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Abstract: Microvascular complications are one of the key causes of mortality among type 2 diabetic
patients. This study was sought to investigate the use of a novel machine learning approach for
predicting these complications using only the patient demographic, clinical, and laboratory profiles.
A total of 96 Bangladeshi participants with type 2 diabetes were recruited during their routine
hospital visits. All patient profiles were assessed by using a chi-squared (χ2) test to statistically
determine the most important markers in predicting three microvascular complications: cardiac
autonomic neuropathy (CAN), diabetic peripheral neuropathy (DPN), and diabetic retinopathy
(RET). A machine learning approach based on logistic regression, random forest (RF), and support
vector machine (SVM) algorithms was then developed to ensure automated clinical testing for
microvascular complications in diabetic patients. The highest prediction accuracies were obtained by
RF using diastolic blood pressure, albumin–creatinine ratio, and gender for CAN testing (98.67%);
microalbuminuria, smoking history, and hemoglobin A1C for DPN testing (67.78%); and hemoglobin
A1C, microalbuminuria, and smoking history for RET testing (84.38%). This study suggests machine
learning as a promising automated tool for predicting microvascular complications in diabetic
patients using their profiles, which could help prevent those patients from further microvascular
complications leading to early death.

Keywords: microvascular complications; cardiac autonomic neuropathy; diabetic peripheral
neuropathy; diabetic nephropathy; diabetic retinopathy; patient profiles; machine learning

1. Introduction

Diabetes is called a ‘silent killer’ that is killing around 1.6 million people each year,
making it the 5th leading cause of death worldwide [1]. There are two types of diabetes, type
1 and type 2. Type 2 is a chronic metabolic disorder and an expanding global health problem
in the past decades. It results in hyperglycemia, which reduces the ability of the body’s
cells to respond fully to insulin. This situation is called ‘insulin resistance’. In this state,
insulin production increases, due to the inaction of the hormone. The global prevalence
of type 2 diabetes in low- and middle-income countries was estimated to be 415 million
in 2015 and is predicted to rise to 642 million by 2040 [2]. Type 2 diabetes mellitus has
been rapidly rising worldwide over the past three decades, particularly in developing
countries, including Bangladesh [3]. The prevalence of type 2 diabetes in Bangladesh will
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be more than 50% within the next 15 years, placing Bangladesh as the country with the 8th
largest diabetic population in the world [4]. A study suggests that diabetic prevalence will
more than double between 2020 and 2030 [5]. The IDF (International Diabetes Federation)
Diabetes Atlas has estimated that if nothing is done, the number of diabetes patients may
rise to 629 million in 2045 [6] and cases may double from 151 million [7] from 2000 to
2025 [8]. The prevalence of diabetes is higher in rural areas [9], but it was high for males in
urban areas, whereas it was lower in rural areas compared to females in Bangladesh [10,11].

Neuropathies are a common persistent complication of both types of diabetes mellitus
that confer morbidity and mortality to diabetic patients. Cardiac autonomic neuropathy
(CAN) is associated with an increased risk of mortality [12,13]. A study including 1171 pa-
tients with type 1 and type 2 diabetes mellitus using a predefined HRV and spectral analysis
of R-R intervals reported abnormal findings for 34.3% of type 2 patients [14]. Neuropathy
is the most common microvascular complication of both type 1 and type 2 diabetes mel-
litus [15–17]. A study conducted in the outpatient section of BIRDEM Hospital, Dhaka,
Bangladesh found that 19.7% of all registered type 2 patients have diabetic peripheral neu-
ropathy (DPN) [18]. The prevalence of DPN among type 2 diabetic patients is much higher
in Europe. A study concludes that 32.1% of the diabetic patients in the United Kingdom,
17.6% in Turkey, and 35.4% in Spain have DPN [19]. The prevalence of DPN increases with
the age of the patient and also with the diabetic duration [18,20]. A multi-country study
conducted in Asia shows a 58.6% prevalence of micro or macroalbuminuria, indicating
an impending pandemic of diabetic renal (i.e., nephropathy) and cardiovascular diseases
in Asia [21]. A cross-sectional study with 836 rural Bangladeshi patients showed a high
prevalence of retinopathy in Bangladesh [22]. Results from 35 studies from 1980 to 2008
with 22,896 subjects with diabetes showed that the global prevalence for any RET was
34.6% (95% CI 34.5–34.8) [23]. Analyses of the exponential trend revealed an increase in
diabetes prevalence among the urban and rural populations at a rate of 0.05% and 0.06%
per year, respectively [24]. Increasing age, hypertension, and higher BMI were found to be
significant risk factors in the urban and rural communities of Bangladesh [25]. However,
the patients with type 2 diabetes in Bangladesh have limited knowledge of its risk factors,
cause, and management [26,27]. Depressive diabetic symptoms were found in 29% of males
and 30.5% of female participants with diabetes and 6.0% of males and 14.6% of female
subjects without diabetes [28].

Most recently, machine learning has emerged in many biomedical applications as a
promising tool to aid in decision-making regarding many diseases, including diabetes.
In [29], the authors managed to implement a machine learning approach based on decision
trees to identify the diabetic patients with or without treatment procedures from their lipid
profiles. In addition, Koren et al. [30] developed a trained model capable of diagnosing
diabetic patients with drugs that lower blood glucose levels. Moreover, in [30,31], the
authors proposed a deep neural network to diagnose diabetic patients from clinical profiles.
To recognize patterns among diabetic patients, Alloghani et al. [31] presented several
machine learning models that were able of characterizing patients and explain the re-
admission procedures. Several other studies [32–35] utilized machine learning and deep
neural networks in many other applications in diabetes diagnostics. However, even though
the implementation of machine learning models for diabetes diagnostics showed high
levels of performance, there is still a lack of knowledge about its impact on discriminating
between the various microvascular complications. In addition, it is essential to be able to
determine, both statistically as well as from a machine perspective, which features play a
critical role in characterizing these complications in type 2 diabetic patients.

In this paper, a study is conducted to investigate the efficiency of applying a machine-
learning-based approach in discriminating between diabetic patients, according to their
microvascular complication status (Figure 1). The novelty of the presented approach lies in
utilizing only the demographic, laboratory, and clinical information of patients within the
framework of machine learning for diabetes diagnostics. Therefore, time-consuming clinical
testing using advanced medical equipment can be avoided, which is essential in commu-
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nities with economic hardship or a lack of clinical expertise. In addition, the proposed
study allows for elaborating on the most important information within patient profiles
when testing for each microvascular complication. To the best of the authors’ knowledge,
there have been very limited attempts towards identifying certain types of microvascular
complications using machine learning. Therefore, a gap still exists in the literature about
how certain patient information impacts the discrimination between diabetes complications.
The present study provides a complete clinical testing approach for CAN-, DPN-, and
RET-positive cases by looking into patient information from a machine-based perspective.
NEP cases were not used in a separate machine-learning-based testing scenario because
they can be easily identified from their patient profile information. Further, with a focus
on CAN cases, the study investigates the ability of trained models to deeply discriminate
between CAN-only patients and patients with additional complications alongside CAN.
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Figure 1. A graphical view of the complete research work in this study, including patient enrollment;
demographic, clinical, and laboratory information acquisition; machine learning modeling; and
performance evaluation of the model.

