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Abstract

The emergence of phenotypic diversity in a population of cells and their arrangement in

space and time is one of the most fascinating features of living systems. In fact, understand-

ing multicellularity is unthinkable without explaining the proximate and the ultimate causes

of cell differentiation in time and space. Simpler forms of cell differentiation can be found in

unicellular organisms, such as bacterial biofilm, where reversible cell differentiation results

in phenotypically diverse populations. In this manuscript, we attempt to start with the simple

case of reversible nongenetic phenotypic to construct a model of differentiation and pattern

formation. Our model, which we refer to as noise-driven differentiation (NDD) model, is an

attempt to consider the prevalence of noise in biological systems, alongside what is known

about genetic switches and signaling, to create a simple model which generates spatiotem-

poral patterns from bottom-up. Our simulations indicate that the presence of noise in cells

can lead to reversible differentiation and the addition of signaling can create spatiotemporal

pattern.

Introduction

The traditional idea of a living cell where every organelle, every reaction, and every interaction

is part of a clock-like order has long been shattered by the understanding that biological sys-

tems usually struggle to function in noisy environments. One might consider life to be an

uphill battle against pandemonium, where disarray is the norm and spheres of order—i.e., bio-

logical systems—are rarities that are unlikely to appear in the first place. In this view, noise is a

nuisance that natural selection always attempts to eliminate. It is for the same reason that selec-

tion cannot increase the fidelity of replication beyond a certain threshold; the biological cost of

increasing fidelity simply becomes too high at that point [1].

A different view has recently gained some grounds [2–5]. In this view, biological systems

that regulate and utilize the noise can have higher fitness under certain circumstances. Had
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biological systems been utterly deterministic, adaptation—i.e., the emergence of a new pheno-

type or a change in the gene expression pattern to utilize a new food source—would have been

impossible without the emergence of new mutations. In reality, noise in the cell can result in

beneficial non-genetic diversity in otherwise genetically homogenous populations—e.g., cya-

nobacteria [6] and yeast [7]. But what mechanism can account for the presence of phenotypic

diversity amongst daughter cells that are genetic clones of each other? Is it possible for a sto-

chastic mechanism to explain the non-genetic diversity? Even if such stochastic explanation

were offered, how could this explanation possibly account for the ordered spatiotemporal pat-

terns in spatially-extended cell population?

The model of cell differentiation proposed in this work, henceforth referred to as the noise-

driven differentiation (NDD) model, accounts for the peculiarities of this biological phenome-

non by weaving noise into an explanation of cellular behaviors at the time of differentiation.

While on the surface, this approach might seem lofty and even radical, the model discussed in

this paper is parsimonious when it comes to the mechanisms requisite for its operation. The

NDD model rests on 8 components (Table 1). Some can be regarded as facts, based on reliable

empirical evidence from biological systems (components #1 and #2), while others are more

accurately described as assumptions (components #3–8).

There is a plethora of phenomena within a cell that can contribute to its intrinsic noise—

e.g., transcription regulation, transcription factor binding to the DNA, RNA processing in

eukaryotes, translation, post-translational modifications, protein complex formation, protein

and RNA degradation, etc. Single-cell level measurements of gene expression further cements

the notion that cells are intrinsically noisy when it comes translating its genotype into

Table 1. The components of the NDD model.

Components Justifications

1 Noise, resulting from a plentitude of sources, is an

inseparable part of a living cell.

Based on the observed effect of noise on the processes

in living cells, from microbes to mice (e.g., see [8–12]).

2 Stochastic partitioning of cytoplasm during cell division

and the random distribution of molecules in the

cytoplasm determine the cytoplasmic contents of the

daughter cells.

Variation in the position of cell-division plane is a

biological fact (reviewed in [13–17]), and its effect on

the diversification of cells is well-known (e.g., see [18,

19]).

3 The fate of a cell is determined when it is born. Based on the assumption that cell-fate-determining

factors are in small numbers in a cell and the

stochastic distribution of these factors during cell

division determines the fate of the newly-born

daughter cells.

4 Cell fate is determined by a switch. Genetic switches have been observed in a variety of

taxa (reviewed in [2]), and has been proposed as a

model to account for cell differentiation (e.g., see

[20]).

