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Abstract
In the present study we investigated the effects of neonatal handling, an animal model of early
experience, on spatial learning and memory, on hippocampal glucocorticoid (GR),
mineralocorticoid (MR) and type 1A serotonin (5-HT1A) receptors, as well as brain derived
neurotrophic factor (BDNF), and on circulating leptin levels, of male rats.

Method: Spatial learning and memory following an acute restraint stress (30 min) were assessed
in the Morris water maze. Hippocampal GR, MR and BDNF levels were determined
immunocytochemically. 5-HT1A receptors were quantified by in vitro binding autoradiography.
Circulating leptin levels, following a chronic forced swimming stress, were measured by
radioimmunoassay (RIA). Data were statistically analyzed by analysis of variance (ANOVA).

Results: Neonatal handling increased the ability of male rats for spatial learning and memory. It
also resulted in increased GR/MR ratio, BDNF and 5-HT1A receptor levels in the hippocampus.
Furthermore, leptin levels, body weight and food consumption during chronic forced swimming
stress were reduced as a result of handling.

Conclusion: Neonatal handling is shown to have a beneficial effect in the males, improving their
cognitive abilities. This effect on behavior could be mediated by the handling-induced increase in
hippocampal GR/MR ratio and BDNF levels. The handling-induced changes in BDNF and 5-HT1A
receptors could underlie the previously documented effect of handling in preventing "depression".
Furthermore, handling is shown to prevent other maladaptive states such as stress-induced
hyperphagia, obesity and resistance to leptin.

Background
It is generally accepted that early experiences have pro-
found influences on brain development and thus on adult
brain function and behavior. However the neurobiologi-

cal mechanisms involved still remain elusive. An animal
model employed in experiments aiming to elucidate such
mechanisms is "neonatal handling" [1]. This manipula-
tion alters hypothalamic-pituitary-adrenal (HPA) axis
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function and the ability of the organism to respond to
stressful stimuli [1]. Thus, as adults, neonatally handled
rats are less emotionally reactive, synthesize and secrete
less corticotropin-releasing factor, adrenocorticotropin
hormone (ACTH) and corticosterone following a variety
of stressors [2], and their stress-induced secretion is more
short-lived [3]. These differences in HPA axis reactivity
have been attributed to an enhanced sensitivity of the neg-
ative-feedback loop [2], due to a handling-induced
increase in the number of type II glucocorticoid receptors
(GR) in the hippocampus [2].

In addition to GR, glucocorticoids also bind to type I
(MR) receptors, and the hippocampus is rich in both these
types of receptors [4]. GR and MR receptors are the mole-
cules mediating the negative feedback control exerted by
glucocorticoids on HPA axis function [5]. Furthermore
GRs and MRs influence spatial learning, a process control-
led by the hippocampus [6]. MRs have a role in behavioral
reactivity during novel situations [7], whereas GRs are
involved in consolidation of learned information. In
addition to GRs and MRs, glucocorticoid levels also play a
determinant role in the ability for learning and memory.
The effect of corticosteroid levels on cognition exhibits a
U-shaped dose-response dependency [8]. Interestingly, as
mentioned above, handled animals have lower corticos-
terone levels following stress [9], which could alter their
ability for learning and memory.

Another molecule that has been shown to play a key-role
in the cellular processes underlying learning and memory
is Brain Derived Neurotrophic Factor (BDNF), a member
of the neurotrophin family [10]. BDNF mRNA is
increased during LTP, indicating that BDNF is involved in
plastic changes of neuronal function [11]. Memory acqui-
sition is also associated with increased BDNF mRNA and
activation of its receptor TrkB [12,13]. On the other hand,
LTP is markedly impaired in BDNF mutant mice and the
deficit is restored by the re-expression of BDNF [14,15].
Moreover, BDNF mutant mice show learning deficits [16].
Similarly, the pharmacologic deprivation of BDNF or its
receptor TrkB, results in severe impairment of learning
and memory in mice, rats and chicks [15]. BDNF mutant
mice develop enhanced aggressiveness, and hyperphagia,
accompanied with weight gain in early adulthood, find-
ings reminiscent of dysfunction of the serotoninergic sys-
tem [17]. Indeed BDNF is known to have trophic effects
on serotoninergic neurons [18]. It is well known that
depression is associated with hypofunctioning of the sero-
toninergic system. Recently BDNF has emerged as a major
factor in the pathophysiology of depression: BDNF mRNA
is increased in the rat brain following chronic anti-depres-
sant or electro-convulsive shock treatment [19,20].
Administration of BDNF in the hippocampus has been
shown to have an anti-depressant effect in the forced