2. Materials and Methods
2.1. Study Type

This is a cross-sectional study of Bangladeshi patients from Dhaka who have had
type 2 diabetes mellitus for more than 10 years. We followed the STROBE cross-sectional
reporting guidelines [36]. The study was approved by the ethical review committee of the
Bangladesh University of Health Sciences (BUHS/BIO/EA/17/01) and conforms to the
ethical principles outlined in the declaration of Helsinki and the Ministry of Health and
Family Welfare of Bangladesh.

2.2. Inclusion and Exclusion Criteria

The parameters that were included in the inclusion criteria: Bangladeshi national,
diagnosis of type 2 diabetes mellitus, above 40 years of age, able to give written consent,
and the diabetes duration was 10 years or more. The exclusion criteria included: stroke
history, having any heart disease, not being able to give consent, diabetes duration of less
than 10 years, and the presence of any other pathophysiology that may lead to one or more
similar complications, such as cancer.
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2.3. Participants and Complications

One hundred and three (47 males and 56 females) unrelated patients of more than
40 years of age that had type 2 diabetes for 10 years or more were randomly selected and
enrolled in the study during routine visits to the BIHS [37] Hospital between 18 December
2017 and 26 April 1018. This hospital is one of the most visited hospitals for diabetic
patients in Bangladesh.

In this study, the recruited patients were diagnosed with complications, such as CAN,
DPN, NEP, and RET (Table 1). The presence of these complications was confirmed by a
qualified physician, based on the criteria outlined by the report of the WHO consultation
group [38]. A diagnosis of cardiac autonomic neuropathy (CAN) was obtained from the
Ewing test, which included five tests: deep breathing, lying to standing, the Valsalva
maneuver, lying to standing BP, and sustained handgrip BP [39]. A diagnosis of diabetic
peripheral neuropathy (NCV) was obtained using a nerve conduction velocity (NCV) test.
There were several tests for recognizing polyneuropathy, CTS (carpal tunnel syndrome),
peroneal neuropathy, and other types of neuropathies. A diagnosis of nephropathy (NEP)
was determined by the ACR (albumin–creatinine ratio) level >30 mg/mmol for microalbu-
minuria, and >300 mg/mmol for macroalbuminuria [40]. A diagnosis of retinopathy (RET)
was obtained from the fundus image test and classified according to the WHO criteria [41].
Fundus imaging is a process where 3-D retinal semi-transparent tissues are projected onto
the imaging plane using reflected light and represented in 2-D [42].

Table 1. Types of complications of patients included in this study.

Name of the
Complication Type Number of Patients,

N (%) Total, N

CAN

pCAN (with CAN) 65 (67.708) 96

nCAN (without
CAN) 10 (10.417)

Test result
unavailable 21 (21.875)

DPN

pDPN (with DPN) 44 (45.833) 96

nDPN (without DPN) 46 (47.917)

Test result
unavailable 6 (6.250)

RET
pRET (with RET) 7 (7.292) 96

nRET (without RET) 89 (92.708)

Among these subjects, 70 were able to complete the diagnostic tests for all three
complications (CAN, DPN, and RET). There were several combined complications found
in some patients. The frequency of complications is shown in Table 2. To observe the
importance of demographic, clinical, and laboratory profiles, a multiclass analysis (3-class
analysis) was conducted using the classes marked in bold in Table 2 (CAN vs. CAN + DPN
vs. CAN + DPN + Others). CAN + DPN + Others are the combinations of CAN + DPN +
NEP, CAN + DPN + RET, and CAN + DPN + NEP + RET. These three classes were selected
from Table 2 with higher numerals.
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Table 2. Types and frequency of complications of diabetes patients.

Types of Complications Numerals, N (%) Total, N

nComp (no complication) 4 (4.16)

96

Single
Complications

CAN 21 (21.875)

DPN 3 (3.125)

NEP 0 (0.00)

RET 0 (0.00)

Combined
Complications

CAN and DPN 16 (16.67)

CAN and NEP 6 (6.25)

DPN and NEP 2 (2.083)

CAN, DPN, and NEP 12 (12.5)

CAN, DPN, and RET 2 (2.083)

CAN, DPN, NEP,
and RET 4 (4.16)

Not sure (due to unavailable test results) 26 (27.08)

2.4. Types of Variables
2.4.1. Demographic and Clinical Variables

The demographic data were collected from the patients at the time of enrollment. We
measured the waist circumference, height, and weight at the time of enrollment and listed the
value for the diabetic duration, age, gender, smoking history, and smokeless tobacco history.
All of these data were verified from the necessary and relevant documents. The clinical data
were measured at the time of enrollment. The blood pressure was measured on the first day
before starting their Ewing test. If the systolic blood pressure was >130 mm Hg and diastolic
blood pressure was >80 mm Hg or they were taking antihypertensive medications, it was called
hypertension. Dyslipidemia was diagnosed from the medications of the patient or by checking
the history of dyslipidemia of that patient. The data and its basic analysis are shown in Table 3.

Table 3. Demographic and clinical variables of patients.

Demographic Variables

Variables and
their subdivisions

Male Female All

Mean ± SD N (%of M) Mean ± SD N (% of F) Mean ± SD N (% of total)

Patients 47 (45.63) 56 (54.37) 103 (100)

Age (years) 57.70 ± 9.78 47 (100) 54.60 ± 7.93 56 (100) 56.01 ± 8.91 103 (100)

≥40 and <50 44.8 ± 3.22 10 (21.28) 45.6 ± 2.95 15 (26.79) 45.28 ± 3.02 25 (24.27)

≥50 and <60 53.2 ± 2.7 15 (31.91) 52.86 ± 3.17 22 (39.29) 53 ± 2.95 37 (35.92)

≥60 66.63 ± 4.78 22 (46.81) 63.73 ± 3.79 19 (33.93) 65.29 ± 4.54 41 (39.80)

CAN 58.74 ± 9.63 31 (65.95) 53.32 ± 7.40 37 (66.07) 55.79 ± 8.85 68 (66.01)

DPN 58.95 ± 10.33 21 (44.68) 52.58 ± 6.33 24 (42.85) 55.55 ± 8.93 45 (43.68)

Nep 58.5 ± 10.37 12 (25.53) 54.37 ± 8.75 16 (28.57) 56.14 ± 9.52 28 (27.18)

Ret 56.8 ± 11.64 5 (10.63) 47.5 ± 0.707 2 (3.571) 54.14 ± 10.54 7 (6.796)

BMI (kg/m2) 25.53 ± 3.47 47 (100) 27.93 ± 5.08 56 (100) 26.84 ± 4.56 103 (100)

Underweight: <18.5 0 0 (0) 0 0 (0) 0 0 (0)

Normal: ≥18.5, <25 23.54 ± 1.45 27 (57.45) 22.93 ± 1.69 17 (30.36) 23.31 ± 1.56 44 (42.72)

Overweight: ≥25.0, <30 26.54 ± 1.03 15 (31.91) 27.58 ± 1.32 24 (42.86) 27.18 ± 1.31 39 (37.86)
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Table 3. Cont.

