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Abstract

Background: Gastric cancer is a fatal gastrointestinal cancer with high morbidity and poor prognosis. The dismal 5-
year survival rate warrants reliable biomarkers to assess and improve the prognosis of gastric cancer. Distinguishing
driver mutations that are required for the cancer phenotype from passenger mutations poses a formidable
challenge for cancer genomics.

Methods: We integrated the multi-omics data of 293 primary gastric cancer patients from The Cancer Genome
Atlas (TCGA) to identify key driver genes by establishing a prognostic model of the patients. Analyzing both copy
number alteration and somatic mutation data helped us to comprehensively reveal molecular markers of genomic
variation. Integrating the transcription level of genes provided a unique perspective for us to discover dysregulated
factors in transcriptional regulation.

Results: We comprehensively identified 31 molecular markers of genomic variation. For instance, the copy number
alteration of WASHC5 (also known as KIAA0196) frequently occurred in gastric cancer patients, which cannot be
discovered using traditional methods based on significant mutations. Furthermore, we revealed that several
dysregulation factors played a hub regulatory role in the process of biological metabolism based on dysregulation
networks. Cancer hallmark and functional enrichment analysis showed that these key driver (KD) genes played a
vital role in regulating programmed cell death. The drug response patterns and transcriptional signatures of KD
genes reflected their clinical application value.

Conclusions: These findings indicated that KD genes could serve as novel prognostic biomarkers for further
research on the pathogenesis of gastric cancers. Our study elucidated a multidimensional and comprehensive
genomic landscape and highlighted the molecular complexity of GC.
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Background
Gastric cancer (GC) is the fourth most common cancer
and remains the second leading cause of death of all
malignancies worldwide [1, 2]. Advances in the early
diagnosis and treatment of GC contribute to timely
curative resection or chemotherapy for patients [3, 4].
However, the metastasis and recurrence of GC gradually
develop due to tumour evolution, resulting in a poor
prognosis, with a dismal 5-year survival rate of only
approximately 29.3% [3, 4]. Genetic factors may play
an important role in GC due to genomic variation
and aberrant gene expression, leading to a malignant
phenotype [5, 6].
Several major cancer sequencing projects, such as

The Cancer Genome Atlas (TCGA), the International
Cancer Genome Consortium (ICGC), and Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET), have created a comprehensive catalogue of
genomic variations across all major cancer types, includ-
ing GC [7, 8]. Cancer genomics has produced extensive
information on cancer-associated genes. In recent de-
cades, based on the rapid development of high throughput
technology, numerous biomarkers have been identified
and applied to targeted treatment [9, 10], such as HER2
(human epidermal growth factor receptor 2) in breast can-
cer and EGFR (epidermal growth factor receptor) in lung
cancer [11]. Driver mutations are required for the cancer
phenotype, whereas passenger mutations are irrelevant to
tumour development and accumulate through DNA
replication [7, 12]. Although many bioinformatics tools
dedicated to driver genes identification have been devel-
oped [13, 14], the number and specificity of cancer-driver
genes remain a matter of debate, thus, distinguishing
driver genes from passenger genes poses a formidable
challenge for cancer genomics [15].
Owing to the clinical and genetic heterogeneity of

cancer, the currently screened driver genes of GCs are
far from aiding in the prevention and treatment of this
fatal disease. Therefore, it is critical to identify more rea-
sonable biomarkers for assessing the response to therapy
and predicting prognosis in GC patients. In this study,
we integrated multi-omics data of GC from the TCGA
cohort to identify prognosis-related key driver (KD)
genes that drive the development and progression of
GC. We revealed the biological functions of KD genes,
such as programmed cell death, and the clinical character-
istics, including the drug response patterns and the prog-
nostic efficacy of expression signatures in GC patients.

Methods
Data source
We obtained multi-omics data of 293 primary gastric
cancer patients of The Cancer Genome Atlas (TCGA)
from cBioPortal data sources (https://www.cbioportal.

org/), including genome-wide human SNP array 6.0 copy
number alteration (level 3), IlluminaGA DNASeq muta-
tion (level 2), IlluminaHiSeq RNASeqV2 mRNA expres-
sion (level 3), and miRNA expression (level 3), as well as
clinical data of 265 patients. In addition, we acquired
two datasets of gene expression profiles matched by the
disease and normal samples (both sample size to exceed
20), as well as corresponding clinical data from the Gene
Expression Omnibus (GEO) database (accession code
were GSE13911 and GSE29272, the sample size was 69
and 268, respectively). The relationships of transcrip-
tional factor (TF) targeting mRNA were from Transfac
[16], UCSC [17], and Chipbase [18], while that of
miRNA regulating mRNA was from miTarbase [19] and
Starbase [20]. Based on a previous study [21], we found
there were no major batch effects for the expression data
or copy number data. Besides, we downloaded extra data
of gastric cancer patients from the Firehose database
(https://gdac.broadinstitute.org/).