5 The interaction between the building blocks of the

switch determines its bias.

Our assumption based on our knowledge of well-

known genetic switches, such as λ phage (see [21]).

6 All the information needed to construct the switch is

genetic.

We assume that, while stochasticity is what drives the

decision made by the switch, the information

necessary to construct the switch is encoded in the

genetic content of a cell.

7 The robustness of the switch is the result of a complex

network of interactions.

Our assumption based on [22].

8 Cell fate is influenced by its location and its

environment.�
We assume the the switch determining cell fate should,

in addition to being swayed by the intrinsic factors, be

influenced by its neighbors.

� This component is necessary for the ordered spatiotemporal patterns in a population of cells.

https://doi.org/10.1371/journal.pone.0232060.t001
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phenotype [23]. The displacement of the division plane relative to the middle of the cell can

result in an unequal distribution of cell content between the daughter cells, even if molecules

are homogeneously distributed within the cell. In fact, the central role of asymmetric cell divi-

sion in the diversification of cells, from Drosophila to mammals has been known for many

years [18, 19]. The components #1–2 reflect the role of stochasticity in living systems based on

these observation.

Thus far, two types of solutions to the problem of cell differentiation have been proposed:

the first category consists of models that rely on cell-cell communication (reviewed in [24])

and the second category relies on asymmetric cell division (reviewed in [25]). The research

project within the confines of the former category is mainly a quest to find the building blocks

of the apparatus that makes the specific kind of cell-cell communication needed for cell differ-

entiation. The latter category, on the other hand, presumes the asymmetric cell division to

result in differentiation. Hitherto unknown and often complicated mechanisms have been pro-

posed to explain the asymmetric distribution of fate-determining factors during cell division

[26, 27]. Both categories rely on physical interactions at the cellular level. While we agree with

the importance of the asymmetric cell division, it seems to us that a stochastic model of differ-

entiation, like the NDD model, negates the need for new mechanisms. In this model, we adopt

the view that stochastic processes result in differentiated cells due to the distribution of key

proteins, instead of cells differentiating by receiving signals after they are born (component

#3).

The component #4 is based on the idea that characteristics of a cell can be changed by a

switch (Not a very recent idea, e.g., [28]). The notion that cell fate is determined by a switch is

best illustrated by the now famous case of the λ phage. The process by which the phage decides

to integrate into the host’s genome—i.e., lysogenic—or to replicate copies of itself in the cell

until it bursts open—i.e., lytic—can be explained by a stochastic switch which makes that por-

tentous decision in a probabilistic fashion, while taking into account the presence of certain

key factors [29]. One can assume that the bias of this switch is determined by the interactions

of its building blocks (component #5). For example, upon infecting bacterial cells, λ phage pro-

ceeds to lyse the host, but as the concentration of CII protein increases, so does the likelihood

of the reactions suppressing the activation of pR and pL promoters, relevant to the onset of the

lytic trajectory, which in turn, tilts the scale away from lysis towards lysogeny [21]. We propose

that phenotypic diversity arises from the effect of the noise on a genetic circuit that exhibits a

switch-like behavior (component #6). The notion that different phenotypes are produced from

the same genotype as a consequence of noise is widely observed in nature (reviewed in [30]).

How robust can be a fate-determining toggle switch in the face of new mutations? Sharifi-

Zarchi [22] took advantage of the gene expression profiles of 442 mouse embryonic cells to

construct a network of key transcription factors (TFs). While a regulatory circuit with two TFs

could explain differentiation, They reasoned that such a simple switch is susceptible to muta-

tions. To construct a robust switch, they built a circuit with two clusters of TFs with correlated

expressions. Expectedly, the alternative switch, which involved more interactions, was much

more robust. We would expect different levels of robustness for a switch, given its biological

importance in evolution (component #7).

The components #1–7 are sufficient to generate a population of cells with different propor-

tions of two phenotypes (Fig 1). While this kind of fate determination is adequate vis-à-vis

primitive cells with no organization, it does not allow the emergence of multicellularity. An

additional component is necessary to explain this major transition from mere phenotypic dif-

ferentiation to ordered spatiotemporal patterns in the body of a multicellular organism. For

self-organization to occur, we assume that the toggle switch determining cell fate should, in
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addition to being swayed by the intrinsic factors, be influenced by its neighbors (component

#8).