swimming and learned helplessness paradigm [21]. Fur-
thermore, in patients with major depression, serum BDNF
levels were decreased, while hippocampal BDNF immu-
noreactivity was increased in post-mortem tissues from
subjects treated with anti-depressants [22]. Previous
results from our laboratory have shown that handled
males exhibit decreased expression of "depressive" behav-
ior [26].

Recent evidence indicates that among the serotonin recep-
tors, the type 1A are involved in the etiopathogenesis of
certain types of depression [23,24] and is the one through
which the therapeutic effects of the Selective Serotonin Re-
uptake Inhibitors (SSRIs), a major class of antidepres-
sants, are mediated [25]. Results from our laboratory have
shown that handled male rats show increased 5-HT1A
receptor sensitivity as assessed by the hypothermic
response to 8-OH-DPAT compared to the non-handled
[26].

Depression and the response to chronic stress are often
associated with disorders in food-intake behavior, which
is influenced by serotonin and, as mentioned above, by
BDNF. A key hormone regulating food-intake behavior is
leptin, the product of the ob gene [27]. Leptin, whose lev-
els reflect the organism's current energy balance, is
secreted from adipose tissue proportionally to body fat
mass and acts on the CNS to limit food intake, and thus
promote body weight loss [28]. Recent evidence indicates
that glucocorticoids induce leptin synthesis and secretion
and that, conversely, leptin participates in the regulation
of HPA axis function [29].

Thus, we investigated the effects of "neonatal handling"
on factors influencing cognitive abilities and affective
states of the adult rat. Specifically, we determined the
"neonatal handling" effects on A. the ability for spatial
learning and memory -in the Morris water maze- when a
short-term restrain stress has preceded the learning proc-
ess, B. GR and MR levels in the hippocampus after the
completion of the Morris water maze test, C. BDNF levels
in the hippocampus, D. hippocampal 5-HT1A receptor
density and E. plasma leptin levels, food intake and body
weight change during long term forced swimming stress.

Methods
Animals
Male Wistar rats reared in our laboratory were kept under
standard conditions (24°C; 12:12 h light/dark cycle; food
and water ad libitum). All animal experimentations were
carried out in agreement with ethical recommendation of
the European Communities Council Directive of 24
November 1986 (86/609/EEC). In total, 43 handled and
45 non-handled (control) animals were used in this
study.
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Neonatal handling
Pups were removed from their mothers and placed for 15
min in a plastic container lined with paper towel, daily
from postnatal day 1 until weaning (postnatal day 22).
The non-handled animals were left completely undis-
turbed until weaning.

Restraint stress
Adult, handled and non-handled males were placed in a
cylinder 15 cm in length and 5 cm in diameter for 30 min.

Spatial learning and memory test
The Morris water maze (MWM) apparatus was a circular
galvanized tank (1.38 m in diameter, 0.5 m in height),
filled to a depth of 28 cm with water (24°C), made
opaque with milk. The training session took place 90 min
after the completion of the restraint stress. For this session
a 2 cm submerged platform (13 × 13 cm) was placed in a
fixed position. The single training session consisted of 8
trials with 4 different starting positions. After finding the
platform, the animals were allowed to remain on it for 20
sec and were then placed in a holding cage for 30 sec until
the beginning of the next trial. The testing trial was per-
formed 24 hours later. It consisted of a 60 sec free swim
period without a platform and was recorded on video-
tape. The rat was placed in the tank at a position directly
opposite to the imaginary platform quadrant. Animals
were sacrificed upon termination of the testing session
and their brains were used for GR and MR
immunocytochemistry.