Building binary genomic variation profile of coding genes
For mRNA expression data from RNAseqV2, we
performed log2(RESM+ 1). For DNA copy number alter-
ation (CNA), we retained CNA gain and loss, as well as
high-level amplification and homozygous deletion discre-
tized by GISTICv2 [22]. For mutation, silent (synonymous)
substitutions were discarded. We built a binary somatic
CNA profile of protein coding genes, where the copy
number altered was 1 and wild-type was 0. By integrating
the CNA spectrum and the genomic mutations, a binary
spectrum of the genomic variation of the coding genes was
formed (1, 0 represents the variation and the wild type,
respectively). According to previous studies [23, 24], four
requirements were for candidate key genes selection. (i)
gene should have a dominant CNA type (amplification or
deletion, binomial test, p ≤ 0.05); (ii) RSEM of the gene was
above 0 in more than 75% of cancer samples; (iii) gene
should have concordant changes between CNA and ex-
pression, that is, copy number amplification upregulates its
gene expression level, and copy number deletion downre-
gulates expression level; (iv) to improve the accuracy of the
calculation, we require the frequency of genomic variation
to exceed 0.1.

Identification of prognosis-related key driver genes
We have downloaded two datasets of matched disease
and normal sample gene expression profiles from GEO
(GSE13911 and GSE29272), and performed the differen-
tial expression analysis using R package DESeq2 at
FDR ≤ 0.05 and p-value ≤0.01. Then, we obtained the
intersection of the differential expression genes and the
candidate key genes with genomic variation, and then
used the clinical data in cBioPortal to train the clinical
model. Considering the genomic variation and patient’s
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survival information, including overall survival (OS,
defined as the time from randomization to death from
any cause, is a direct measure of clinical benefit to a
patient.) and disease-free survival (DFS, defined as the
time from randomization to the recurrence of tumour or
death, and it is typically used in the adjuvant treatment
setting.), we screened for the prognostic genes whose
genomic variation had an impact on patients survival
(in both types of survival, OS and DFS, the minimum
p-value was required to be less than 0.05) used log-rank
test. Combining the above candidate key genes, we deter-
mined prognostic related key driver (KD) genes.

Construction of transcriptional dysregulation network
The experimental confirmation data of miRNA-target
gene regulatory relationships was from known miRNA-
target interaction databases (miTarbase and Starbase),
and the experimental confirmation and prediction data
of the regulatory relationship between TF and target
genes was from known TF-target interaction databases
(Transfac, UCSC and Chipbase). Based on known know-
ledge of expression regulation [23], only regulatory rela-
tionships that satisfied the following requirements have
remained: 1) miRNA’s expression has negative (Pearson’s
correlation coefficient < 0, FDR < =0.05) regulatory effect
on its target gene’s expression; 2) The relationship
between TF and target gene must be significant (FDR < =
0.05). Benjamini & Hochberg correction were be used
among all relationships between regulators (miRNAs and
TFs) and KD genes.

Functional enrichment analysis of KD genes
A web server g:Profiler can be used for gene functional
enrichment analysis, including Gene Ontology terms
(like molecular function (MF), biological process (BP)
and cellular component (CC)) and pathways from KEGG,
Reactome and WikiPathways. This web server can also be
used for gene set enrichment analysis, including miRNA
targets from miRTarBase and regulatory motif matches
from TRANSFAC. We inputted the KD genes list on g:
Profiler web server, and used FDR < 0.05 to screen the
functions and target factors (miRNAs and TFs), which
were thought to be enriched by KD genes.

Drug sensitivity analysis
Gastric cancer drug sensitivity data were generated from
ongoing high-throughput screening performed by the
Cancer Cell Line Encyclopedia (CCLE) from Broad
Institute [25] and the Cancer Genome Project (CGP) at
the Wellcome Trust Sanger Institute [26]. The values we
obtained on the websites include the half-maximal inhibi-
tory concentration (IC50), genes expression level across
cancer cell lines for each experiment. We acquired 24 an-
ticancer compounds screened across 38 gastric cancer cell

lines and 251 compounds across 25 gastric cancer cell
lines from CCLE and CGP, respectively. The effect mea-
sures are the spearman’s rank correlation coefficient be-
tween the drug IC50s and gene expressions (for example,
an effect of − 0.5 or 0.5 indicates a decrease or increase in
drug concentration, respectively).

KD genes construction grouping signatures
Using the Pearson correlation coefficient of all KD gene
expression levels, we measured the similarity of the
patients with gastric cancer. Based on the matrix of the
Pearson similarity, the patients were classified by using
hierarchical clustering. To determine the optimal num-
ber of categories for the gastric cancer patients, we cal-
culated the Elbow method for the number of categories
from 1 to 10. The Elbow method was calculated the total
within-cluster sum of square (WSS) using R function
fviz_nbclust from packages “factoextra” and “NbClust”.
The WSS value was consistent with the classification
performance of the model.

