been also seen in hybrid mice between CcS and (BALB/c6FVB)F1 mice (Figure S1, Table S1).
doi:10.1371/journal.pone.0014727.g002
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RC strains, map on average to 3.3 cM from a Sluc locus, suggests

that lung cancer and colon cancer susceptibility loci are also

significantly clustered in humans (P = 0.0015, binomial distribu-

tion test). Orthologues of the colon cancer susceptibility loci at

18q21 [4] and 11q23 [9] and the lung cancer susceptibility loci at

5p15, 6p21 and 15q25 [12–14], are in regions that were not tested

for Sluc or Scc loci.

Rat colon cancer susceptibility loci. Ten rat colon cancer

susceptibility loci were reported [53]. The orthologous regions of

seven of them are polymorphic in OcB or CcS strains tested for lung

cancer susceptibility. Five of these seven regions co-localize with

mouse lung cancer susceptibility loci within a distance of 2–8 cM,

forming pairs of rCcr2/Sluc13, rCcr3/Sluc14, rCcr5/Sluc12, rCcr7/

Sluc23 and rCcs1/Sluc6 (Figure 6B). No Sluc locus was detected in the

region orthologous to rat rCcr6 or rCcr8. The orthologues of rCcr1,

rCcr4 and rCcr9 are in regions not tested for Sluc or Scc loci.

The orthologous regions of most human and rat colon cancer

susceptibility loci are not polymorphic in the mouse strains that

were tested for colon cancer susceptibility. Therefore their co-

localization with Scc loci could not be assessed.

Figure 3. Linkage data and the estimated effects of lung cancer susceptibility (Sluc) loci in (CcS-106CcS-19)F2 mice. Eight main effects
(A) and 17 interactions (B) were detected. The microsatellite markers with linkage are listed below each locus. Markers in pink represent donor
chromosomal region from CcS-10 and markers in green represent donor regions from CcS-19. The data are presented as percent deviations from the
means of tumor load, number and size for each genotype or genotypic combination (for interactions) of the corresponding loci in female, male or
both sexes (all), respectively, adjusted for the remaining markers in the model (least-squares means from the ANOVA output). The means (6SEM) of
tumor number in the whole cross are: females, 4.78(60.37); males, 4.18(60.29); all mice, 4.48(60.24). The means (6SEM) of tumor size per mouse
(mm3) are: females, 2.05(60.25); males, 2.26(60.28); all mice 2.15(60.19). The means (6SEM) of tumor load per mouse (mm3) are: females,
10.57(61.60); males, 10.04(61.30); all mice, 10.30(61.03). {Loci A and B are interacting; s/s, homozygous STS; c/c homozygous BALB/c; s/c
heterozygous; C. Examples are shown that the STS alleles of the Sluc loci are susceptible when they are inherited from the CcS-19 parental mice
(Sluc5) and resistant when they are inherited from the CcS-10 parental mice (Pas9). D. Example is shown that in interactions, the genotypic
combinations that are similar to the CcS-19 parental mice (CcS-19-like) are susceptible compared to the genotypic combinations that are similar to
the CcS-10 parental mice (CcS-10-like). In the example, one of the interacting loci Pas9 is inherited from CcS-10 and the other locus Sluc4 is inherited
from CcS-19.
doi:10.1371/journal.pone.0014727.g003

Figure 4. Sluc loci detected in (CcS-106CcS-19)F2 mice co-localize with previously detected Scc loci. The seven Sluc loci in the
chromosomal regions that have been tested for colon cancer susceptibility previously are shown. All the seven Sluc loci co-localize with Scc loci.
Markers with linkage are highlighted in orange and the corresponding Sluc loci are listed. Additional markers tested on the same donor chromosomal
regions that did not show linkage can help to limit the candidate regions and are shown in grey color. Previously detected Scc loci are highlighted in
blue. Detailed information of each locus is listed in Suppl. Table 2 and Suppl. Table 3.
doi:10.1371/journal.pone.0014727.g004
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Discussion