Obese: ≥30 33.23 ± 4.09 5 (10.638) 34.18 ± 4.77 15 (26.79) 33.94 ± 4.52 20 (19.42)

CAN 26.26 ± 3.71 31 (65.95) 27.94 ± 5.82 37 (66.07) 27.17 ± 5.01 68 (66.01)

DPN 25.52 ± 3.56 21 (44.68) 28.75 ± 5.01 24 (42.85) 27.24 ± 4.64 45 (43.68)

Nep 26.17 ± 4.22 12 (25.53) 29.18 ± 5.60 16 (28.57) 27.89 ± 5.19 28 (27.18)

Ret 26.79 ± 5.53 5 (10.63) 26.29 ± 2.09 2 (3.571) 26.65 ± 4.60 7 (6.796)

Smoking history 9 (19.15) 0 (0) 9 (8.74)

Smokeless tobacco history 10 (21.28) 17 (30.357) 27 (26.21)

Clinical variables

Name of the Variables
and

their subdivisions

Male Female All

Mean ± SD N (%of M) Mean ± SD N (% of F) Mean ± SD N (% of total)

Diabetes duration (years) 16.17 ± 6.07 47 (100) 15.55 ± 5.76 56 (100) 15.83 ± 5.88 103 (100)

≥10 and <20 13.54 ± 2.76 37 (78.72) 12.60 ± 2.64 41 (73.21) 13.05 ± 2.73 78 (75.73)

≥20 and <30 24 ± 3.116 8 (17.02) 22.30 ± 1.93 13 (23.21) 22.95 ± 2.52 21 (20.39)

≥30 33.5 ± 2.12 2 (4.26) 32 ± 2.828 2 (3.57) 32.75 ± 2.22 4 (3.88)

CAN 16.54 ± 6.20 31 (65.95) 16.13 ± 6.01 37 (66.07) 16.32 ± 6.05 68 (66.01)

DPN 17.33 ± 7.43 21 (44.68) 14.16 ± 4.80 24 (42.85) 15.64 ± 6.30 45 (43.68)

Nep 18.91 ± 8.11 12 (25.53) 16.81 ± 6.63 16 (28.57) 17.71 ± 7.24 28 (27.18)

Ret 13 ± 2.828 5 (10.63) 17.5 ± 3.535 2 (3.571) 14.28 ± 3.49 7 (6.796)

Waist Circumference (cm) 90.84 ± 8.61 47 (100) 97.38 ± 9.46 56 (100) 94.39 ± 9.61 103 (100)

Men ≥90 97.40 ± 6.7 23 (48.94)

Women ≥80 97.72 ± 9.19 55 (98.21)

CAN 92.09 ± 8.47 31 (65.95) 96.58 ± 9.30 37 (66.07) 94.54 ± 9.15 68 (66.01)

DPN 92.64 ± 8.13 21 (44.68) 98.63 ± 9.07 24 (42.85) 95.84 ± 9.06 45 (43.68)

Nep 91.22 ± 6.71 12 (25.53) 97.31 ± 9.80 16 (28.57) 94.70 ± 9.00 28 (27.18)

Ret 89.91 ± 5.26 5 (10.63) 93.98 ± 14.36 2 (3.571) 91.07 ± 7.53 7 (6.796)

Systolic blood pressure
(mmHg) 141.2 ± 19.5 47 (100) 136.0 ± 20.14 56 (100) 138.4 ± 19.94 103 (100)

≤119 108 ± 5.29 4 (8.51) 108.3 ± 8.96 12 (21.43) 108.2 ± 8.03 16 (15.53)

≥120 and <14 129.2 ± 6.67 19 (40.43) 130.1 ± 4.98 19 (33.93) 129.7 ± 5.82 38 (36.89)

≥140 and <160 148.2 ± 7.52 15 (31.91) 148.3 ± 5.71 19 (33.93) 148.2 ± 6.47 34 (33.01)

≥160 169.6 ± 9.72 9 (19.15) 171.3 ± 6.40 6 (10.714) 170.3 ± 8.33 15 (14.56)

CAN 145.0 ± 20.16 31 (65.95) 134.0 ± 21.30 37 (66.07) 139.0 ± 21.35 68 (66.01)

DPN 148.5 ± 20.82 21 (44.68) 134.8 ± 15.96 24 (42.85) 141.2 ± 19.43 45 (43.68)

Nep 153.0 ± 15.16 12 (25.53) 136.1 ± 17.22 16 (28.57) 143.4 ± 18.19 28 (27.18)

Ret 158.6 ± 16.14 5 (10.63) 137.5 ± 17.67 2 (3.571) 152.5 ± 18.21 7 (6.796)

Diastolic blood pressure
(mmHg) 78.97 ± 9.86 47 (100) 76.42 ± 11.96 56 (100) 77.59 ± 11.07 103 (100)

≤79 71.36 ± 7.45 22 (46.81) 67.96 ± 6.98 32 (57.14) 69.35 ± 7.30 54 (52.43)

≥80–89 82.73 ± 2.83 19 (40.43) 83.81 ± 3.08 16 (28.57) 83.22 ± 2.95 35 (33.98)

≥90–99 94 ± 3.39 5 (10.64) 94.14 ± 2.61 7 (12.5) 94.08 ± 2.81 12 (11.65)

≥100 100 ± 0 1 (2.13) 105 ± 0 1 (1.79) 102.5 ± 3.54 2 (1.94)

CAN 78.45 ± 11.40 31 (65.95) 75.48 ± 12.76 37 (66.07) 76.83 ± 12.16 68 (66.01)

DPN 78.19 ± 12.23 21 (44.68) 76.87 ± 10.63 24 (42.85) 77.48 ± 11.29 45 (43.68)

Nep 74.91 ± 13.48 12 (25.53) 75.93 ± 10.81 16 (28.57) 75.5 ± 11.79 28 (27.18)

Ret 84.6 ± 10.13 5 (10.63) 72.5 ± 3.54 2 (3.571) 81.14 ± 10.27 7 (6.796)
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2.4.2. Laboratory Data

The laboratory data were taken from the laboratory of the hospital after the enrollment.
The laboratory test parameters were hemoglobin A1c (HbA1c), microalbuminuria, urinary
creatinine, and the albumin–creatinine ratio. The data and its basic analysis are shown in
Table 4.

Table 4. Laboratory variables of patients.