To test the general veracity of the NDD model, we used a simple model of cell aggregation.

In this model, a simple switch is defined that can switch between phenotypes, A and B. We

look at the noise resulting from the random distribution of fate-determining proteins during

cell division (component #1), the stochastic positioning of cytoplasmic cell division (compo-

nent #2), and the effect of signaling from neighboring cells on other cells (component #8) on a

model of cell aggregation where the fate of cell depends on a genetic switch (components #4–

7). In the discussion, we juxtapose the NDD model with some of the more recent attempts at

modeling cell differentiation.

Materials and methods

In the cell aggregation model, the population is made up of cells, where each cell is a circular

particle defined by its state variables—e.g., spatial position, size, and phenotype. The simula-

tion geometry is a L × L square and no flux boundaries. It is assumed that the relative amount

of two key transcription factors, X and Y, controls the cell types; hence, in this model, a cell

can have two phenotypes, A and B, as shown in Fig 1. The dominance of protein X leads to

phenotype A and the dominance of protein Y results in phenotype B. In fact, a positive feed-

back loop influences the decision-making process. Two negatively coupled repressors mutually

inhibit the expression of the gene that encodes the other repressor- i.e., a toggle switch (com-

ponent #4). The rate of this mutual repression is represented in the form of a Hill function

[31]. This positive feedback loop results in two stable steady states, hence implies non-linear

dynamical equations. Non-linear differential equations govern the changes in the number of

Fig 1. The phase-portrait diagram for the NDD model (based on Eq 1). In a bistable switch, two attractors (red

semicircles) and, consequently, two phenotypes are available: A and B. The likelihood of a switch choosing state A over

B depends on the number of the transcription factor associated with state A (TFX) relative to the number of the

transcription factor associated with state B (TFY), as well as the noise in its environment. The parameters used to

generate this and the following figure are as follows: n = 2, β = 0.1, protein half-life = 10min, and protein dissociation

constant = 10. Unless noted otherwise, these parameters are used in all the subsequent figures.

https://doi.org/10.1371/journal.pone.0232060.g001
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the repressor proteins, X and Y (Fig 1);

dX
dt
¼

b

1þ Yn
� X ;

dY
dt
¼

b

1þ Xn
� Y :

ð1Þ

Here, β is the effective rate of protein synthesis and n is the Hill coefficient, which repre-

sents the degree of competence. The number of repressors are represented in the unit of their

dissociation constants, Ks, and time is rescaled by degradation rate of proteins [31–33]. Biolog-

ically-reasonable values were chosen for the parameters used in our simulation such that Eq 1

would be bistable (following [31]). This bistable regulatory network has two attractors corre-

sponding to its stable steady states. Based on the amount of proteins at the cell division time,

the cell can be in the domain of each attractor, which determines its fate. Depending on the

intensity of inhibitory effects of TFs (through the values of constants in the Hill function [31]),

the two domains of attractors could be equal or not (component #5). Fig 2 shows an example

of such behavior in our cell aggregation model. S1 Movie shows the changes in the distribution

of TFs in cells around their attractors during the emergence of generation 12.

Fig 2. As cells grow, they stochastically explore the phase-plane around their attractor (as depicted in Fig 1)—I.e.,

over time the values for transcription factors X (a) and Y (b) for each cell fluctuate around the attractor that was

determined when the cell was born. These fluctuations can result in a cell moving away from its original attractor

towards the other attractor, such that it will be more likely for its daughters to have phenotypes different from their

parent. The trajectories follow the TFs counts during their lifespan. The blue and orange lines represent the trajectories

with a transition from one attractor to another one; on the contrary, grey trajectories indicates small fluctuation of TFs

counts around their attractor without a transition. Results are based on 512 cells that descended from a single cell in

the cell aggregation model.

https://doi.org/10.1371/journal.pone.0232060.g002
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Population growth algorithm

Simulation starts with a single cell with phenotype A. Each iteration in the simulation can be

divided into four steps:

1. Cell growth: The repressor proteins inside the cytoplasm interact with each other and their

numbers, X and Y, are updated; however, because of their low copy numbers, instead of

deterministic equations (Eq 1), their fluctuations are captured by the Gillespie algorithm

[34] as a stochastic dynamics for discrete values. According to this algorithm, a probability

of occurrence will be assigned to every biochemical reaction in the system. Every protein (X
or Y) is produced with a probability according to the first term on the right hand sides of

the Eq 1. As the number of protein X increases, it further represses the production of pro-

tein Y and vice versa. Every protein degrades proportional to its number. In every step of

the Gillespie algorithm, one of the above reactions occurs and the time will be updated. The

process continues until the number of proteins reaches a steady state. The production of X
and Y, until it reaches a steady state, is simulated as a “burst”, independent of cell growth.

After this burst of gene expression, cells grow linearly in size.

2. Cell division: Even after the number of proteins in a cell reaches the steady state, the cell

continues to grow. The growth stops only after the cell reaches a critical size. At this point

the cell divides into two daughter cells. The content of the mother cell is distributed among

her daughters according to a uniform distribution. In reality and in the presence of active

transportation, one can still expect a uniform distribution of molecules in the cytoplasm

[35], making this assumption biologically reasonable. The position at which cell division

occurs is randomly chosen based on a normal distribution, N ð0; s2Þ; which its mean value

is the mid plane of the cell (also the reference point), and σ2 as the variance around the

mean value (component #2). In this study σ2 varies up to 0.1 parentage of the radius of the

cell. At the time of birth, the phenotype of each newborn cell is determined based on the

cytoplasmic contents (number of key proteins, X, and Y at the time of birth) inherited from

the mother cell (component #3). During the cell growth, the number of each protein has a

stochastic trajectory in the domain of its attractor and finally it will reach its steady state. In

this model, phenotypic change is reversible, meaning that the phenotype can change

between the two possible states over generations. Since in our simulations, daughter cells

have similar volumes, we consider the number of proteins distributed between them, and

not their concentrations.

3. Relaxation: After a cell divides, the cells push each other outwards to make room for the

new daughter cells [36]. Simulation proceeds by repeating the steps #1-3. It is worth noting

that, without considering self-organization, the process described above would result in a

disordered blob of cells.

4. Self-organization: To involve the self-organization phenomenon in the process of cell matu-

ration (component #8), cells secrete some signaling molecules, with concentration Cs,

which affects the propensities in the Gillespie algorithm and, consequently, the production

of proteins. The signaling molecules diffuse in the medium according to the following reac-

tion-diffusion equation:

@Cs

@t
¼ Dsr

2Cs þ kspCB � ksc
Cs

Ks þ Cs
ðCA þ CBÞ � ksdCs : ð2Þ

Here, ksp, ksc and ksd represent, respectively, the rate of production, consumption and decay
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of the signaling molecules and Ds is the diffusion coefficient of the signaling molecules. CA

and CB respectively show the number of cells with phenotype A and B at each point of the

medium. In our simulations, we used Ds = 10−11 m2/s, ksp = 0.01kg−1 s−1, ksc = 0.0001kg−1

s−1, ksd = 0.01s−1, and the protein dissociation constant is Ks = 0.01m−3.

In these simulations, the secreting cells are those with phenotype B; hence, the production

of signaling molecules is proportional to the amount of B cells. Since both phenotypes con-

sume these molecules, the consumption depends on the number of both A and B cells.

When B cells emerge, they secret signaling molecules, which diffuse in their environment.

The effective concentration of the signaling molecules at any location determines if a cell at

that location is affected by the signal, which would decrease the production of protein X
and augment the production of protein Y. Consequently, their surrounding cells would

have less chance of producing protein X and their offspring is less likely to be in the domain

of attraction of protein X.

Results

The overall behavior of the cell aggregation model demonstrates the principles of our frame-

work—that is, the stochasticity results in phenotypic heterogeneity as the population grows in

size (S1 Movie). To further illustrate how each source of noise affects the cell differentiation,

we focused on each source separately in the simulations.

The stochastic positioning of division plane and the stochastic distribution

of key proteins affect differentiation

One source of intrinsic stochasticity stems from the random positioning of the division plane.