Immunocytochemistry
For the GR and MR immunocytochemistry the same ani-
mals were used, whereas for the BDNF immunocytochem-
istry a different set of animals was employed. All animals
were deeply anesthetized with ether and perfused tran-
scardially with 4% paraformaldehyde in 0.1 M phosphate
buffer (PB). Immunocytochemistry was performed as pre-
viously reported [30] on paraffin, sagittal brain sections (6
µm). The primary antibodies used were an anti-BDNF rab-
bit polyclonal antibody (Santa Cruz) or an anti-MR goat
polyclonal antibody (Santa-Cruz) or an anti-GR molo-
clonal antibody (kindly provided by Dr. Alexis, NHRF).
The secondary antibodies were biotinylated goat anti-rab-
bit or rabbit anti-goat or rabbit anti-mouse antibody
respectively (DAKO). Staining of the immunopositive
cells was performed using the DAKO ABC reagent fol-
lowed by the 3,3'-diaminobenzidine (DAB) reaction. The
number of immunopositive cells was evaluated using
Image-Pro Plus program (Media Cybernetics, USA), in 3–
5 sections from each brain, and an average value was cal-
culated for each of the areas studied per animal.

In vitro binding
Animals used for 5-HT1A receptor autoradiogarphy were
killed by decapitation under ether anesthesia. Their brains
were frozen at -40°C in dry-ice cooled isopentane and
subsequently cut coronally (10 µm) in a cryostat (-17°C).
The sections were processed using standard autoradio-
graphic procedures [31,32]. Briefly, the localization of 5-
HT1A receptors was performed using 4 nM 3H-8-OH-
DPAT (129Ci/mmol, NEN) and non-specific binding was
determined in the presence of 10 µM serotonin. Bound
3H-8-OH-DPAT was visualized by exposing the labeled
sections to tritium-sensitive film (Biomax, KODAK) (4oC,
1 month) along with 3H-standards (3H-microscales,
ARC). Quantitative image analysis of the autoradiograms
was performed using SCION-Image for Windows. Specific
binding, >95% of the total binding, was expressed as
fmol/mgr tissue.

Long term forced swimming
On each of 15 consecutive days adult handled and non-
handled male animals were placed for 5 min in a glass cyl-
inder 33 cm in height and 20 cm in diameter containing
tap water at 24°C.

Body weight measurement
During the period of the long term forced swimming han-
dled and non-handled animals were weighed daily prior
to the exposure to the stressful stimulus. Moreover, the
amount of food consumed daily was determined for each
one of these animals.

Determination of plasma leptin levels
Immediately after the last exposure to long term forced
swimming (day 15) blood samples from all animals were
collected by cardiac puncture under ether anesthesia,
using heparinized syringes, and centrifuged to obtain
plasma. Leptin concentrations were determined by RIA
(Linco's™ rat leptin [125I] assay system).

Statistical Analysis
Data were analyzed by a one-way analysis of variance
(ANOVA) with handling as the independent factor. Data
on learning, body weight and food intake were analyzed
by a one-way ANOVA with repeated measures (handling
served as the independent factor and days of training
served as the repeated factor). All tests were performed
with the software SPSS for Windows (10.0.1, SPSS Inc.).
Differences were considered as significant if p < 0.05.

