
REVIEW

Minds and Brains, Sleep and Psychiatry
J. Allan Hobson, M.D., Jarrod A. Gott, Ph.D., Karl J. Friston, FRS

Objective: This article offers a philosophical thesis for
psychiatric disorders that rests upon some simple
truths about the mind and brain. Specifically, it asks
whether the dual aspect monism—that emerges from
sleep research and theoretical neurobiology—can be
applied to pathophysiology and psychopathology in
psychiatry.

Methods:Our starting point is that the mind and brain are
emergent aspects of the same (neuronal) dynamics;
namely, the brain–mind. Our endpoint is that synaptic
dysconnection syndromes inherit the same dual aspect;
namely, aberrant inference or belief updating on the one
hand, and a failure of neuromodulatory synaptic gain
control on the other. We start with some basic
considerations from sleep research that integrate the
phenomenology of dreaming with the neurophysiology of
sleep.

Results: We then leverage this treatment by treating the
brain as an organ of inference. Our particular focus is on the
role of precision (i.e., the representation of uncertainty)
in belief updating and the accompanying synaptic
mechanisms.

Conclusions: Finally, we suggest a dual aspect approach—
based upon belief updating (i.e., mind processes) and its
neurophysiological implementation (i.e., brain processes)—
has a wide explanatory compass for psychiatry and various
movement disorders. This approach identifies the kind of
pathophysiology that underwrites psychopathology—and
points to certain psychotherapeutic and psychopharma-
cological targets, which may stand in mechanistic relation
to each other.
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The mind–brain problem is perpetuated by Cartesian
dualism: we tend to think of mind and brain as quintes-
sentially different kinds of things, correlated perhaps, but
not two physical aspects of a unified system (1, 2). Working
from the perspectives of sleep science and theoretical
neurobiology, we have pursued the hypothesis thatmind is a
brain function (3). This essay attempts to unpack the im-
plications of this bold but thoroughly justified move for
medicine in general—and for neurology and psychiatry in
particular. Since these considerations arise from the anal-
ysis of consciousness, we situate our arguments in that
context and tie any clinical conclusions to it. In brief,
we address the mind–brain problem from two comple-
mentary stances: namely, neurophysiology and theoretical
neurobiology.

Our theoretical foundation derives from the work of
Hermann von Helmholtz, a neurologically fluent physiol-
ogist who first suggested that the brain predicts the

consequences of its sensorimotor activity (4–6). We elab-
orate the ensuing (free energy) principle in terms of
Bayesian inference, which likens the brain–mind to a sci-
entist seeking evidence for her hypotheses (7, 8). In short,
our foundational assumption is that consciousness is itself
a scientific enterprise (9).

Our neurophysiological foundation regards the brain as a
physical system composed of billions of neurons, commu-
nicating via electrical and chemical signals—many of which
have been rigorously characterized. Neuronal activity gives
rise to subjective experience, which is conceived of as a kind
of physics. The easiest way to appreciate the relationship of
the brain to itsmind is to consider the brain as the “material”
that responds to biophysical forces and the “mind” as the
belief updating driven by the same forces (10).

[Corrections added on November 26, 2020 after first on-
line publication: 1. The first author's name has been cor-
rected, and 2. The text “blood oxygenation level‐
dependent (BOLD)” has been corrected as “bold” in the
first paragraph of the article.]

HIGHLIGHTS

� The ‘mind’ emerges from Bayesian belief updating in the
‘brain’

� Psychopathology can be read as aberrant belief updating.

� Aberrant belief updating follows from any neuro-
modulatory synaptopathy
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An early breakthrough in integrative brain–mind science
was afforded by the discovery of rapid eye movement
(REM) sleep and its concomitant hallucinoid dreaming
(11–14). Control of REM‐dreaming—by chemically specific
neurons of the pontine brain stem—established the causal
connection between basic neurophysiology and dream
phenomenology (13, 15–21). Other conscious states, such as
waking and non‐REM (NREM) sleep, derive from changes
in the same neurophysiological factors. The details of these
facts are debated but no‐one contests their importance to
the control of conscious processes. We have reviewed the
mathematical and neurophysiological foundations of
dream phenomenology in a series of previous publications
(3, 19, 22). Here, we revisit the conclusions from point of
view of psychiatry. In what follows, we briefly review the
philosophy and physiology of sleep, with a special focus on
lucid dreaming and the activation, input and modulation
(AIM) model. In what follows, some terms—like “beliefs”—
are used in a technical sense that can depart from their
folk psychology meaning. Key terms are listed in a glossary.