This factor would disproportionately influence the number of molecules that exist in low num-

bers within cytoplasm. In this work, it has been postulated that the determinants of cell fate are

low in numbers and thus, greatly affected by stochasticity.

To demonstrate this phenomenon, the position of the division plane was allowed to vary

with respect to the mid plane of the cell. Starting from a cell with phenotype A, in which the

protein X is dominant, the population heterogeneity –i.e., emergence of phenotype B– was

traced over 12 generations. The results are shown in Fig 3. When the division plane is situated

in the middle of the cell, and the TFs are relatively abundant, very few cells differentiate. As the

variance in the cell-division plane—i.e., σ2 in the normal distribution used to choose the posi-

tion of division plane—increases, so does the proportion of B cells. This phenomenon is

dependent on the number of proteins, since such a bias is more pronounced when the number

of proteins is relatively low. In fact, with large numbers of TFs in a cell, it will be more likely

for its daughters to have almost the same density of TFs as their mother. Thus, they will be in

the same domain as the mother in the phase space, and their fates will be identical to hers. This

can be seen clearly in the lower curves in Fig 3. However, for low copy numbers of TFs, the dif-

ference between TF numbers in two daughter cells becomes more prominent and can even

lead to different cell fates. Therefore, it is possible to have heterogeneity in the population in

the absence of any other noise, i.e., cells with low TF numbers are heterogeneous even with

no variance in division-plane displacement (Fig 3a). In Fig 3a, the distribution of TFs is deter-

ministic across the length of the cell—e.g., if X = 10 and cell divides exactly on its equator,

each daughter receives 5 TFs. We add stochasticity to the distribution of TFs by randomly

drawing the number of TFs at any location along the length of the cell from a uniform distribu-

tion (U(0, L), where L is the length of the cell, provided
PL

l¼0
Xl ¼ TFX

Uð0;LÞ
jjUð0;LÞjj and
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PL
l¼0

Yl ¼ TFY
Uð0;LÞ
jjUð0;LÞjj). This additional source of noise has a tangible, though slight, effect on

the percentage of differentiated cell (Fig 3b).

Signaling can create spatial order

In the cell aggregation model, B cell can release signals in the environment. These signals dif-

fuse at a slow rate and, consequently, have a very short radius of influence. The absorption of

these signals by other cells in the population affects the number of proteins involved in the

switch—that is, switching to the phenotype B during cell division becomes more likely (Fig 4).

When this environmental signaling is added to the population, the cells organize in a non-ran-

dom fashion, a stark contrast to the random heterogeneity observed before (S2 Movie).

Fig 5 represents a visual understanding of the results from the NDD model. It shows the

bacterial community in a 2-dimensional simulation area after 8 generations. In Fig 5a, the vari-

ance in the stochastic positioning of the division plane increases from left to right. It can be

seen that the heterogeneity in the population increases as well by the presence of new pheno-

types (cells in orange). In Fig 5b, development of an organized community as a result of signal-

ing molecules is apparent (group of orange cells). The curves in the lower plots show the

Fig 3. The stochastic positioning of the division plane and the random distribution of TFs in the cytoplasm, as

intrinsic sources of noise, affect the non-genetic phenotypic diversity (component #2). The phenotypic diversity is

represented by the proportion of cells with the phenotype B relative to the total number of cells in the population. In

panel (a), the only source of noise is the stochastic positioning of the division plane (σ2 = 0.1), while panel (b) shows

the phenotypic diversity as a result of both variance in division-plane (σ2 = 0.1) and the noise resulting from drawing

the number of TFs at any location along the cell at random from a uniform distribution. In each panel, the curves

indicate different amounts of protein X in the mother cell. The results are average over 100 replications. Error bars are

95%CI. The error bars are too small to be seen.

https://doi.org/10.1371/journal.pone.0232060.g003

PLOS ONE Noise-driven cell differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232060 April 24, 2020 8 / 15

https://doi.org/10.1371/journal.pone.0232060.g003
https://doi.org/10.1371/journal.pone.0232060