Results
Following exposure to a short term restraint stress han-
dled animals displayed a greater ability for spatial learn-
ing in the Morris water maze, as shown by the lower mean
escape latencies (time to find the submerged platform) of
the handled animals during the acquisition of the task
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Effects of handling on spatial learning and memory in the Morris water maze following an acute restraint stressFigure 1
Effects of handling on spatial learning and memory in the Morris water maze following an acute restraint 
stress. A. Mean escape latencies-Learning: handled animals took less time to find the submerged platform during the 8 learning 
trials compared to the non handled (p = 0.05, one way ANOVA with repeated measures). Values represent mean escape laten-
cies ± S.E.M.B. Memory: handled animals spent more time in the target and less in the opposing quadrant compared to the non 
handled (p = 0.024, one way ANOVA with repeated measures). Values represent the mean time spent in each quadrant ± 
S.E.M.
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Effects of handling on MR and GR immunoreactivity in the CA2 region of the hippocampusFigure 2
Effects of handling on MR and GR immunoreactivity in the CA2 region of the hippocampus. Handling decreased 
the number of MR positive cells (p = 0.042, one way ANOVA) but increased the number of GR positive cells (p = 0.002, one 
way ANOVA) in the CA2 region of the hippocampus. The arrow points to a GR positive cell. Values represent means ± S.E.M.
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(F1,15 = 4.565, p = 0.05) (Fig. 1A). Furthermore, handled
animals spent more time in the target, and less in the
opposing quadrant during the probe trial (F1,15 = 6.320, p
= 0.024) (Fig. 1B), indicating superior mnemonic func-
tion (better consolidation of information). The effects of
"neonatal handling" on cognition were accompanied by
changes in GR and MR hippocampal levels: Higher GR
and lower MR levels were found in the CA2 region of the
hippocampus of handled, compared to the non-handled
animals, following their exposure to the Morris water
maze (F1,13 = 14.632, p = 0.002 and F1,13 = 5.268, p =
0.042, respectively) (Fig. 2).

"Neonatal handling" resulted in increased number of
BDNF immunopositive cells, in the CA4 region of the hip-
pocampus (F1,13 = 35.388, p < 0.001) (Fig. 3). BDNF
immunoreactivity was clearly localized in the cytoplasm.
The BDNF positive cells were large, with typical neuronal
morphology, including processes (see arrow).

"Neonatal handling" increased the density of 5-HT1A
receptors in the hippocampus (areas CA1, CA2, CA4 and
DG) as revealed by 3H-8-OH-DPAT binding (F1,13 = 9.170,
p = 0.027). Notably, the CA3 region was devoid of any
detectable labeling (Fig. 4).

Effect of handling on BDNF immunoreactivity in the CA4 region of the hippocampusFigure 3
Effect of handling on BDNF immunoreactivity in the CA4 region of the hippocampus. Handling resulted in 
increased number of BDNF positive cells in the CA4 (p < 0.001, one way ANOVA) region of the hippocampus. The arrow 
points to a neuronal process. Values represent the mean number of BDNF positive cells ± S.E.M
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Effects of handling on the density of 5-HT1A receptors in the hippocampusFigure 4
Effects of handling on the density of 5-HT1A receptors in the hippocampus. Neonatal handling increased the 
number of 3H-8-OH-DPAT binding sites in the hippocampus (p = 0.027, one way ANOVA), indicating an increased density of 
5-HT1A receptors in this area. Values represent the mean ± S.E.M. of 5-HT1A receptor density in fmoles/mgr tissue.

Effect of handling on leptin secretion following long term forced swimming stressFigure 5
Effect of handling on leptin secretion following long term forced swimming stress. Handled animals had lower 
plasma leptin levels after long term forced swimming, (p = 0.047, one way ANOVA). Values represent mean leptinlevels ± 
S.E.M
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Handled animals had lower plasma leptin levels (F1,45 =
4.163 p = 0.047), (Fig. 5), consumed less food (F1,15=
4.580, p = 0.05), (Fig. 6), and gained less weight (F1,15 =
7.392, p = 0.017) during long-term forced swimming
stress, compared to the non-handled (Fig. 7).

Discussion
Neonatal handling has beneficial effects in the male rats.
In addition to its well-documented effects in increasing
their ability to cope with stress [2,3], our present results
show that it also improves their cognitive abilities. Fur-
thermore, handling resulted in increased hippocampal
GR and decreased MR levels. The observed increase in the
GR/MR ratio reflects prevalence of GR-mediated effects
and implies an increased HPA axis sensitivity. It is note-
worthy that the handling-induced increase in basal GR
levels, shown by others, [33] persists after exposure to a
short-term restraint stress, followed by the Morris water
maze as shown by the present results. The superior mne-
monic performance of the handled animals could be
attributed to the increased levels of GR, since they are
involved in the consolidation of learned information and
their activation is a prerequisite for optimal memory [5].