Types and Their
Variables Male Female All

Mean ± SD N (%of M) Mean ± SD N (% of F) Mean ± SD N (% of total)

HbA1c (mmol/mol,%)

Not specified 9.066 ± 1.944 47 (45.63) 8.621 ± 1.453 56 (54.37) 8.824 ± 1.701 103 (100.0)

Optimal: <7 2 (4.26) 8 (14.29) 10 (9.71)

Fair: 7–8 12 (25.53) 11 (19.64) 23 (22.33)

High: >8 33 (70.21) 37 (66.07) 70 (67.96)

CAN 9.213 ± 1.790 31 (45.59) 8.716 ± 1.491 37 (54.41) 8.943 ± 1.640 68 (66.02)

Optimal: <7 1 (3.23) 4 (10.81) 5 (7.35)

Fair: 7–8 6 (19.35) 8 (21.62) 14 (20.59)

High: >8 24 (77.42) 25 (67.57) 49 (72.06)

DPN 9.291 ± 1.988 21 (46.67) 8.930 ± 1.667 24 (53.33) 9.098 ± 1.810 45 (43.69)

Optimal: <7 2 (9.52) 3 (12.50) 5 (11.11)

Fair: 7–8 3 (14.29) 4 (16.67) 7 (15.56)

High: >8 16 (76.19) 17 (70.83) 33 (73.33)

Nephropathy 9.9750 ± 2.221 12 (42.86) 8.763 ± 1.902 16 (57.14) 9.282 ± 2.094 28 (27.18)

Optimal: <7 1 (8.33) 3 (18.75) 4 (14.29)

Fair: 7–8 1 (8.33) 4 (25.00) 5 (17.86)

High: >8 10 (83.33) 9 (56.25) 19 (67.86)

Retinopathy 10.720 ± 3.334 5 (71.43) 11.100 ± 1.980 2 (28.57) 10.829 ± 2.846 7 (6.80)

Optimal: <7 0 (0.00) 0 (0.00) 0 (0.00)

Fair: 7–8 2 (40.00) 0 (0.00) 2 (28.57)

High: >8 3 (60.00) 2 (100.00) 5 (71.43)

Microalbuminuria (mg)

Not specified 60.6164 ± 99.490 47 (46.08) 49.571 ± 82.123 55 (53.92) 54.661 ± 90.247 102 (99.03)

Optimal: <30 34 (72.34) 38 (69.09) 72 (70.59)

Microalbuminuria: 30–300 10 (21.28) 15 (27.27) 25 (24.51)

Macro albuminuria: >300 3 (6.38) 2 (3.64) 5 (4.90)

CAN 88.439 ± 113.172 31 (45.59) 56.981 ± 93.199 37 (54.41) 71.322 ± 103.204 68 (66.02)

Optimal: <30 18 (58.06) 25 (67.57) 43 (63.24)

Microalbuminuria: 30–300 10 (32.26) 10 (27.03) 20 (29.41)

Macro albuminuria: >300 3 (9.68) 2 (5.41) 5 (7.35)

DPN 121.925 ± 124.49 21 (47.73) 55.2565 ± 87.479 23 (52.27) 87.075 ± 110.720 44 (42.72)

Optimal: <30 10 (47.62) 15 (65.22) 25 (56.82)

Microalbuminuria: 30–300 8 (38.10) 7 (30.43) 15 (34.09)

Macro albuminuria: >300 3 (14.29) 1 (4.35) 4 (9.09)

Nephropathy 210.308 ± 91.414 12 (42.86) 144.519 ± 98.407 16 (57.14) 172.7143 ± 99.417 28 (27.18)

Optimal: <30 0 (0.00) 1 (6.25) 1 (3.57)

Microalbuminuria: 30–300 9 (75.00) 13 (81.25) 22 (78.57)
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Table 4. Cont.

Types and Their
Variables Male Female All

Macro albuminuria: >300 3 (25.00) 2 (12.50) 5 (17.86)

Retinopathy 158.62 ± 140.295 5 (71.43) 136.15 ± 178.691 2 (28.57) 152.20 ± 136.247 7 (6.80)

Optimal: <30 2 (40.00) 1 (50.00) 3 (42.86)

Microalbuminuria: 30–300 2 (40.00) 1 (50.00) 3 (42.86)

Macro albuminuria: >300 1 (20.00) 0 (00.00) 1 (14.28)

Urinary Creatinine (mg/ dL)

Not specified 194.46 ± 139.83 130.87 ± 117.85 160.17 ± 131.70 102 (99.03)

Target 20–320
mg/ dL 41 (87.23) 50 (90.91) 91 (89.22)

Non-Target >320
mg/ dL 6 (12.77) 4 (7.27) 10 (9.80)

CAN 236.15 ± 150.39 31 (45.59) 123.28 ± 107.24 37 (54.41) 174.74 ± 139.68 68 (66.02)

Target 20–320
mg/ dL 25 (80.65) 34 (91.89) 59 (86.76)

Non-Target >320
mg/ dL 6 (19.35) 2 (5.41) 8 (11.76)

DPN 236.84 ± 160.20 21 (47.73) 157.52 ± 149.63 23 (52.27) 195.34 ± 158.11 44 (42.72)

Target 20–320
mg/ dL 17 (80.95) 20 (86.96) 37 (84.09)

Non-Target >320
mg/ dL 4 (19.05) 3 (13.04) 7 (15.91)

Nephropathy 256.43 ± 205.44 12 (42.86) 152.65 ± 77.99 16 (57.14) 197.13 ± 152.68 28 (27.18)

Target 20–320
mg/ dL 9 (75.00) 16 (100.0) 25 (89.29)

Non-Target >320
mg/ dL 3 (25.00) 0 (0.00) 3 (10.71)

Retinopathy 211.36 ± 55.58 5 (71.43) 159.95 ± 135.98 2 (28.57) 196.67 ± 75.96 7 (6.80)

Target 20–320
mg/ dL 5 (100.0) 2 (100.0) 7 (100.0)

Non-Target >320
mg/ dL 0 (0.00) 0 (0.00) 0 (0.00)

Albumin–Creatinine Ratio (mg/mmol)

Not Specified 32.09 ± 52.45 47 (46.08) 39.28 ± 74.58 55 (53.92) 35.97 ± 65.11 102 (99.03)

Optimal: <3 12 (25.53) 10 (18.18) 22 (21.57)

Borderline high:
3–30 23 (48.94) 29 (52.73) 52 (50.98)

High: >30 12 (25.53) 16 (29.09) 28 (27.45)

CAN 44.35 ± 60.99 31 (45.59) 45.36 ± 86.19 37 (54.41) 44.90 ± 75.22 68 (66.02)

Optimal: <3 7 (22.58) 6 (16.22) 13 (19.12)

Borderline high:
3–30 12 (38.71) 20 (54.05) 32 (47.06)

High: >30 12 (38.71) 11 (29.73) 23 (33.82)

DPN 60.73 ± 68.22 21 (47.73) 35.97 ± 51.28 23 (52.27) 47.79 ± 60.55 44 (42.72)

Optimal: <3 6 (28.57) 5 (21.74) 11 (25.00)

Borderline high:
3–30 4 (19.05) 11 (47.83) 15 (34.09)

High: >30 11 (52.38) 7 (30.43) 18 (40.91)

Nephropathy 105.960 ± 57.952 12 (42.86) 111.404 ± 109.675 16 (57.14) 109.071 ± 89.771 28 (27.18)
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Table 4. Cont.