Results
Identification of candidate genes driving the
development of GC based on multi-omics data
Cancer genomics has produced extensive information on
cancer-associated genes [27]. Driver mutations of cancer
confer tumour cell growth advantages during carcino-
genesis and disease progression, however, distinguishing
driver mutations from passenger mutations poses a for-
midable challenge for cancer genomics [7, 15]. To iden-
tify the driver events in GCs and explore their effects on
tumour progression, we analysed the multi-omics data
of 293 patients from the cBioPortal data resource,
including genomic data (copy number alterations and
somatic mutations) and transcriptome data (expression
of mRNAs, miRNAs and TFs) (Table 1). We constructed
a genomic variation binary spectrum of protein-coding
genes in GC by pre-processing multi-omics data and
integrating gene CNA, somatic mutation and gene ex-
pression data (Fig. 1).
After multiple steps of screening, we obtained a total

of 2318 candidate genes, which potentially drove the
development and progression of GCs (Fig. 1, Fig. 2a). In
the process of integrating multi-omics data, we required
that the candidate genes should have concordant
changes between copy number alterations (CNAs) and
mRNA expression. For example, the candidate gene
DERL1 was recognized to have copy number amplifica-
tion, and patients with CNA of DERL1 had significantly
higher mRNA expression levels than wild-type patients
(p < = 0.001, two-sided Wilcoxon’s rank-sum test; Fig. 2
b, c). Conversely, for the candidate gene NAA15, patients
with copy number deletion had significantly lower mRNA
expression levels than wild-type patients (p < = 0.001, two-

Liu et al. BMC Cancer          (2021) 21:460 Page 3 of 16



sided Wilcoxon’s rank-sum test; Fig. 2d, e). As a result,
the number of genes decreased rapidly as the sample size
increased when the requirement that the CNA must
correspondingly affect the mRNA expression itself was
implemented (Fig. 2a, f). After integrating CNA data and
mutation profiles, we found that the candidate genes had
a high variation frequency, which ranged from 16.9 to
69.8% (the average was 39.1%), and the variant sample size
of most genes was between 11 and 20 (Fig. 2g). Addition-
ally, we found that the number of genes with more than
30 variant samples reached 38 (Fig. 2g). This suggests that
adding somatic mutation information conductive to more
comprehensive genomic variation research.

Determining prognosis-related key driver (KD) genes
Studies have shown that cancer driver mutations can
provide tumour cells with a growth advantage, which
contributes to tumour initiation, progression, or metas-
tasis [28, 29]. Key driver genes should have an impact on
the patient’s survival time. Therefore, it is urgent to
identify key driver genes from numerous tumour gen-
ome events. First, we obtained two expression profile
datasets of GCs from the GEO database (GSE13911 and
GSE29272), and performed gene differential expression
analysis. Hierarchical clustering analysis showed that the

candidate genes were disorders in GC patients compared
to normal patients (Fig. S1AB). By overlapping the
differentially expressed genes with the above-identified
candidate genes, we obtained candidate driver genes
with different expression levels in tumour tissues and
normal tissues (388 in total). For each candidate driver
gene, the cancer samples were split into two groups ac-
cording to their copy number status (one group with
CNA and the other without). Then, we used the clinical
data of GC patients for survival analysis based on CNA
status. Finally, we obtained a total of 31 prognosis-
related key driver (KD) genes (Supplementary Table 1).
For example, patients with the KD gene ABCE1 CNA
(deletion) had significantly better disease-free survival
(DFS) (p < 0.0096, log-rank test; Fig. 3a). In contrast, pa-
tients with the KD gene SHFM1 CNA (amplification)
had significantly worse overall survival (OS) (p < 0.033,
log-rank test; Fig. 3b). Furthermore, we mapped the gen-
omic variation landscape of the 31 prognosis-related KD
genes in GC patients (Fig. 3c). We found that these KD
genes had high genomic variation frequencies (including
CNAs and somatic mutations). For example, KIAA0196
(also known as WASHC5) had the highest genomic
variation frequency (65.5%); copy number amplifications
occurred in 189 patients (where 23 patients had high-

Table 1 Basic information on gastric cancer multi-omics data

CNA
(SNP 6.0)

Expression (RNA-Seq) Mutation miRNA (RNA-Seq) TF

Samples 293 265 289 395 265

Genes 20,558 20,132 17,172 – –

Fig. 1 The overview. Step1, The genomic variation spectrum of gastric cancer patients were constructed using TCGA multi-omics data (including
copy number alteration, mutation and mRNA expression level), and the candidate genes were screened. Step2, Identification of key driver (KD)
genes related to prognosis in gastric cancer patients based on expression data and clinical data. Step3, The transcriptional dysregulation network
of gastric cancer patients was constructed based on the relationship between known regulatory factors (miRNAs and TFs) and target genes
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level amplifications), and somatic mutations occurred in
12 patients (Fig. 3c). In addition, the variation frequency
of the KD gene ABCE1 (ATP-binding cassette E1) was
42.2%, which included copy number deletions in 103 pa-
tients (all were copy number losses) and somatic muta-
tions in 5 patients (Fig. 3c). ABCE1 is a member of the
ATP-binding cassette transporter family and regulates a
broad range of biological functions including viral
infection, cell proliferation, and anti-apoptosis. Previous
research has shown that ABCE1 plays an essential role
in lung cancer progression and metastasis [30]. In our

study, however, ABCE1 was a key driver gene associated
with prognosis in GC.