Colon and lung cancer susceptibility genes are related or
identical

The five independent sets of presented data contradict the

notion of independent genetic control of colon and lung tumor

susceptibility and suggest that the two classes of susceptibility genes

are functionally or genetically related, or identical: i. Concordant

high susceptibility or high resistance to both tumors in several CcS

strains suggests linkage of Scc and Sluc genes received from STS

(Figure 2, Figure S1, Table S1). ii. Indeed, in F2 hybrids between

highly susceptible CcS-19 mice and highly resistant CcS-10 mice,

each segregating Scc locus is linked with a Sluc locus (Figure 4). iii.
Most Scc loci that were detected in crosses of CcS strains are

pairwise linked with the Sluc loci that were detected in crosses of

OcB strains (Figure 5). iv–v. Most mouse orthologues of human

and rat colon cancer susceptibility loci co-localize with the mouse

Sluc loci (Figure 6). Overall, 12/12 mouse Scc loci, 9/11 human

and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus

or its homologous site, forming 21 clusters of lung and colon

cancer susceptibility loci from one, two or three species.

Importantly, lung and colon cancer susceptibility loci from 15 of

Figure 5. Co-localization between Sluc loci mapped in the OcB RC strains and Scc loci mapped in the CcS RC strains. A. Schematic
representation of overlapping donor chromosomal regions between the CcS and OcB RC strains (regions tested for both colon and lung cancer
susceptibility loci). Such regions are informative and we used them to test whether Sluc and Scc loci are more frequently located together in the same
donor chromosomal region. Part of a chromosome is shown as example. B. Frequent co-localization between Sluc and Scc loci identified
independently in OcB and CcS RC strains, respectively (See also Table 1 for detailed locations). *Map locations of these Sluc loci are slightly different
from the locations of the same loci shown in Figure 4, since they are mapped in different RC strains using different microsatellite markers.
doi:10.1371/journal.pone.0014727.g005
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these clusters mapped within 2.5 cM of each other (Figure 6). This

evidence is hardly compatible with genetic independence of most

of colon and lung tumor susceptibility loci.

Multi-organ specificity of cancer susceptibility genes is also

supported by epidemiological studies in humans that revealed

familial aggregations of different types of cancers, which do not

correspond to known cancer syndromes [54,55]. Although no

aggregations of colon and lung cancer were found, this could be

due to the distinct environmental etiology of lung cancer in

humans, or because aggregation between tumors of other organs is

even stronger. We also compared the map locations of Sluc/Scc loci

with the location of 16 published skin cancer susceptibility (Skts)

loci [56–60]. It seems that the genetic control of skin cancer might

also be related to that of lung and colon, but to a much lesser

extent (data not shown).

Possible mechanisms underlying the co-localizing colon
and lung cancer susceptibility genes

Molecular interpretation of our data is limited because the

candidate genes for most colon and lung cancer susceptibility loci

are not known. A co-localization alone need not necessarily

indicate relatedness or identity. However, we have demonstrated

statistically significant pair-wise co-localization of a large majority

of colon and lung cancer susceptibility loci, which is incompatible

with their complete or extensive independence. The nature of the

relatedness need not be the same for each Scc-Sluc locus. In some

Scc-Sluc loci a single gene can affect susceptibility to both tumors.

The genes that affect common cell autonomous pathways might

affect susceptibility to several types of cancer [61]. The co-

localizing Sluc4/Scc15 are linked to Trp53; Sluc32/Scc4 are linked

to mismatch repair genes Msh2 and Msh6; and Sluc30 is linked to

base pair repair gene Xrcc1. These genes are associated with both

colon and lung cancer risk [62–66]. However, such linkage should

be interpreted with caution. For example, lung cancer suscepti-

bility locus Pas1 is linked to Kras, but other genes in the region are

more likely candidates [67,68]. As both colon and lung derive

from primordial gut, cellular regulatory pathways in the two

organs may partly involve the same genes. Systemic influences on

tumorigenesis might also affect several tumor types, as might be

the case for genes that modify such systemic reactions. Two Scc/

Table 1. Sluc and Scc loci identified independently in OcB and CcS strains frequently co-localize in the same donor chromosomal
region.