Types and Their
Variables Male Female All

Optimal: <3 0 (0.00) 0 (0.00) 0 (0.00)

Borderline high:
3–30 0 (0.00) 0 (0.00) 0 (0.00)

High: >30 12 (100.0) 16 (100.0) 28 (100.0)

Retinopathy 86.567 ± 87.999 5 (71.43) 58.923 ± 61.616 2 (28.57) 78.671 ± 77.312 7 (6.80)

Optimal: <3 0 (0.00) 0 (0.00) 0 (0.00)

Borderline high:
3–30 2 (40.00) 1 (50.00) 3 (42.86)

High: >30 3 (60.00) 1 (50.00) 4 (57.14)

2.5. Machine Learning Modeling
2.5.1. Clinical Testing Approach

To provide a complete diagnosis of a type 2 diabetes patient, four tests in two steps
were applied sequentially (Figure 2) on patients’ demographic, clinical, and laboratory
(DCL) information. This study supports type 2 diabetic patients with microvascular com-
plications having a better screening from their DCL information. The approach combines
a single-class binary classification model with three different classifiers and a multiclass
classification model. The single-class classification model can run three tests in parallel
to classify CAN, DPN, and RET separately. If all three tests result in a negative class, it
means the patient with type 2 diabetes has no microvascular complications. If the test
shows positive results, the patient goes for that specific complication treatment. However,
obtaining a positive class from the CAN test leads to a multiclass classification model. This
model can determine whether the patient has other microvascular complications along
with CAN. Thus, this results of this model include: CAN (having only CAN), CANDPN
(having DPN with CAN), CANDPN+ (having NEP or RET with CAN and DPN). The
resulting class determines the treatment that should be provided to the patient.

2.5.2. Analysis of the Demographic Clinical and Laboratory Profiles

The demographic variables (such as gender, height, age, weight, smoking history,
tobacco history, and diabetes duration), clinical measurements (waist circumference, BMI,
systolic blood pressure, and diastolic blood pressure), and measured laboratory values
(such as HbA1c, microalbuminuria, urinary creatinine, and albumin–creatinine ratio) were
selected for further analysis as patient information.

A feature selection approach was then followed based on the univariate chi-squared
test to choose the foremost critical factors among all the demographic, clinical, and labora-
tory variables. In this test, a statistical hypothesis investigation is performed for each DCL
feature to test whether the observed calculations coordinate with the anticipated ones, i.e.,
patient’s complication type. Moreover, it gives a noteworthy distinction p-value measure
(p-value < 0.05) between categories based on the statistical calculations and desire [43]. A
feature with a lower p-value signifies that this variable is most likely dependent on the
complication label. Hence, it is vital for anticipating the complication and has discrimina-
tory characteristics. In this way, a score of significance is returned for each DCL profile
utilized within the test as score = −log (p). In this work, we call this score importance. We
calculated importance using a function called fscchi2 () in MATLAB 2021a.
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Figure 2. The proposed procedure for screening diabetic patients. Every patient initially goes through
the information acquisition of this clinical diagnosis flowchart. Five tests are then applied in two
stages. The second stage (multiclass class is only for the patients who go through the CAN test
and have a positive CAN. A single-class classification can predict the presence of microvascular
complications (CAN, DPN, or RET) and can predict whether there is any presence of complications.
Multiple complications with CAN could be classified using the multiclass classifier.

2.5.3. Support Vector Machine (SVM)

SVM is an exceedingly popular machine learning algorithm used in classification and
regression problems. It is one of the classic machine learning techniques that can help to
solve big data classification problems. SVM allows the classification of single-class as well as
multiclass classification problems. It is commonly utilized as an exception finder, where the
model is prepared to recognize training data from any other irrelevant information [44]. The
model tends to distinguish which unused objects are closely representing the selected class
in the training phase, which is generally called a positive class [45]. A set of probabilities
has been returned by the model to show the degree of matching between the testing and
training samples. In this paper, a single-class SVM was used for the training model in the
CAN, DPN, and RET tests. Having the complication has been considered as the positive
class in the single-class classification. However, a multiclass SVM was for training in the
CANDPNOthers test. To guarantee the highest performance from the model, a non-linear
RBF (radial basis function) kernel was used with fine-tuned hyper-parameters.

2.5.4. Random Forest (RF)

Random forest (RF), also known as classification and regression tree (CART), is a
form of decision trees, where a set of tree-like trait nodes is associated with a set of sub-
trees of decision nodes [46,47]. This algorithm is considered a conglomeration strategy
that employs the concepts of bagging. All the decision trees are calculated based on the
corresponding resource cost, outcome chances, and utility to provide a prediction. The
prediction preparation begins by doling out an occasion at each tree to its root node. At that
point, for each of the subsequent sub-nodes, the results are calculated successively. Once a
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leaf is experienced, the tree-like nodes halt and an occasion is relegated with a prediction.
All of the occasions and predictions shape the ultimate choice made by the tree model [48].
In this work, 20–120 decision trees were utilized to construct the model. The choice of the
number of trees for each single-class test, as well as the multiclass test, was fine-tuned to
guarantee the greatest conceivable performance from the model.

2.5.5. Logistic Regression

Logistic regression is one of the most commonly used machine learning algorithms in
statistics. It is a statistical model that uses a logistic function to represent a binary dependent
variable in its most basic form, though there are many more advanced variants. Logistic
regression is a technique for estimating the parameters of a logistic model in regression
analysis. The natural logarithm of the odds is used as a regression function of the predictors
in the logistic regression model. The expression for a one predictor (X) one outcome (Y)
logistic regression model is ln [odds (Y = 1)] = β0 + β1X, where ln is the natural algorithm,
Y = 1 or Y = 0 refers to the event occurrence of the event, β0 is the intercept term, and β1 is
the regression coefficient that refers to the change in the logarithm of the event’s odds with
a 1-unit change in the predictor X [49].

2.5.6. Training and Testing

A leave-one-out scheme was followed in the single-class models, as well as in the
multiclass model, to ensure the incorporation of the highest possible number of samples
within the prepared models. Besides, it was fundamental to supply a prediction for each
and every patient. An iterative process was applied in this scheme by selecting one subject
as testing data, whereas the remaining subjects were used for training. The method repeated
on each cycle until a prediction was given for every subject.