Construction of transcriptional dysregulation networks of
KD genes
Recent studies have confirmed that regulatory factors
can affect the transcriptional activity of protein-coding
genes that contribute to disease [31, 32]. Regulatory fac-
tors such as miRNAs function in RNA silencing and the
posttranscriptional regulation of gene expression, which
via base-pairing with complementary sequences within

Fig. 2 Screening genomic variation candidate genes using multi-omics data. a, Data flow of the candidate genes screening process. b, d, The
examples show the copy number alteration of the candidate KD genes DERL1 (b) and NAA15 (d) on DNA and the expression level on the mRNA,
as well as the expression level of its dysregulation factors. c, e, Examples showing the effects of candidate KD genes DERL1 (c) and NAA15 (e)
copy number alteration on expression level (Wilcoxon Rank Sum Test). f, g, sample distribution of candidate KD genes, including before (f) and
after (g) the addition of mutation information
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Fig. 3 (See legend on next page.)
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mRNA molecules [33]. Transcription factors that are
activators can help turn specific genes “on” or “off” by
binding to nearby DNA [32]. For example, the oncogenic
TF TAL1 can produce a modified autoregulatory cir-
cuitry that drives the oncogenic program in T-cell acute
lymphoblastic leukaemia [32]. Thus, KD genes should
have a close functional association with regulatory fac-
tors in the biological network. We obtained experimen-
tal and/or predicted miRNA-target gene pairs and TF-
target gene pairs from known databases (Table 2). After
calculation, we determined the regulatory factors (TFs
and miRNAs) with significant regulatory coefficients for
each KD gene (Fig. S2AB). Simultaneously, using the
regulatory relationships between regulatory factors and
KD genes, we constructed a transcriptional dysregulation
network (Fig. 3d). Consistent with previous studies, we
found that regulatory factors, particularly miRNAs, played
a crucial role in cell growth and development [34, 35]. For
example, the KD gene SPOCK1 was regulated by 12 miR-
NAs, including miR-7-5p, miR-155-5p, miR-326, and
miR-107 (Fig. 3d, e). Research shows that SPOCK1 can
promote the invasion and metastasis of gastric cancer
through Slug-induced epithelial-mesenchymal transition
[36]. MiR-155-5p can form a regulatory feedback loop
with STAT1 and might trigger cancer immunoediting to
allow tumour cells to escape immunosurveillance and
even to promote tumourigenesis [37]. Additionally, the
KD gene NR3C2 was regulated by 9 miRNAs including
miR-7d-5p, miR-155-5p, miR-421 and miR-32-5p (Fig. 3d,
e). Studies have shown that NR3C2 plays a role in tran-
scription regulator and molecular transducer activity [38],
and can be inhibited by the migration inhibitory factor
(MIF) induced signalling pathway, which is a key driver of
disease aggressiveness in patients [39]. From the dysregu-
lation network, we found that miR-7d-5p, miR-155-5p
and miR-135b-5p synergistically regulated the KD genes
SPOCK1 and NR3C2 (Fig. 3d, e). In addition, several miR-
NAs could simultaneously regulate multiple KD genes; for
instance, miR-140-5p regulated the KD genes SPOCK1
and ABCE1, and miR-26b-5p regulated SPCS3 and SMAR
CA5 (Fig. 3d). Studies have shown that miR-140-5p is a
tumour suppressor in gastrointestinal cancer [40, 41]. In

particular, in gastric cancer, miR-140-5p suppresses the
proliferation, migration and invasion of tumour cells by
regulating YES1 [42]. This indicates that these miRNAs
play a “hub” regulatory role in the process of biological
metabolism and have a biological significance.
In the dysregulation network, a total of 7 TFs were

involved (Fig. 3d, e, Fig. S2B). The TF MYC positively
regulated the KD gene NAA15 (Padj = 9.95e-08, R = 0.32),
CUX1 negatively regulated MRPL13 (Padj = 0.001, R = −
0.20), and EGR1 negatively regulated SMARCA5 (Padj =
0.022, R = − 0.14). Similarly, we found that multiple TFs
synergistically regulated KD genes. For example, the TFs
HNF4A, SREBF1 and POU2F1 simultaneously regulated
the transcription of the KD gene ETFDH, which was up-
regulated by HNF4A (Padj = 3.5e-04, R = 0.22) and
SREBF1 (Padj = 0.02, R = 0.14), but downregulated by
POU2F1 (Padj = 7.05e-06, R = − 0.27) (Fig. 3d, e, Fig. S2B).
Previous studies have shown that SREBF1 (also known as
SREBP-1) is a key regulator of fatty acid metabolism and
plays a pivotal role in the transcriptional regulation of dif-
ferent lipogenic genes that mediate lipid synthesis, thus
acting as a cancer promoter in human diseases [43, 44].
TFs are dysregulation factors of KD genes, and we also
found hubs in the dysregulation network. For instance,
the TF HNF4A regulated KD genes ETFDH and ACADVL
(Padj = 3.3e-04, R = 0.33), and ARNT regulated the KD
genes NR3C2 (Padj = 3.34e-04, R = 0.22) and DERL1
(Padj = 3.51e-05, R = 0.25) simultaneously (Fig. 3d). Wang
H et al. generated a miRNA-TF regulatory network, and
discovered 5 regulators that might have critical roles in
colorectal cancer pathogenesis, which was helpful to
understand the complex regulatory mechanisms and guide
clinical treatment [45]. Interestingly, in our study, KD
genes were regulated by multiple types of dysregulation
factors. For example, the KD gene ACADVL was regulated
by the TF NHF4A and the miRNAs miR-100-5p and miR-
99a-5p, while the KD gene RAA15 was regulated by MYC,
miR-497-5p and miR-145-5p (Fig. 3d, e). Hao S et al.
revealed that 5 miRNAs (including miR-145, miR-497,
miR-30a, miR-31, and miR-20a) were considered to
regulate tumour cell proliferation through TFs [46]. These
findings suggest that transcriptional regulators play a