PHILOSOPHY AND PHYSIOLOGY

The radical enlightenment philosopher, Benedict Spinoza,
first formulated dual aspect monism in his treatise on
Ethics (23). Following Spinoza, we adopt dual aspect
monism as follows: the brain–mind is a unified system with
two aspects—an objective brain and a subjective mind. We
further commit to the notion that there can be no mind in
the absence of brain. This eliminates the dualistic
assumption of non‐physical causation of mental phenom-
ena. Since both aspects of the brain–mind system are
physical, they can be mutually causal. This means that the
scientific investigation of the mind is at once the investi-
gation of the brain. From a philosophical perspective, one
might argue that Cartesian dualism—as a de facto or legacy
position—is still a serious obstacle to progress in
consciousness science. Dual aspect monism and its mani-
fold instantiations, some of which are illustrated here,
offers a rejection of dualism, enabling a reconstruction of
human self‐understanding.

There are many clinical implications of dual aspect
monism: for example, (i) “mental illness” becomes a
misnomer for psychiatric patients—a misnomer that de-
nies any role for pathophysiology. (ii) A dissolution of the
dichotomy between neurology and psychiatry, which di-
vides two fields that belong together. (iii) The psychotic
nature of REM‐dreaming; namely, an inherent propensity
of the brain–mind for hallucinations and delusions (13, 14,
21, 24). In other words, REM‐dreaming may be viewed as
a normal delirium, suggesting that the brain–mind
evinces processes that are supposed to be exclusively
pathological (25, 26). (iv) Revision of dream theory by
viewing the unconscious brain–mind as a predictive
model of the world, rather than an escape valve for
unacceptable wishes (22). Finally, (v) the potentially

potent role of psychotherapy, in resetting the disposition
of the brain–mind.

Neurophysiology
The neuronal doctrine of Ramon y Cajal (27) and the reflex
doctrine of Charles Sherrington (28) dominated neurosci-
ence from 1890 until about 1950. In the absence of sleep
and dream science, Sigmund Freud was unable to complete
his Project for a Scientific Psychology in 1895. Instead, he
turned his attention to the psychanalytic interpretation of
dreams (29), which he insisted was in no way neurological
(30). The resulting split in mind‐brain unity had profound
effects on medicine, philosophy and psychology. One might
contend that this split perpetuated the dualism of Des-
cartes and that Cartesian Dualism continues to divide
concepts and fields which ultimately belong together (31).

While psychiatry and neurology proceeded along
parallel but separate tracks from the 1890's, neuroscience
flourished with the elaboration of principles, such as syn-
aptic action, neurotransmission, and the chemical media-
tion of neuronal signaling. Only in about 1950 did it became
possible to record from individual neurons in living
animals (32). A conceptual framework for experimental
brain–mind integration was concurrently provided by the
discoveries of brain activation in waking (33) and in REM
sleep dreaming (34). These discoveries resulted from the
technological advance of recording the electrical activity
of the brain via the electroencephalogram (EEG) (35).

These neuroscientific advances led to some important
insights: The localization of REM sleep control to the
pontine brain stem (36), the modulation of cerebral acti-
vation by aminergic brain stem neurons (37), the mediation
of REM sleep events—including REMs themselves—and
the inhibition of motor tonus by specific neurophysiolog-
ical mechanisms (38). Extracellular neuronal recording
produced neurophysiological data from REM sleep that
was subsequently integrated with quantitative analysis of
dream mentation, to create the first brain‐based theory of
dreaming (20, 30). Over the subsequent four decades these
findings have been confirmed and enriched (39, 40).

Lucid Dreaming
The psychologist Ursula Voss used EEG to show that when
human subjects became aware that they were dreaming—
instead of erroneously supposing themselves to be awake
as is usual in REM sleep—they exhibited the frontal lobe
activation, normally seen in waking—together with parietal
and occipital signs of REM sleep (41): see Figure 1. These
findings were later supported by a case study using
combined EEG and functional magnetic resonance imaging
(42), showing heightened BOLD activation in frontal areas,
in addition to the precuneus and inferior parietal lobules;
all of which are implicit in self‐referential processing and
the experience of agency (43).