Fig 4. Adding signaling to the cell aggregation model results in higher none-genetic phenotypic diversity,

compared to populations without signaling (as shown in Fig 5). The phenotypic diversity is represented by the

proportion of cells with the phenotype B relative to the total number of cells in the population. The curves indicate

different amounts of protein X in the mother cell. It fascinating to notice how the lowest number of TFs (X = 10)

results in total differentiation. The efficacy of signaling is defined as follows: if in the position of a cell with phenotype

A, the signal concentration exceeds the mean signal concentration, then this cell would have more chance of becoming

a B cell. The results are average over 100 replications. Error bars are 95%CI. The error bars are too small to be seen.

https://doi.org/10.1371/journal.pone.0232060.g004

Fig 5. Upper panels: Population heterogeneity as a result of increase in: (a) the noise of the stochastic positioning of the division

plane of cells (increase in the variance of the Normal distribution) or (b) the intensity of the secreted signals from the B cells. Both

the number of TFs in (a) and the efficacy of signaling in (b) increases from left to right in this figure. The blue circles represent the A
cells and the orange ones represent the B cells. Each aggregation is the final state of a single run of the stochastic model after 8

generations with the given parameters, starting from a blue cell. The amount of protein X in the initial cell in each simulation was 35.

The radius of the area of aggregation is 100μm. Bottom panels: The change in the global clustering coefficient of both cell types as a

result of change in the (a) noise of the stochastic positioning of the division plane of cells and (b) intensity of the signaling molecules

secreted by orange cells. In the latter case, the variance of the noise in the division plane of cells is fixed to the 0.05 of the cells radios.

The blue curves stands for A cells and the orange curves for B cells.

https://doi.org/10.1371/journal.pone.0232060.g005

PLOS ONE Noise-driven cell differentiation

PLOS ONE | https://doi.org/10.1371/journal.pone.0232060 April 24, 2020 9 / 15

https://doi.org/10.1371/journal.pone.0232060.g004
https://doi.org/10.1371/journal.pone.0232060.g005
https://doi.org/10.1371/journal.pone.0232060


change in the global clustering coefficient of two cell types A and B, as the increase in the

intensity of noise. In graph theory, the clustering coefficient, C, represents a measure of cohe-

sion of a graph, i.e., how clustered vertices are, C ¼ 3ð triangles on the graphÞ
ð connected triples of verticesÞ [37, 38]; here a triangle

means three neighbour cells. It could be seen that in the presence of signaling, Fig 5b, the clus-

tering coefficient of orange cells increases strongly; which means the differentiated cells cre-

ated a denser population. The organization observed will increase over time and the

community of orange cells will develop (S3 Movie).

Discussion

Molecular processes in the cell are noisy events that result in varying degrees of heterogeneity.

Taming this inherent noise is vital for the emergence and the continuation of life. In fact, life

can be characterized as a system with the capacity to control noise. The phenotype of a cell is

generally stable, but during cell division, this cell can produce daughter cells with different

phenotypes via symmetric or asymmetric cell division. The resulting non-genetic phenotypic

diversity is a way to achieve adaptation in a fluctuating environment by producing phenotypi-

cally diverse offspring without any need for genetic change. Given the variety of sources of

noise, the cell fate determination can be a stochastic process. One can imagine a few genes

involved in cell fate determination, where the noise in the cell affects the proportion of daugh-

ter cells born with a certain phenotype. The ability to change the phenotypic proportion of

daughter cells via a stochastic mechanism, which is also tunable, is a superb strategy to out-

compete rivals bereft of such gift.

Proposing a stochastic model of cell differentiation is not an entirely novel concept, e.g., see

[39, 40] as examples of an impressive body of work produced by Kunihiko Kaneko and his col-

leagues on this subject and [41, 42] as similar proposals regarding the possible role of stochasti-

city in generating phenotypic diversity. The NDD model is an attempt to merge observations

about the role of noise in living systems and the prevalence of toggle switches in biological pro-

cesses to explain cell differentiation. Here, we utilized a bistable switch to demonstrate how

such model would create population-level heterogeneity and how signaling can give spatial

order to this heterogeneity. This approach is in keeping with the recent emphasis on the

importance and the prevalence of noise in biological functions, specifically cell fate [2, 4, 43].