(See figure on previous page.)
Fig. 3 Construction of prognostic-related transcriptional dysregulation network of KD genes. AB, Examples show the prognostic efficacy of KD genes
ABCE1 (a) and SHFM1 (b) gastric cancer patients. c, Genomic variation of all recognized KD genes in gastric cancer patients, including high copy
number copy (dark red), low level amplification (bright red), homozygous copy number deletion (dark blue), heterozygous deletion (Bright blue), as
well as somatic mutation (green). d, The transcriptional dysregulation network of KD genes. e, The number of dysregulation factors for KD genes

Table 2 Information of TF and miRNA regulating mRNA used in this study

Interaction Regulator Target Resources

TF-gene 626,331 752 19,257 Transfac [16], UCSC [17], Chipbase [18]

miRNA- gene 680,008 2562 16,339 miRTarbase [19],starbase [20]
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crucial role in the dysregulation of KD genes, and studies
of these dysregulation factors may facilitate biomarker
discovery.

Functional mechanisms of KD genes and dysregulation
factors
To characterize the molecular mechanisms of the KD
genes, we first used the g:profiler online tool for
functional enrichment analysis. The result showed that
our KD genes were enriched in many types of biological
functions, including Gene Ontology MFs, BPs, and CCs,
pathways (REAC and WP) (Fig. 4a). In detail, the KD
genes were enriched in terms related to apoptosis-
associated functions, such as “Apoptosis”, “Programmed
cell death”, “Apoptosis-related network due to altered
Notch3 in cancer”, and “Apoptosis-induced DNA
fragmentation”. (Fig. 4b). In addition, several KD genes
were enriched in terms related to immune-associated
functions, such as “Antigen processing: Ubiquitination &
Proteasome degradation” (Fig. 4b). To further characterize
our results, we sought to characterize the cancer hallmark
landscape of the KD genes. In brief, we calculated the
semantic similarity score between KD genes-related GO
terms and known cancer hallmark-related GO terms [47].
We found that the semantic similarity between our KD
genes and the apoptotic-related cancer hallmark, “Evading
Apoptosis”, was 0.35. Additionally, the semantic similar-
ities with two immune-related cancer hallmarks (“Evading
Immune Detection” and “Tumour Promoting Inflamma-
tion”) were 0.3 and 0.48, respectively (Fig. 4c). For the
cancer hallmark “Genome Instability and Mutation”, the
semantic similarity with KD genes was the highest, reach-
ing 0.65 (Fig. 4c), which indicates that the genomic
variation of KD genes has important functional mecha-
nisms, including genome instability, and thus plays a car-
cinogenic role in biology [48]. Interestingly, our KD genes
were enriched in functions related to the synthesis and se-
cretion of gastric hormones, such as “Synthesis, secretion,
and deacylation of Ghrelin” (Fig. 4c). Ghrelin is an en-
dogenous peptide hormone mainly produced in the stom-
ach. Previous research has shown that ghrelin can be a
promising therapeutic option for cancer cachexia [49]. In
addition, the KD genes were also enriched in functions
related to cell growth, development and metabolism,
such as “Biosynthetic process”, “Negative regulation of
biological process” and “Cellular macromolecule meta-
bolic process”.
Our above results indicate that the regulators of KD

genes play an important regulatory role in carcinogen-
esis. Using g:profiler, we also observed that KD genes
were enriched in regulatory relationships with TFs and
miRNAs (Fig. 4a). To study the functional mechanisms
of regulators, we used the enrichment analysis of KD
genes for further characterization. By comparing the

regulators, we identified the TFs and miRNAs enriched
by the KD genes, and confirmed that 4 TFs and 5 miR-
NAs showed enrichment (Fig. 4d). The 4 confirmed TFs
included EGR1 (enrichment significance P = 1.42e-04),
HNF4A (P = 4.42e-03), POU2F1 (P = 7.67e-03) and MYC
(P = 4.70e-04) (Fig. 4d; Supplementary Table S2). EGR1
regulated 10 KD genes such as SMARCA5, POLR3C, and
MRPL13. (Fig. 4d). The TF HNF4A simultaneously regu-
lated two KD genes ACADVL and ETFDH. In addition,
the TFs combination of HNF4A and POU2F1 regulated
the KD gene HMGB2 (Fig. 3d; Supplementary Table S2).
It is worth noting that the combination of the TF MYC
and miR-139-5p regulated the KD gene NAA15 (Fig. 3d;
Supplementary Table S2). MiR-139-5p (P = 0.028) was a
confirmed miRNA by enrichment that regulated two KD
genes HMGB2 and DERL1 (Fig. 3d; Supplementary
Table S2). In addition, miR-30a-5p (P = 0.021) regulated
the KD genes SPCS3, PPID and DERL1 (Fig. 3d; Supple-
mentary Table S2). The miRNAs confirmed by KD gene
enrichment also included miR-26b-5p (P = 0.013), miR-
32-5p (P = 0.037) and miR-186-5p (P = 0.044) (Fig. 4d).
In summary, functional enrichment analysis indicated
that the KD genes were involved in vital biological func-
tions, and further demonstrated that the regulators can
be used as potential biomarkers for further experimental
studies.