2.5.7. Parameter Optimization

In each test, several model parameters were fine-tuned to ensure the highest acquirable
model performance. Performance was measured in the form of accuracy, sensitivity, specificity,
precision, f1-score, and area under the curve (AUC). To handle data imbalance (65 positive
classes vs. 10 negative classes in the CAN test and 7 positive classes vs. 89 negative classes in
the RET test), a model parameter called ‘prior probability’ was introduced in the algorithm
during the training phase. The prior probabilities were found observationally, where the initial
weight was set to each class that was equal to its number of samples relative to the whole
number of samples [50]. Prior probability was not used in the DPN test, as it had balanced
classes. The minimum leaf size and bag fraction value were used as per the behavior of the
RF model, on an iterative basis and keeping the optimum value.

3. Results
3.1. Demographic, Clinical, and Laboratory Profiles

Demographic and clinical data, along with major comorbidities with type 2 diabetes, are
shown in Table 3, and laboratory profiles are shown in Table 4. There were 47 (45.63%) male
patients and 56 (54.37%) female patients. The mean age of the patients was 56 years (±8.913),
the mean ages of the male and female patients were 57.1 years (±9.78) and 54.6 years (±7.93),
respectively. This is consistent with the finding that the diabetic population in Bangladesh, as
well as south Asia, are comparatively younger than in the west [51,52]. The sub-variables under
‘Age’ show that 46.8% of the male subjects were greater than 60 years old, but about 40% female
subjects were between 40 and 50, though, overall, the patients showed an increasing prevalence
for a higher age. A study in Spain also showed that an increase in patient age increases the
prevalence of diabetic complications [19]. In this study, 27 (57.45%) males, 35 (62.50%) females,
and a total of 62 (60.19%) patients had a history of hypertension (mean systolic blood pressure
was 138.4 mm Hg). A total of 35 (33.98%) patients had dyslipidemia, where 14 (29.79%) were
male and 21 (37.5%) were female. Only nine (8.74%) patients had a history of smoking, and
they were all male. In addition, the overweight condition (42.86%) was common for female
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diabetic patients, with more than 98% female subjects having a waist circumference higher than
80 cm, while 57.45% of the male subjects had a normal weight. Though obesity was relatively
common for female patients (27%), a total of 20 (19.42%) patients were obese (mean BMI (body
mass index) = 33.94 kg/m2 and mean waist circumference = 90.84 cm for males and 97.38 cm
for females). For the retinopathy patients, the waist circumference was 89.91 cm for males and
93.98 cm for females, where 15 (26.79%) were female and 5 (10.638%) were males.

More than 67% of the patients for any type of complication had a high HbA1c (mean
HbA1c = 8.824, male mean HbA1c = 9.066, and female mean HbA1c = 8.621 for the
patients with CAN). The retinopathy patients had very high HbA1c (mean HbA1c = 10.829,
male mean HbA1c = 10.720, and female mean HbA1c = 11.100). Microalbuminuria was
found in 25 (24.51%) patients, where 10 were male and 15 were female. In the case of
nephropathy, a total of 22 (78.57%) patients had microalbuminuria. All the retinopathy
patients had a creatinine level of 20 to 320 mg/dL. The mean ACR (albumin–creatinine ratio)
for the patients was 35.967 mg/mmol, where 47 (46.08%) males had a mean ACR of 32.092
mg/mmol, and 55 (53.92%) females had a mean ACR of 39.280 mg/mmol. Neuropathy
was the most common complication in Bangladeshi diabetic type 2 patients of more than
40 years’ old who had diabetes for more than 10 years. Besides, there were very few
retinopathy patients, so it implies that the rate of retinopathy in Bangladeshi type 2 diabetes
patients is very low.

3.2. Complications of Type 2 Diabetes

Overall, more than one clinically diagnosed complication was present in 99 subjects
out of the cohort of 103 diabetics included in this study. Most of the subjects had CAN
(66.02%), followed by diabetic peripheral neuropathy (43.69%), nephropathy (27.18%), and
retinopathy (6.8%). Those patients who had retinopathy also had CAN and DPN. The rate
of retinopathy complication was very low. Only seven retinopathy patients were found,
and five patients out of them had all types of complication, while the other two had CAN
and DPN. This trend suggests that RET should be the final stage of the above four diabetes
microvascular complications in Bangladesh. We did not find any subject with only NEP
or only RET. If a patient had RET, we can say that he/she had CAN and DPN both or
CAN, DPN, and NEP, i.e., all the complications. The average diabetic duration of the male
patients with CAN and DPN was high (17.33 years for CAN and 18.91 years for DPN) and
comparatively lower for RET (13 years). The female patients with retinopathy had a high
diabetic duration of 17.5 years. They did not check for DM until they became very ill, so
their reported DM duration is from the day they first found out, not from the actual moment
of DM development. The overall result indicates a high prevalence of complications in
Bangladeshi type 2 diabetes patients.

3.3. Classification of Cardiac-Related Microvascular Complications

To assess the association between any complication (as an outcome) and significant
demographic, clinical, and laboratory variables of the patients, several machine learning
models (logistic regression, RF, and SVM) were trained by changing the model parameters
in an iterative way and observing the sensitivity, specificity, precision, f1-score, and accuracy
of the model. The chi-squared (χ2) test was used to choose significant variables and we use
only these significant variables to determine the classification accuracy. The threshold for a
significant importance level was different for each test.

3.3.1. CAN

We found diastolic BP (importance 2.1), albumin–creatinine ratio (importance 1.6),
and gender (importance 1) to be the significant predictors for screening CAN, which is the
most common complication among Bangladeshi patients with type 2 diabetes. We had
65 positive and 10 negative CAN patients in our study. To find the best suitable result
and to maximize the model performance, we used prior probability in the classification
model of CAN. We found that RF was the best model at the weight of (1.05 and 0.9). The
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performance (shown in Table 5) of the model was obtained as accuracy 98.68%, sensitivity
98.48%, and specificity 100%. The performance is shown in Figure 3. In Table 6, the 95%
confidence intervals, including the mean values of the features, are provided for CAN
patients to represent the true mean of the population.

Table 5. Comparison between two machine learning models for each test.