Chr Colon Tumors – tested in CcS strains Overlap* Lung Tumors – tested in OcB strains

Scc locus (cM)
Tested
Regions (cM)

Regions with
Linkage (cM)

Regions with
Linkage (cM)

Tested
Regions (cM) Sluc locus (cM)

1 none 32.8–41 32.8–41 0–59 none

1 Scc3 (101.5) 81.6–127 100–127 81.6–127 81.6–127 81.6–127 Sluc5 (100{)

2 Scc2 (32) 5–41.4 5–41.4 5–41.4 5–42.7 0–47.5 Sluc2 (41)

2 0–10 0–47.5 Sluc16 (5)

2 none 45–95.5 69–95.5 69–114 none

3 none 6.7–11.2 6.7–11.2 0–45.2 none

4 none 20.8–40 20.8–40 0–81 none

4 Scc11 (57.4) 56.5–62.3 56.5–62.3 56.6–62.3 0–62.3 0–81 Sluc21 (62.3)

4 56.6–81 0–81 Sluc6 (67)

5 none 61–78 64–78 64–92 none

6 none 0–20.5 2.8–20.5 2.8–16 2.8–26.5 Sluc7 (6)

6 none 42–61.4 42–48.7 36.5–48.7 none

6 none 58.6–61.4 58.6–63.6 58.6–63.6 Sluc3 (61.2)

6 none 62.5–75 67–75 67–75 none

7 none 8–74 8–15 0–15 none

7 Scc12 (63.5) 8–74 60–74 28.7–74 51.8–66 28.7–74 Sluc19 (63.5)

7 28.7–74 28.7–74 Sluc8 (72.0)

8 Scc8 (4) 0–19.5 0–16 0–19.5 0–31.5 0–31.5 Sluc20 (10)

8 none 41–67 53–67 53–73 53–73 Sluc9 (59)

10 Scc14 (2) 0–21 0–21 0–21 2–36 0–36 Sluc29 (4)

10 Scc9 (63) 49–77 62–77 51.5–77 56–77 51.5–77 Sluc22 (61)

11 Scc15 (33.9) 20–40 30–40 27.9–40 27.9–40 27.9–40 Sluc4 (40)

16 none 0–28.2 0–27.6 0–27.6 none

18 Scc5 (25) 2–26 5–26 2–26 0–24 0–41 Sluc14 (20)

18 none 31–37 31–37 31–37 none

19 none 4.5–41 4.5–41 4.5–53 none

*The ‘overlap’ chromosomal regions that have been tested for both colon cancer susceptibility in CcS RC strains and lung cancer susceptibility in OcB RC strains are
listed. The regions containing a Scc gene as well as a Sluc gene are highlighted in bold.
{Lung tumor susceptibility Sluc5 has been mapped in separate experiments at 87 and 100 cM, respectively (Tripodis et al. 2001); the position at 100 cM is used for the analysis.
doi:10.1371/journal.pone.0014727.t001
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Sluc pairs co- localize with functional polymorphisms of the

immune system that may affect host-tumor interactions: Scc8/

Sluc20 are linked to Marif2, Cinda5, and Lynf4, which control

macrophage and lymphocyte activation and lymphocyte infiltra-

tion of tumors, respectively, and Scc15/Sluc4 are linked to Cinda1

[69–71]. Four Scc/Sluc pairs, Scc3/Sluc5, Scc1/Sluc31, Scc11/Sluc21

and Scc15/Sluc4, co-localize with microRNA genes [72], some of

which could play an essential role in tumorigenesis [73]. In other

Scc-Sluc pairs the two loci may represent duplicated genes whose

function diverged into regulating tumorigenesis in the two organs.