This finding was supported by a subsequent study
showing heightened activity in the dorsolateral prefrontal
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FIGURE 1. Upper panel: Blue and red areas indicate regions typically showing hyperactivation and deactivation, respectively, during
REM, relative to waking, as measured by positron emission tomography. Lesions to the parietal operculum are associated with the
loss of dreaming following stroke or prefrontal lobotomy. Middle panel: Quantitative electroencephalographic (EEG) studies—
comparing brain activity during waking, lucid dreaming and REM sleep—suggest that certain frontal areas are highly activated
during waking but show deactivation during REM sleep. During lucid dreaming there is an increase in gamma (40 Hz) power and
coherence in frontal areas compared with non‐lucid REM sleep. Scale bars indicate standardized power based on scale potentials
(0.50% to 1.50% power). Lower panel: In addition to the increased 40 Hz EEG power in frontal channels, EEG coherence is much
higher during lucid dreaming than during non‐lucid REM sleep. EEG coherence during lucid REM sleep corresponds to that during
waking (left panel); except for the 8–12 Hz alpha range that shows a peak during waking. CSD, cross‐spectral density. Adapted with
permission from (13). REM, rapid eye movement
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cortex during dream lucidity (44) and a further study
showing elevated resting‐state functional connectivity be-
tween the prefrontal and temporoparietal association areas
in frequent lucid dreamers (45). Lucid dreaming thus re-
veals itself to be a hybrid state of the brain–mind, with
both waking and dreamlike features—with its phenomenal
aspects being reducible to differential activity in specific
brain structures (46). This suggests the brain and the mind
operate as one, with even the highest features of conscious
activity—such as self‐referential processing and insight—
having definitive and functionally segregated neuronal
correlates.

A related point is that the brain–mind is not necessarily
unified with respect to its own cardinal states. The
expression “I am of two minds” reflects the ambivalence
(or multivalence) of cognition (and emotion) in waking
consciousness. The locality of brain activation has been
clearly demonstrated in studies of regional cortical acti-
vation in NREM sleep (47) and is often referred to as
“local” sleep (48–50). Normal and abnormal conscious
experience may thus be not only linked in an intimate way
to neuronal dynamics but show the same kind of segre-
gation and differentiation seen in the neurophysiological
correlates of sleep (47, 51, 52).

Human REM Sleep Signaling
The Helmholtzian pillar of the current thesis associates
unconscious inference with perception and sentience
(4, 6). Formal treatments of this notion rest upon pre-
dictive processing; namely, using sensory impressions to
confirm or disconfirm hypotheses about how our sensory
inputs are generated (53). When sensations are generated
actively, the accompanying predictions must reflect the
way that the sensorium is sampled. Until recently, the
electrical encoding of internal predictions that accompany
eye movements had only been demonstrated in cats
(11, 36). The psychiatrist Charles Hong used brain imaging
to demonstrate robust evidence for the existence of these
internal stimuli in human REM sleep (54). Each and every
human eye movement command—from the pontine brain
stem to the forebrain—is associated with information
transfer that assures perceptual integrity in waking. And
which may be used to construct the visual imagery of
dreams. Hong et al (55) have recently discussed these
possibilities and how they might be pursued to establish
the unity of the brain–mind in visual perception, be it
external (as in waking) or internal (as in dreaming).
Much of this empirical work was motivated by the AIM
model of sleep which we now briefly summarize (see also
Figure 2).

The AIM Model
The activation‐synthesis hypothesis of dreaming (20, 21,
30) and the reciprocal interaction model of sleep cycle
control (20) have been modified, simplified and extended
to accommodate altered states of consciousness: see

Figure 2 and (13). The ensuing AIM account tries to
integrate neurophysiology and psychology as follows. The
three dimensions of AIM state‐space represent activation
(A), input source (I) and modulation (M), as measured
neurophysiologically. The discovery of REM‐locked
pontine activity in humans (54) enriched the AIM model
by providing evidence for human ponto‐geniculo‐occipital
(PGO) wave activity (56) that had only been definitively
recorded in the pons (57). Figure 3 provides a schematic
based on the AIM model in Figure 2 that focuses on the
functional anatomy of sleep in terms of neuromodulation.
This account is scaffolded on functional brain states and
neuromodulation at the level of synaptic physiology, which
brings us to the psychopharmacology of sleep—and its
intersection with psychopathology.

The aminergic and cholinergic neurons that underwrite
conscious states are affected by drugs of common use in
medicine. These include atropine and the antidepressants
(especially the amine reuptake blockers). Because such
drugs have both short and long term effects they are useful
as sedatives and mood regulators, depending on dose; for
example, (58). This is not surprising given the well‐known
intimacy of sleep and affect, where the most prominent
psychiatric beneficiary of sleep science is mood disorder
(59). The reduction in REM sleep latency seen in depres-
sion predicts positive response to amine reuptake treat-
ment (60, 61). This speaks to the role of classical ascending
modulatory neurotransmitters in the control of both sleep
and mood. In the next section, we take some of the above
fundaments of sleep and dream science and see how they
relate to formulations of the sentient brain, in terms of
predictive processing and belief updating. We will see that
neuromodulation is a recurring theme that may have a
special relevance for psychiatry.