Tests CAN
(pCAN vs. nCAN)

DPN
(pDPN vs. nDPN)

RET
(pRET vs. nRET)

logistic regression
Accuracy, % 80 55.56 88.54
Sensitivity, % 85.71 55.77 93.33
Specificity, % 85.71 55.26 16.67

SVM
Accuracy, % 77.33 67.8 80.5
Sensitivity, % 29.41 68.89 96.05
Specificity, % 91.34 66.67 20

RF
Accuracy, % 98.67 67.8 84.38
Sensitivity, % 100 68.09 97.44
Specificity, % 98.48 67.44 27.78
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Table 6. 95% Confidence intervals for cardiac autonomic neuropathy patients (categorical features,
such as gender, smoking history, and smokeless tobacco history, have been omited from the table);.
The subject count is 75 (65 pCAN, and 10 nCAN patients), and the features that are used in the model
classifier are marked in bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 56.167 54.315 58.018
‘Waist Circumference’ 141.382 136.503 146.262

‘Diabetes Duration’ 15.844 14.571 17.117
‘BMI’ 26.657 25.694 27.621

‘Systolic BP’ 138.900 134.847 142.953
‘Diastolic BP’ 77.600 75.355 79.845

‘Weight’ 65.517 63.634 67.400
‘Height’ 157.399 155.252 159.546
‘HbA1c’ 8.799 8.465 9.133

‘Microalbuminuria’ 55.741 36.539 74.943
‘Urinary Creatinine’ 160.656 131.724 189.588

‘Albumin–Creatinine Ratio’ 37.387 23.178 51.595

3.3.2. DPN

Similarly, microalbuminuria (importance 5.1), smoking history (importance 2.9), smoke-
less tobacco history (importance 2.7), HbA1c (importance 2.4), albumin–creatinine ratio
(importance 1.9), systolic BP (importance 1.8), diastolic BP (importance 1.4), and urinary
creatinine (importance 1.4) were found to be the most significant predictors for determining
DPN from type 2 diabetes patients in Bangladesh. This is consistent with other findings
that age and diabetic duration are insignificant [15,53–58] here, since all the patients were
more than 40 years of age and the diabetic duration was a minimum of 10 years. Both
the RF and SVM models showed the highest accuracy for classifying DPN in the patients
with type 2 diabetes mellitus from Bangladesh. Figure 4 illustrates the result of classifying
DPN, and the numeric values are stored in Table 5. Table 7 shows the true means and 95%
confidence intervals of the populations included in the DPN test.

Table 7. 95% confidence intervals for diabetic peripheral neuropathy patients (categorical features,
such as gender, smoking history, and smokeless tobacco history, have been omited from the table).
The subject count is 90 (44 pDPN, and 46 nDPN patients), and the features that are used in the model
classifier are marked in bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 55.844 54.017 57.671
‘Waist Circumference’ 140.642 135.853 145.432

‘Diabetes Duration’ 15.781 14.580 16.983
‘BMI’ 26.657 25.713 27.600

‘Systolic BP’ 138.385 134.449 142.322
‘Diastolic BP’ 77.615 75.473 79.756

‘Weight’ 65.658 63.824 67.491
‘Height’ 157.603 155.475 159.730
‘HbA1c’ 8.902 8.554 9.251

‘Microalbuminuria’ 55.269 36.692 73.847
‘Urinary Creatinine’ 160.770 133.508 188.032

‘Albumin-Creatinine Ratio’ 36.744 23.202 50.286
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3.3.3. RET

In the case of diabetic retinopathy (RET), HbA1c (importance 6.1), microalbuminuria
(importance 4.7), smokeless tobacco history (importance 2.8), weight (importance 1.9),
gender (importance 1.8), urinary creatinine (importance 1.7), and albumin–creatinine ratio
(importance 1.7) were found to be significant predictors to classify whether a type 2 diabetes
mellitus patient has retinopathy (Figure 5). A previous study in Bangladesh showed a 5.4%
prevalence of retinopathy patients [22], and in our study, we had 6.8% of type 2 diabetes
patients with retinopathy. The accuracy (shown in Table 5) of the RF model was 84.38%.
To show the true mean of the features in diabetic retinopathy test, Table 8 is added with
means and 95% confidence interval information.
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Figure 5. (a) Chi-squared test result. The importance of different marked features was used in the
model as an identifier; (b) confusion matrix of the RET test (pClass vs. nClass); (c) performance
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Table 8. 95% confidence interval for diabetic retinopathy patients (categorical features, such as gender,
smoking history, and smokeless tobacco history, have been omited from the table). The subject count
is 96 (7 pRet and 89 nRet patients) and the features that are used in the model classifier are marked in
bold text.

Features Mean 95% CI (Lower Limit to Upper Limit)

‘Age’ 55.707 53.651 57.763
‘Waist Circumference’ 139.958 134.525 145.391
‘Diabetes Duration’ 15.827 14.486 17.167

‘BMI’ 26.817 25.683 27.951
‘Systolic BP’ 138.813 134.153 143.474
‘Diastolic BP’ 77.347 74.802 79.891

‘Weight’ 65.601 63.476 67.727
‘Height’ 157.177 154.610 159.744
‘HbA1c’ 8.955 8.553 9.356

‘Microalbuminuria’ 67.648 44.636 90.660
‘Urinary Creatinine’ 172.120 139.197 205.044
‘Albumin-Creatinine

Ratio’ 44.128 27.134 61.123

3.3.4. CANDPNOthers

The multiclass analysis test provides a comprehensive picture of patients who have
other diabetic neuropathies in addition to CAN. A total of 55 patients were considered as
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training and testing inputs for machine learning models, with 16 suffering from CANDPN
and 14 suffering from CANDPN+, where ‘Others’ included NEP and RET. In the CANDP-
NOther test, three classes were assigned to the model, i.e., CAN vs. CANDPN (the patients
with both CAN and DPN complications) vs. CANDPN+ (the patients with CAN, DPN, and
NEP; CAN, DPN, and RET; or CAN, DPN, NEP, and RET). We only included these classes
due to the insufficient number of patients in the other classes. SVM performed better in
this multiclass classification rather than RF. The confusion matrix (Figure 6) illustrates
that the CAN and CANDPN+ classes could be classified effectively. However, identifying
CANDPN patients using this model might be inefficient. The features used in this model
were the albumin–creatinine ratio and microalbuminuria. These two features are common
for all the binary tests that have been performed in this study.
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4. Discussion

This study demonstrated the importance of demographic, clinical, and laboratory
profiles in the machine learning domain for the classification of diabetic microvascular
complications. Moreover, this study illustrated a complete machine-learning-based clinical
approach to screen diabetic patients suffering from diabetic microvascular complications.
It also provides an association of other microvascular complications along with CAN. It
provides a stepwise clinical approach to screen diabetes microvascular complications for
the Bangladeshi type 2 diabetic cohort. The high performance achieved in each test strongly
suggests that DCL profiles should be included as features in the machine learning approach
to ensure a high classification accuracy. In our study, we also showed the DCL profiles that
are highly associated with a kind of complication. Thus, the clinician can easily coordinate
the physiological grounds.