Still others may contain linked regulatory elements with tissue

specific effects, such as the human 8q24 gene desert region that

modifies susceptibility to five tumor types [74]. Some instances of

Scc-Sluc clustering may reflect the phenomenon of non-random

distribution of genes and the presence of clusters of functionally

related or co-regulated genes in the genome [75], including

Figure 6. Interspecies correlation between colon and lung cancer susceptibility loci. A. Schematic representation of the part of genome
used for the co-localization analyses. The Sluc loci analyzed here included also 2 Sluc loci identified in (CcS10 XCcS19)F2 mice and 1 CcS locus [44] and
1 Par locus [50] identified by other group. B. Interspecies correlation between colon and lung cancer susceptibility loci. This figure summarizes all 21
clusters of colon and lung cancer susceptibility loci mapped in mouse RC strains (orange for lung, blue for colon), human colon (green) and rat colon
(purple). Clusters in which the lung and colon cancer loci mapped within 2.5cM of each other are highlighted in squares. Most colon and lung cancer
susceptibility loci co-localize, with the exception of human 15q13 and 20p12.3 (colon), and rat rCcr6 and rCcr8 (colon). Orthologous regions of human
18q21, 11q23 (colon) and 5p15, 6p21 and 15q25 (lung), and rat rCcr1, rCcr4 and rCcr9 (colon) are not informative since they were not tested for lung
or colon cancer susceptibility in mouse RC strains. {Pas1c has also been detected in our (CcS-106CcS-19)F2 cross at D6Mit177. Human colon cancer
locus 3q21-q24 is mapped to an 18Mb region and orthologous to two mouse chromosomal regions: Chr.6 (Pas1c) and Chr.9 (Sluc11), respectively.
{{ Two human colon cancer susceptibility loci co-localize with a Sluc locus.
doi:10.1371/journal.pone.0014727.g006
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functionally related QTLs [76–78]. Finally, susceptibility QTLs

upon close analysis may turn out to be complex. Therefore the co-

localizing colon and lung cancer susceptibility loci described here

may be consisting of multiple closely linked genes, with some

overlap between the two sets. The dual specificity of Scc-Sluc loci is

unlikely due to carcinogen processing, as the two tumors were

induced by different carcinogens acting in different ways and at

different differentiation stages. DMH and AOM are metabolically

activated in liver and primarily excreted into the intestine through

bile, where they act locally to mutagenize intestinal epithelial cells

causing GRA transitions [79]. On the other hand, ENU acts by

directly modifying DNA without any prior enzymatic activation

causing a wider spectrum of alterations [80,81]. Prenatal

treatment of mice with ENU at day 18 of pregnancy causes

predominantly lung tumors but no colon tumors. Moreover,

relative strain susceptibility to lung tumors is largely independent

on the carcinogen used [82], and susceptibility loci for urethane-

induced lung tumors also co-localize with Sluc and Scc loci [34]

(Figure 3).

Mouse genetic mapping predicts chromosomal location
of human cancer susceptibility genes

GWA studies of cancer susceptibility [83] confirmed the genetic

basis of common cancer [84] and enabled uncovering novel

pathways of tumorigenesis [85,86]. However, GWA data cannot

yet identify high risk individuals, explain familial cancer clusters

[87], nor identify the responsible genes, so the loci cannot be

experimentally validated [31]. It has been shown previously that

individual QTLs identified in rodent cancer susceptibility studies

may provide a strong guide to identification of cancer susceptibility

genes in humans [59,88,89]. The present data extend this

potential by showing that the orthologous regions of most

susceptibility genes for one class of cancer (lung cancer) identified

in mice could systematically predict susceptibility genes for

another class of cancer (colon caner) in human. This potential

contribution is enhanced by several characteristics of mouse

crosses: i. detection of polymorphic susceptibility alleles is

independent on gene frequency of their human homologues and

hence can reveal rare alleles in humans; ii. the power of mouse

RC crosses is very high (1 locus per 29 tested F2 mice [34])

resulting in detection of large numbers of loci; iii. gene-gene

interactions can be readily detected [37,40,42,90]; iv. susceptibil-

ity genes can be molecularly identified [59,67,68,91] and v. a

hypothesis free ‘candidate region’ approach can improve detection

power in human studies by strongly diminishing the multiple

testing penalties.

In conclusion, this is to our knowledge the first systematic study

of organ specificity of cancer susceptibility. It indicates that many

lung and colon cancer susceptibility genes are linked and possibly

identical. Consequently, the presently prevailing organocentric

approach to cancer susceptibility may be enriched by comparing

systematically the organ-specific pathways with those active in

several organs. Application of this finding may also enhance

effectiveness of GWA studies of cancer susceptibility in humans.
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