THE PHANTASTIC ORGAN

In this section, we integrate the above themes to show
how they underwrite a mechanics of sentience that affords
a mechanistic (sic) account of psychopathology and path-
ophysiology. This account is coarse‐grained but highlights
the cross‐cutting themes that link a diverse range of psy-
chiatric and neurological conditions. Our starting point is a
commitment to the mind as a brain‐based process; namely,
the process of belief updating (6). In this setting, beliefs
are used in the sense of Bayesian beliefs or probabilistic
representations (7, 8, 63). These are largely of a sub-
personal sort, as opposed to propositional beliefs. A central
tenet of this formulation of sentience is that it accounts for
previous experience (so‐called priors) in the prediction of
what causes sensations and consequent behavior.

On this view, mindful processes can be described as
inference; that is, inferring the causes of sensations—and
indeed acting to elicit sensory information to enable
inference. This is a key move in two respects: first, it is
necessary when talking about the symptoms, signs and
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experience of patients, whose phenomenology is
quintessentially belief‐based. In other words, nearly all
psychiatric syndromes can be framed as aberrant belief
updating or false inference. Obvious examples here include
hallucinations and delusions; namely, inferring things are
there, when they are not (25, 64). Conversely, various
forms of agnosia and dissociative syndromes speak to an
inference about things that are not present when they are
(65, 66). On a statistical reading, these are just two facets of

standard inference; referred to as type I and II errors,
respectively. The second reason for framing things around
inference draws on fluctuating states of consciousness and,
in particular, dreaming. If one wanted definitive evidence—
phenomenal, physiological, or philosophical—for the brain
as a Helmholtz machine or statistical organ, one need look
no further than the phenomena of dreaming (3, 19, 24, 40,
67, 68). Dreams evince the remarkable capacity of our
brains to generate and construct worlds, even when

FIGURE 2. A. Standard sleeppolygraphicmeasurements. These traces show90¡100mincyclesof rapideyemovement (REM)andnon‐
rapid eye movement (NREM) sleep. The traces show cycles for three subjects, where the blue lines indicate periods of REM sleep.
Reports of dreaming are most common from sleep onset stage I (when dreams tend to be fragmentary), late‐night stage II (when
dreams tend to be thought‐like) and REM (when they tend to be long, vivid, hallucinatory and bizarre). Deep phases of sleep (III and IV)
occur in the first half of the night, whereas lighter stages (stages I and II) predominate in the second half. B. The states of waking and
sleep. These states havebehavioral, polygraphic andpsychological correlates that appear to beorchestrated by a control system in the
pontinebrainstem. In this panel, theneuronal clock that controls these states is depicted as a reciprocal interactionbetween inhibitory
aminergic neurons and excitatory cholinergic neurons: aminergic activity is highest duringwaking, declines duringNREM sleep and is
lowest during REM sleep; whereas cholinergic activity shows the reverse pattern. Changes in sleep phase occur whenever the two
activity curves cross; these are also the times when major postural shifts occur. The motor immobility during sleep depends on two
different mechanisms: disfacilitation during stages I¡IV of NREM sleep and inhibition of motor systems during REM sleep. The motor
inhibitionduringREMsleeppreventsmotor commands frombeingexecuted, so thatwedonot actoutourdreams.C.Humansleepand
age. The preponderance of rapid eye movement (REM) sleep in the last trimester of pregnancy and the first year of life decreases
progressively aswaking time increases.Note thatNREMsleep time, likewaking time, increasesafterbirth.Despite its early decline,REM
sleep continues to occupy approximately 1.5 h/day throughout life. This suggests that its strongest contribution is during
neurodevelopment but that it subsequently plays an indispensable role in adulthood. D. The evolution of REM sleep. Birds and
mammals evolved separately after branching off from the ancestral tree. Both birds and mammals are homeothermic, and both have
appreciable cognitive competence. With respect to the enhancement of cognitive skills by REM, it is significant that both birds and
mammals are capable of problem solving and both can communicate verbally. E. AIMmodel. This panel illustrates normal transitions
within theAIM state‐space fromwaking toNREMand then toREMsleep. The x‐axis represents A (for activation), the y‐axis representsM
(for modulation) and the z‐axis represents I (for input–output gating). Waking, NREM sleep and REM sleep occupy distinct loci in this
space. Waking and REM sleep have high activation but different I and M values. Thus, in REM sleep, the brain is both off‐line and
chemically differentiated compared with the waking brain. NREM sleep is positioned in the center of the space because it is
intermediate in all quantitative respects between waking and REM sleep: adapted from (13)
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sequestered from the sensorium, via carefully orchestrated
neuromodulatory disconnections (see Figure 3).