Furthermore, our results show that handling increases
BDNF. BDNF levels are known to be positively related to
learning as well as to have anti-depressive effects. This is
particularly interesting in relation both to the present data
regarding the effects of handling on learning and memory
and our previous results showing that handled males
show less "depressive" behavior as assessed by shorter
immobility times in the chronic forced swimming stress
[26]. It thus appears that handling protects males from
chronic stress-induced "depressive" behavior, possibly by
increasing basal BDNF levels.

Another pathway underlying the protective effects of han-
dling against stress could involve the serotoninergic sys-
tem, since our results show that handling increases 5-
HT1A receptors, which are directly involved in the action
of anti-depressants. Furthermore, results from our labora-
tory have shown that handling also increases serotonin
levels [34]. Interestingly, BDNF has been shown to have a
trophic effect on serotoninergic neurons [18] and in gen-
eral to interact with the serotoninergic system [17].
Among its actions presumed to be mediated through such
mechanisms are the effects on appetite, body weight and
plasma leptin levels [17,35]. It is noteworthy, that there is

Effect of handling on food consumption during long term forced swimming stressFigure 6
Effect of handling on food consumption during long term forced swimming stress. Handled animals consumed less 
food during long term forcedswimming (p = 0.05, one way ANOVA). Values represent the mean of food consumed in gr/100 
gr body weight ± S.E.M
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an inverse relationship between BDNF and leptin levels:
BDNF conditional knockout mice exhibit hyperphagia
[17] and over 15-fold higher leptin levels [35].

According to the results of the present work, during
chronic forced-swimming stress non-handled males, con-
sume more food and gain more weight compared to the
handled. Furthermore, after the last exposure to the stres-
sor, they have higher plasma leptin concentrations. These
findings may be relevant to the human condition of stress-
induced obesity [36,37], which is believed to be associ-
ated with glucocorticoid-induced resistance to leptin [38]
accompanied by elevated leptin levels [39]. In addition to
increased food intake, non-handled males showed
decreased energy expenditure, as revealed by longer
immobility times, during the last exposure to our chronic
forced-swimming paradigm [26]. Both decreased energy
expenditure and increased appetite push energy balance
towards energy storage and weight gain. This could
explain our results showing that during chronic-forced
swimming, non-handled males gain more weight than
handled males.

It has been proposed that the beneficial effects of neonatal
handling are the outcome of the increased maternal care,
which the handled animals receive [33]. Thus, our work
provides evidence that alterations in maternal care can
lead to long lasting changes in brain function affecting
cognitive abilities and affective states.

Conclusion
Handling has a beneficial effect on males, improving their
cognitive abilities and reducing their propensity to express
maladaptive behavior following chronic stressors. The
molecular basis of these effects on behavior could involve
the observed handling-induced increase in hippocampal
GR/MR, BDNF, and 5-HT1A receptor levels, as well as the
decrease in circulating leptinlevels.

List of abbreviations
5-HT1A type 1A serotonin receptors

ANOVA analysis of variance

BDNF brain derived neurotrophic factor

CA1-4 fields 1–4 of Ammon's horn

Effect of handling in body weight change during long term forced swimming stressFigure 7
Effect of handling in body weight change during long term forced swimming stress. Handled animal gained less 
weight during long-term forced swimming stress compared to the non-handled (p = 0.017, one way ANOVA). Values repre-
sent the mean % change in body weight ± S.E.M.
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DG hippocampal dentate gyrus

GR glucocorticoid receptors

HPA axis hypothalamic-pituitary-adrenal axis

MR mineralocorticoid receptors

MWM Morris watter maze

RIA radio-immuno-assay
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