Drug response effects in preclinical cell models of GC
To explore the potential effects of KD genes on drug
response, we evaluated whether their expression level
could influence drug response across 38 preclinical cell
models of GC from Cancer Cell Line Encyclopedia
(CCLE). We found that multiple KD genes presented
strong correlations with the drug response in GC cells
(Fig. 5a). For example, irinotecan, a broad spectrum anti-
cancer drug, showed a significant positive correlation
with the expression levels of 5 KD genes in GC cells,
including KIAA0196 (R = 0.81, P = 0.02), POLR3C (R =
0.86, P = 0.01), RNF139 (R = 0.74, P = 0.04), DERL1
(R = 0.88, P = 0.007), and TRMT12 (R = 0.79, P = 0.02)
(Fig. 5a-c). This result indicated that the expression
levels of these KD genes could enhance the resistance
of irinotecan in GC cells. Studies have shown that patients
with advanced gastric cancer are often treated with irino-
tecan monotherapy as salvage-line therapy [50].
Sorafenib is a multikinase inhibitor with activity

against angiogenesis and the RAF-MEK-ERK pathway; it
inhibited the proliferation of human gastric cancer cell
line, and may reverse resistance to cisplatin by downreg-
ulating MDR1 expression [51]. In our study, however,
the drug response to sorafenib in GC cells showed a
significant negative correlation with the expression level
of the KD gene NAA15 (R = − 0.6, P = 0.0092) (Fig. 5a-b).
Moreover, paclitaxel, a widely used anticancer drug,
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Fig. 4 Functional enrichment analysis of KD genes. a, Functional enrichment analysis for KD genes using g:profiler online tool, including Gene
Ontology (MF, BP, CC) and pathway (REAC and WP) in different colors. The Y axis represents -log10(Padj). b, The functions enriched by KD genes.
The X axis represents -log10 (Padj), and the dotted line indicates Padj = 0.05. c, The semantic similarity between the functions enriched by KD
genes and the known cancer hallmarks. d, The regulatory factors for KD genes confirmed by enrichment analysis. Blue indicates the number of
KD genes, and orange indicates significance, −log10 (Padj)
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exhibited multiple response patterns at the expression
level of the KD genes. For instance, paclitaxel showed
strong resistance in GC cells with upregulated SPOCK1
expression (R = 0.59, P = 0.01), but showed strong sensi-
tivity in GC cells with upregulated HMGB2 expression
(R = − 0.67, P = 0.002) (Fig. 5a, b and Fig. 5d). Studies
have shown that nab-paclitaxel as second-line treatment
in locally advanced inoperable or metastatic gastric and
gastroesophageal junction carcinoma is a promising
chemotherapy regimen [52, 53].
Interestingly, the KD genes we identified have re-

sponse effects with multiple anticancer drugs (Fig. 5a, e).
For example, in addition to sorafenib, RAF265 (R = −
0.67, P = 0.0023), Nultlin-3 (R = − 0.65, P = 0.0037) and
L-685458 (R = − 0.64, P = 0.0042) all showed strong drug
sensitivity in GC cells with upregulated NAA15 expres-
sion (Fig. 5a, e). However, the small molecule compound
ZD-6474 showed significant drug resistance at the
expression level of NAA15 (R = 0.48, P = 0.045). In
addition to irinotecan, multiple drugs showed strong re-
sistance at the expression level of the KD gene DERL1.
For instance, the responses to drugs, including AZD6244
(R = 0.55, P = 0.019), PD-0325901 (R = 0.54, P = 0.020)
and panobinostat (R = 0.49, P = 0.041), presented a sig-
nificant positive correlation with DERL1 (Fig. 5a, e). A
study has shown that the pan-histone deacetylase inhibi-
tor panobinostat sensitizes gastric cancer cells to anthra-
cyclines via the induction of CITED2 [54]. Moreover, the
drug response of multiple small molecules exhibited
strong drug resistance to the KD gene SPOCK1 (re-
sponse effects from 0.47 to 0.59), while several small
molecules showed strong drug sensitivity to the KD gene
PFAS (response effects from 0.48 to 0.51) (Fig. 5a, e). In
addition, we further evaluated whether the KD genes
could influence drug responses across 23 gastric cancer
cell lines from the Cancer Genome Project (CGP).
Indeed, the drug response patterns of several KD genes
(such as SPCK1 and PFAS) in CGP were similar to those
in CCLE (Fig. S3). Notably, the drug response patterns
of multiple KD genes, including NAA15, RNF139, and
ETFD, were complementary in two cell line models (Fig.
5e, Fig. S3). This result suggests that it is necessary to
use a combination of two cell line models to explore
drug responses [55]. In summary, we used cellular
models to study the drug response mechanisms of KD

genes on the transcriptional level. The effect of small
molecule compounds on KD genes can guide researchers
in new drug research and development, and has poten-
tial application value.