4.1. Demographic, Clinical, and Laboratory Profiles

In this study, we demonstrated the significance of DCL profiles to screen a microvas-
cular complication of the type 2 diabetic population in Bangladesh. The profiles that were
used in this study are easily collectible by any hospital in Bangladesh. Moreover, gathering
this information from a patient is not costly. Furthermore, all the DCL profiles used in this
study are not required to be collected for screening using the proposed method. Only the
significant features that are listed (Section 3.3) for each test will be needed to execute the
test. However, to execute all the tests proposed in this study, a mathematical union of all
the significant features that are used in each test would be required.
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Diastolic BP, Albumin–Creatinine Ratio, and Gender were highly associated with CAN
in our CAN test. Thus, we have found the highest accuracy for the CAN classifier by using
these three predictors. In [59,60], the authors showed the influence of hypertension on diabetic
complications, and our study we found that diastolic BP was a good predictor variable to classify
CAN. However, we have found that HbA1c was not required for testing CAN. On the other
hand, microalbuminuria was significantly associated with peripheral neuropathy, nephropathy,
and retinopathy. This finding supports both the studies in [61,62], where the authors showed
the association of microalbuminuria with nephropathy and retinopathy. Moreover, in [63],
Bell et. al. observed the significant association of microalbuminuria with diabetic neuropathy.
HbA1c was significantly associated with retinopathy in our study. It was also associated with
peripheral neuropathy. In [64,65], the authors established the relationship between HbA1c and
microvascular complications. Many authors showed the significance and association of different
demographic, clinical, and laboratory parameters with diabetic microvascular complications.
However, in our study, we found significant DCL profiles using a statistical model and used
these significant profiles with a machine learning model to show the performance.

4.2. Machine Learning as a Screening Tool

This work describes the application of a modern machine learning model, combining
the use of statistically significant features to exploit demographic, clinical, and laboratory
data to extract a classifier that can classify type 2 diabetes microvascular complications.
To address the class imbalance, a machine learning hyper-parameter ‘prior probability’
was used. Picking up the benefits of the recent advances of machine learning in the area
of diabetes diagnosis is considered to be fundamental. It makes a difference within the
investigation of colossal healthcare records and changes them into clinical experiences that
can help healthcare experts in prompt and intelligent decision-making. Even though the
involvement of a clinician within the diagnosis and treatment of diabetic patients may be
necessary, machine learning models might be able to provide an early-stage screening that
can avoid numerous complications from further development. Besides, when there is a
tremendous request for medical specialists or unbounded data available, it is quite hard to
provide a complete diagnostic for each quite effectively. In this manner, pre-trained machine
learning models can make the process faster and less rigorous for healthcare suppliers
and practitioners. Different sorts of machine learning algorithms, such as support vector
machines (SVM), K-nearest neighbor (KNN), choice trees, etc., have been utilized broadly
within the research associated with type 2 diabetes microvascular complications [66].

CAN plays a major role in myocardial ischemia and infarction, heart arrhythmias,
hypertension, and heart disappointment and it increases the risk of sudden cardiac death.
Jelinek and Cornforth [67] proposed a novel clustering technique using a graph-based
machine learning system that enables the identification of severe diabetic neuropathies in
2016. This proposed model outperforms SVM, RF, and KNN. Cho et al. [68] showed an
accuracy of 88.7% (AUC 0.969 and specificity 0.85) using SVM classifiers along with a feature
selection method for the prediction of diabetic nephropathy from the data of 4321 patients.
Reedy et. al. [69] proposed a multi-model ensemble-based machine learning algorithm to
classify diabetic retinopathy. The authors included several machine learning classifiers
in their research and concluded that the ensemble model provides better accuracy with
better sensitivity and specificity. Sambyal et. al. [66] provided a review of using machine
learning models to classify diabetes microvascular complications in 2020. The authors
showed that most of the work for classifying RET had been conducted using fundus image
as the input, and he compared the different achieved accuracies of the different classifiers
by different authors. By only using the demographic, clinical, and laboratory profiles, our
model outperforms all the models reviewed by the author in terms of classifying diabetic
retinopathy. The authors also have reviewed several machine learning models proposed by
different authors for classifying cardiac autonomic neuropathy and nephropathy. However,
we only used DCL profiles as independent features to classify microvascular complications.
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4.3. Clinical Relevance

The test schemes followed in this work offer physicians an important clinical diagnostic
method in the evaluation and diagnosis of type 2 diabetes microvascular complications.
The single-class classifiers can operate individually in parallel or sequentially. However, for
finding combined complications with CAN, the model works sequentially with the CAN
testing classifier. Since this model is sequential, this digs deeper by analyzing diabetics
with single and combined complications. Single-class classifiers identify any microvascular
complication that is present in a patient, regardless of whether the multiclass classifier
predicts the presence of other complications with CAN. Such a clinical test will ensure a
better diagnose of type 2 diabetes microvascular complications by distinguishing the cause
of single CAN and other related complications. Furthermore, the silent nature of these
complications makes it difficult to diagnosis correctly, especially when combined with
other microvascular complications. The performance achieved through machine learning
using only DCL profiles in this study provides a path to prevent many undiagnosed CAN-
only cases. Since a CAN-only medical procedure may not provide effective treatment if
additional complications are not properly identified. It is vital to know about combined
complications. The multiclass classification test helps to identify multiple complications
with autonomic neuropathy.

4.4. Key Message to the Health Community of Bangladesh

Globally, healthcare stakeholders are entering a new era of data-driven clinical detec-
tion and prognostication. The application of modern machine-learning-based approaches
offers great promises for early diagnosis or prognosis of various health complications. The
early identification of patients at risk of microvascular complications due to type 2 diabetes
can mitigate the burden on the healthcare system, especially in the context of a resource-
limited setup. As the present study shows that screening is feasible from the demographic,
clinical, and laboratory (DCL) variables using a proper machine learning classification
model, the health community can utilize this benefit for screening that can avoid numerous
complications from further development. It also can help healthcare experts in prompt and
intelligent decision-making and save the patients from incurring greater healthcare costs.

5. Conclusions

This study explored the present status of microvascular complications in a cohort of
type 2 diabetes patients in Bangladesh. Higher comorbidities and microvascular complica-
tions were found as compared with neighboring countries, most likely due to the increased
levels of hypertension in this cohort. This study also suggests that a high diastolic BP and
albumin-creatinine ratio are related to CAN; high microalbuminuria, HbA1c, and blood
pressure are related to DPN; high HbA1c and microalbuminuria are related to RET. These
findings may be useful in finding risk factors for the development of diabetic complications.
Using these risk factors as the independent features, a machine learning model could be de-
signed to screen microvascular complications. This study shows a machine learning model
could be utilized to identify diabetes complications in Bangladesh, where the majority of its
population is poor. We believe this study could contribute to more effective and affordable
screening techniques [70] for diabetes-related microvascular complications.

It is worth noting that the proposed study should be further validated on a wider
patient cohort to strengthen the observations. Although the findings of this study were
promising and correlate with the observations found in the literature, one limitation to the
current work was the small sample size, which is a common situation in biomedical studies
that rely on patient data. Overall, RF and SVM are known to handle small sample sizes
with high performance capabilities [71–73], especially when compared to other artificial
intelligence algorithms, such as deep neural networks, that require large datasets. Therefore,
an essential future direction to the current study is to be tested on large clinical data and
with additional machine/deep learning algorithms.
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