The model of cell aggregation used in this study allowed us to test all the components of the

NDD model, barring components #6 and #7, which demand through investigations of their

own. This model of cell aggregation provides us with a relatively realistic depiction of the pro-

cess that results in phenotypic differentiation in a population. To illustrate the virtues of our

approach, it is worth considering how it differs with some of the more prominent approaches

to explain cell differentiation.

Olimpio et al. [44] explored the role of cell-cell communication in the emergence of spatial

order in a cellular automaton. In their model, N cells exist on a lattice, and there is no cell

growth or division, thus the effect of the distribution of fate-determining proteins in the

mother cell on the fates of the daughters (component #3 of the NDD model) does not factor

in. When they include noise in their model, it consists of a Gaussian noise added to the activa-

tion threshold of the switch. In the NDD model presented here, we consider different sources

of noise affecting biological systems separately, and in this work we looked at the effects of

some of these sources on the emergence of spatiotemporal heterogeneity. In the NDD model,

the intrinsic noise alone generates heterogeneity without including cell signaling.

Perez-Carasco et al. [20], use a bistable genetic switch to translate the analog morphogen

gradient into a spatial pattern. Similar to Olimpio et al. [44], cells do not divide and the noise,

when introduced, is in the form of transcriptional bursts. The point is not to downplay the
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relevance of these works, far from it; the NDD model takes the idea of a toggle switch and the

role of noise and attempts to (i) tease apart the different sources of noise and (ii) organize the

observations and the assumptions needed to explain the emergence of spatial heterogeneity in

living organisms.

The results from our cell-aggregation model shows that the NDD model can provide an

explanation for the emergence of spatial heterogeneity, simply based on the intrinsic noise in

living systems. Without cell-cell communication (component #8), the mere presence of noise

(components #1–3), coupled with a genetic toggle switch (components #4–7), can generate

spatial heterogeneity. The addition of signaling generates the spatial pattern. Our results fur-

ther cement the notion that a noise-driven system can generate cell differentiation. In their

criticism of a noise-driven alternative to their model, Suzuki [39] considered it unlikely for a

noise-driven model to maintain the exact levels of stochasticity needed to produce the desired

proportion of differentiated cells to stem cells. In our view, if a switch is robust (component #7

of the NDD model), then it will be able to maintain its bias in the face of new mutations.

It has not escaped our notice that a bistable switch, as described here, can only create revers-

ible cell differentiation, as seen in prokaryotes. In fact, Suzuki [39] points out this problem

with a model of cell differentiation based on a bistable toggle switch. Can the NDD model be

used to simulate the irreversible eukaryotic differentiation from stem cell to differentiated cell?

Replacing the bistable switch with a multi-stable variant might solve this problem [45]. In fact,

in a follow-up work by Khorasani, Sadeghi, and Nowzari-Dalini [46], replacing the bistable

switch by a tri-stable one was enough to generate irreversible differentiation.

The ability of the cells to differentiate into different types was the crucial step that enabled

the ancient solitary cells to leave the primordial soup behind and evolve into the vast array of

specialized cells we see today. As Queller [47] point out, there are different shades of organism-

ality –i.e., the ability for components to work together with little conflict among them–, each

shade resulting from the affinity of the members of the system to cooperate versus the tempta-

tion to cheat. We can sidestep the problem of conflict since in prokaryotic multicellularity,

e.g., biofilm, and in most truly multicellular eukaryotes, the cells are highly related, thus lower-

ing the probability of cheating [48]. Without tangible levels of conflict, multicellularity as a

trait becomes patently advantageous. In their seminal work, Maynard Smith and Szathmáry

[49] considered two possible mechanisms to account for the emergence of cell differentiation:

one relies on the presence of determinants that prohibit the stem cell to differentiate, and the

other postulates the cell-cell contact as a mechanism that determines cell fate. While these sug-

gestions account for how the multicellularity might be sustained, they do not explain how this

major evolutionary transition could have occurred in the first place.

One of the quintessential aspects of the discussed model is its population-level perspective.