Clinical application of KD gene signatures in gastric
cancer patients
In the above results, we identified 31 prognosis-related
KD genes (Supplementary Table 1). To explore the
global clinical application value of all KD genes, we
constructed sample grouping signatures based on the
transcriptional level of the KD genes and verified them
in multiple sets of data. In brief, we grouped patients
based on the expression of the KD genes using the hier-
archical clustering method. We found that when 265 GC
patients were clustered into 4 groups, the model per-
formed the best in terms of classification (Fig. 6a). There
were 146, 63, 16 and 40 patients in groups 1–4, respect-
ively (Fig. 6b). By calculating the Pearson dissimilarity
between the samples, we found that the distances within
each group were relatively close, and the distances
between the groups were far, which were in line with
our findings (Fig. 6b).
To reveal the clinical benefits of the KD gene signature

in GC, the log-rank test was used to explore the survival
outcomes between patient groups. The KM curve
showed that the patients in group 2 had the longest DFS
time (Fig. 6c). By observing the patient’s genomic
variation events, we found that the patients in group 2
mainly carried variations in KIAA0196 (also known as
WASHC5), EIF3H, MRPL13, MTSS1, DERL1, and RNF139
(Fig. S4A). Compared with the patients in group 2, the
patients in group 1 presented significantly worse DFS (P =
0.02, log-rank test; Fig. 6c), and these patients mainly
carried genomic events in TRMT12, TRPA1, TCEB1,
MRPS28, PON2 and SHFM1 (Fig. S4A). Additionally, both
group 3 and group 4 patients showed significantly worse
DFS (Fig. 6c). However, the four KD gene signatures did
not show significant prognostic efficacy for the patients’
overall survival (OS) time (Fig. S6A). In addition, we found
that group 3, with the worst survival, showed a higher pro-
portion of the Lauren intestinal class (proportion 87.5%)
and WHO tubular class (68.8%) (Fig. 6d, e). The other
three groups all showed a lower proportion of the Lauren
intestinal class (58.9, 77.8, and 60.0% for group 1, group 2,

(See figure on previous page.)
Fig. 5 Analysis of drug response effects of KD genes. a, Correlation analysis between the expression level of KD genes and drug IC50 in CCLE cell
model. The point size indicates the level of significance, and the color indicates the correlation coefficient, red (positive), blue (negative).
Spearman’s Rank correlation. b, The volcano map shows the response of particular drugs, red indicates resistance, and green indicates sensitivity.
c, d, The response pattern of specific drugs on KD genes, irinotecan showed drug resistance on DERL1 (c), and paclitaxel showed drug sensitivity
on HMGB2 (d). e, The drug response pattern of the drugs in all KD genes in the CCLE cell model, including drug resistance (red) and sensitivity
(blue), and line thickness indicates response effect
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and group 4, respectively) and WHO tubular class (41.1,
55.6, and 40.0% for group 1, group 2, and group 4, respect-
ively). In contrast, group 3 showed a lower percentage of
the Lauren diffuse class and WHO poorly cohesive class
(both were 6.25%) (Fig. 6d, e). We also assessed other clin-
ical features of GCs between these groups and found that
the patients in group 3 were older in age, had fewer
tumour cells, and showed more tumour lymphatic infiltra-
tion, however, these features did not show statistical signifi-
cance (Fig. S5).
To further elucidate the clinical value of our KD

genes in GC, we used extra datasets for validation.
Similarly, through the expression levels of the KD
genes, we subtyped 443 patients into 4 groups based
on hierarchical clustering (Fig. S6BC). The KM curve
indicated that these four groups of KD gene signa-
tures had significant prognostic efficacy for patients’
overall survival (OS) time (P = 0.016, log-rank test;
Fig. 6f). Compared with group 1, the patients within
the other three groups showed significantly worse OS
times (P = 0.011, 0.003 and 0.042 for group 2, group 3
and group 4, respectively). Using a multivariate Cox
proportional hazards model to adjust for some clinical
features, including age, tumour stage, and number of
lymph nodes, we found that the other three groups
were risk factors compared to group 1 (group 2
(HR = 1.22, 95% CI [0.77–1.92], p = 0.039), group 3
(HR = 1.75, 95% CI [1.07–2.88], p = 0.026), and group
4 (HR = 1.27, 95% CI [0.65–2.50], p = 0.042) compared
to the patients within group 1, respectively; Fig. 6g).
This finding shows that the signatures of our KD
genes were independent prognostic factors. The Cox
model also showed that compared to tumour stage I,
both stage III (HR = 2.83, 95% CI [1.52–5.27], p =
0.001) and stage IV (HR = 6.23, 95% CI [2.99–12.97],
p = 1e-04) were risk factors (Fig. 6g). In addition,
patients’ age showed a correlation with the patients’
OS time (HR = 1.03, 95% CI [1.01–1.05], p = 8e-04).
Similarly, our results suggest that in group 3, which
had a poorer OS, there was a higher proportion of
patients who were enriched in the more malignant
tubular-intestinal type subclass (Fig. S6D), and more
advanced TNM stages T3 and N2 (Fig. S6E). In sum-
mary, we used KD genes to construct the group sig-
natures for gastric cancer patients and validated their
association with patient survival in multiple datasets,

which suggested that the KD genes we identified can
be used as prognostic biomarkers for further study by
basic experimental and clinical researchers.

Discussion
To date, although many bioinformatics tools dedicated
to driver mutation identification have been developed
[13, 14], distinguishing driver mutations from passenger
mutations poses a formidable challenge [15]. Therefore,
it is urgent to identify cancer drivers and understand
them at the functional level. In this study, we integrated
multi-omics data to identify the cancer drivers and their
dysregulation factors in patients with gastric cancer.
After analysing the data of 293 patients from TCGA, we
identified 31 prognosis-related key driver (KD) genes.
Utilizing functional enrichment analysis of the KD genes,
we characterized their affected cancer hallmarks and
their related biological functions, such as programmed
cell death and antigen processes. The drug response
pattern and transcriptional signatures of the KD genes
reflect their clinical application value. Combining DNA
copy number alterations and mutations can help us
avoid the limitations of traditionally identifying driver
events. This study proved that the integration of
multi-omics data enables the discovery of novel driver
molecules and their dysregulation mechanisms during
tumourigenesis.
Cancer genes generally induce dysregulation by their

regulators and exert driver roles in cancer. Based on the
regulatory relationships between regulators and target
genes [23], we constructed a transcriptional dysregula-
tion network of KD genes (Fig. 3d). The dysregulation
factors of KD genes play a crucial role in cell growth
and development [34, 35]. In our study, the KD gene
SPOCK1 was regulated by miR-155-5p, which can form
a regulatory feedback loop with STAT1 and might
trigger cancer immunoediting to allow tumour cells
to escape immunosurveillance and even to promote
tumourigenesis [37]. In addition, the transcription of
the KD gene ETFDH was upregulated by the TF
SREBF1. Although the correlation coefficients between
these regulators and KD genes were not very strong
(0.2–0.4), which may be due to subtle differences in
data standardization, the correlation was significant
and not accidental. Previous studies have shown that
SREBF1 is a key regulator of fatty acid metabolism

(See figure on previous page.)
Fig. 6 Prognostic efficacy of KD gene signatures. a, Determine the optimal number of clusters in hierarchical clustering using Elbow method. b,
Clustering analysis were performed based on the expression level of KD genes, which showed pearson dissimilarity between patients with gastric
cancer. c, The KM curve shows disease-free survival (DFS) time of patients across all groups, log-rank test. d, e, The proportion of patient groups
of KD gene signatures in clinical features, including LAUREN (d) and WHO class (e). f, The KM curve shows the overall survival (OS) time of
patients in extra data. g, Multivariate COX regression analysis (corrected tumour stage, lymph node count, and age). Red means p < =0.05
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and plays a pivotal role in the transcriptional regula-
tion of different lipogenic genes that mediate lipid
synthesis, thus acting as a cancer promoter in human
diseases [43, 44]. Our study also showed that both
miRNAs and TFs play a hub regulatory role in the
dysregulation of KD genes, which suggests that
dysregulation factors play a crucial role in the process of
biological metabolism. Therefore, studying these dysregula-
tion factors may facilitate the discovery of biomarkers.
During the process of genomic variation and natural

selection, several driver events exhibited different com-
bination mutational patterns to drive cancer formation,
and formed evolutionary dependence. These evolution-
ary dependence drivers are always highly functionally
associated, such as participating in similar biological
processes, mediating pathway crosstalk and coopera-
tively promoting clonal expansion or selective sweep
[29, 56]. The functional enrichment analysis results
showed that some KD genes were enriched in
apoptosis-associated (such as “Programmed cell death”
and “Apoptosis-related network due to altered Notch3
in cancer”) and immune-associated functions (such as
“Antigen processing: Ubiquitination & Proteasome
degradation”), which were related to the corresponding
cancer hallmarks, “Evading Apoptosis”, “Evading Immune
Detection” and “Tumour Promoting Inflammation”, re-
spectively. In addition, these KD genes offer new insights
into molecular mechanisms and have novel prognostic
and drug response potential for clinical practice. These
findings suggested that the KD genes and dysregulated
factors we identified by integrating multi-omics data could
have important implications for understanding cancer
evolution as well as for diagnostic and therapeutic ap-
proaches; thus, they might play crucial roles and are
worthy of further exploration.

Conclusions
This study integrated multi-omics data to discover novel
driver molecules and their dysregulation mechanisms based
on copy number alteration, somatic mutation, and tran-
scription level analysis. We revealed the clinical application
value of KD genes through drug response patterns and
transcriptional signatures. As a next step, based on our re-
search results, clinicians and biological experimenters can
further confirm the function of these KD genes and their
pathogenic mechanism through experiments. Cell models,
animal models, and preclinical experiments should be per-
formed to verify the clinical effects of the KD genes, such as
targeted therapy. Thus, the conclusions of our study may
be translated into clinical applications. These results will
pave the way towards understanding the potential mecha-
nisms that govern GC progression, which will be useful in
clinical practice and might prompt the development of
novel therapeutic targets for GC patients.
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