Population-level thinking is one of the main points of the evolutionary theory, and bringing it

to explain a cellular phenomenon can lead us to reap valuable insights. While a population of

cells has, on average, certain properties relevant to differentiation, e.g., the mean number of

key proteins, the average position of cell division plane, and etc., these average values do not

tell the whole story. Instead, the variance in these values, i.e., the non-genetic variation present

amongst individuals, is the key to understand differentiation (as observed in studies such as in

[12, 50]). This noise in the population is essentially the fuel that propels cellular differentiation,

be it in the reversible differentiation in prokaryotes or the more complicated irreversible ones

in higher organisms. We believe that this population-level vantage point is the necessary tool

to understand this otherwise mind-boggling biological process. Without this perspective, the

task of explaining such a seemingly fine-tuned process devolves into an attempt to come up

with complex cellular interactions that would make climbing this improbable biological

mountain feasible.
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The fact that NDD model breaks down the components required for spatiotemporal hetero-

geneity, makes it easy to muse about the events that led to the different levels of multicellularity

during the evolution of life on Earth. It is easier for cell differentiation to evolve via the emer-

gence of a switch, rather than the less plausible path that involves the evolution of a clockwork

mechanism. According to the NDD model, the emergence of early stages of multicellularity

only requires the evolution of a suitable switch—the rest of the necessary ingredients needed

for the transition into self-organization is provided by the stochastic elements affecting the

switch. The major transition from unicellularity to multicellularity –i.e., from phenotypic

diversity in a population to from an ordered and stable spatial heterogeneity– only requires

one more step: the evolved switch should be simply affected by the signal(s) released by its

neighbors (components #8). The spatial information received in this way would bias the switch

such that the population-level organization is retained. The NDD model is the logical exten-

sion of earlier ideas describing the role of stochasticity in phenotypic variation and the switch-

like behavior of genetic circuits vis-à-vis differentiation and multicellularity (e.g., see [51]). It

is tempting to postulate a connection between the cell-differentiation switch, postulated in the

NDD model, and the toggle switch used in quorum sensing in bacteria [52]. Quorum sensing

enables bacteria to regulate their phenotypes apropos of their neighbors and is more robust in

a dense community [53]. It seems plausible to consider this type community-based phenotypic

regulation as a precursor to similar switch-based mechanisms for cell differentiation in multi-

cellular organisms.

Conclusions

The NDD model is an attempt to construct a model of cell differentiation which takes into

account the mounting evidence concerning the role of noise in biological systems. The compo-

nents of this model consists of biological observations and a few assumptions. Using a cell

aggregation model, we show that these components are sufficient to generate spatiotemporal

heterogeneity in population of cells. The bistable switch allows for the simulation of the revers-

ible cell differentiation. In a followup work, we used a tri-stable switch to explore the irrevers-

ible differentiation using the NDD framework. We believe that breaking down the minimum

biological components necessary for cell differentiation provides a framework to reconstruct

the chain of events that were required for different levels of multicellularity to emerge during

the history of life on Earth.

Supporting information

S1 Movie. The change in the distribution of TFs within cells just before they divide. Param-

eters used are the same as Fig 1. S2 and S3 Movies show 3-dimensional simulations of a com-

munity of cells in a layer. Simulation performed in a L × L × h cube and starts with one cell at

the centre, the red cell with type A. There is a single layer of cells with height h, corresponding

to the diameter of a single cell. The cells grow in volume; after reaching a critical volume they

divide– the same as the two dimensional case– their cytoplasmic content distributes between

the two daughter cells.

(MP4)

S2 Movie. The emergence of heterogeneity in the population of cells as a result of the pres-

ence of noise in the process of cell growth and division. The average amount of TFs in each

cell at steady state is 25. The simulation starts by one cell and continues over 13 generations,

L = 130μm and h = 1.33μm. The population starts from a red cell of type A and at the end it
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contains a mixture of type A and cells with type B (orange color).

(MP4)

S3 Movie. The formation of a spatial organization as a result of the secretion of signaling

molecules, which diffuse in their environment and affect the differentiation of the cells.

The average amount of TFs in each cell at steady state = 25. The simulation starts by one cell

and continues over 13 generations, L = 130μm and h = 1.33μm. Red cells represent type A and

orange cells have type B.

(MP4)
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