The basic idea here is that the brain is a phantastic organ,
generating phantasies that it puts to the test—in waking—by
using sensory samples from the world (69). However, in
dreaming, the fidelity or precision of these sensory inputs is
attenuated, enabling a virtual reality to play out in our heads
—a process that has been formalized in terms of Bayesian
model reduction and complexity minimization (19). The
theme of the brain as an organ of prediction now dominates
much of cognitive neuroscience in the form of active
inference or predictive processing (8, 70–72). Active infer-
ence brings an important (and enactive) aspect to inference;
namely, the fact that we actively gather the information

upon which inference is based (73). In the current setting,
this becomes important when we consider what false
inferencemight look like in an enactive setting. It transpires
that several neurological conditions then come under the
same explanatory compass; these include Parkinson's dis-
ease and other movement disorders associated with syn-
aptopathies (66, 74). To understand this, one has to drill
down on a fundamental feature of inference; namely, the
encoding or quantification of uncertainty, which we will
consider in terms of precision (75–77).

Precision Psychiatry
There are several ways in which we can license a focus on
precision and the encoding of uncertainty in active

FIGURE 3. The schematic illustrates the neuromodulatory gating of hierarchical message passing in the brain during REM sleep (top
panel), wakefulness (right panel) and the hybrid state of lucid dreaming (left panel). The anatomy of this schematic should not be
taken too seriously: it is just meant to differentiate between different levels of the cortical hierarchy in terms of low (sensory) levels,
intermediate (extrasensory and multimodal) levels and—for the purposes of this essay—high (meta‐representational) levels. Here,
we have associated higher levels with theory of mind areas that are engaged in mentalising and perspective taking (and are a
component of the default mode). Within each level we have depicted representative cortical microcircuits in terms of superficial
(red triangles) and deep (black triangles) pyramidal cells. In predictive coding formulations of neuronal message passing, superficial
pyramidal cells encode prediction error that is passed up the hierarchy to update the activity of deep pyramidal cells encoding
expectations (red connections). These reciprocate top‐down predictions—that are compared with expectations—by prediction error
units in the level below (black connections). In REM sleep, the idea is that cholinergic modulation (blue projections) of superficial
pyramidal cells at intermediate levels of the cortical hierarchy preferentially enables these levels, while suppressing ascending
prediction errors from primary sensory cortex. In lucid dreaming, aminergic (pink projections) neuromodulation sensitizes
prediction errors in the prefrontal cortex, enabling top‐down predictions from the highest deepest levels of the hierarchy—
endowing processing in intermediate levels with a narrative or context. In waking, aminergic (e.g., noradrenergic) neuromodulation
boosts sensory prediction errors that are now able to entrain hierarchical inference in higher cortical levels for perceptual synthesis.
Modified with permission from (62). REM, rapid eye movement
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inference. We will briefly rehearse a few prescient ap-
proaches, to show that they all converge on the same
conclusion; namely, inference—and especially false infer-
ence—depends sensitively on getting precision right (78).
Getting precision right depends upon the right deployment
of neuromodulatory mechanisms that coordinate message
passing in cortical and subcortical hierarchies (76, 79).

First, from a purely technical perspective, a commitment
to a dual aspect monism requires the existence of a dual
aspect information geometry that links neuronal dynamics
to belief updating (10). The technical details are beyond the
scope of this essay; however, they can be understood heu-
ristically in terms of two geometries that describe the sta-
tistics of neuronal activity (and connectivity) on the one
hand, and statistics of (Bayesian) beliefs encoded by that
activity (and connectivity) on the other. In other words,
there are two information geometries that inherit from the
ensemble dynamics of neuronal populations. The first per-
tains to the probabilistic evolution of neuronal states, while
the secondpertains to the evolution (i.e., updating) of beliefs
about something—beliefs that are encoded by neuronal
states (and connectivity). Crucially, these two information
geometries arise in any system that self‐organizes itself in a
way that can be separated from its environment (80–82).

This may sound rather abstract; however, it is just a
statement of a fact—for which we are our own existence
proof. Namely, the neurophysiology and neurochemistry of
our brains conforms to the laws of thermodynamics and an
associated information geometry (83). At the same time,
these physiological states (c.f., the AIM model) are
necessarily equipped with an information geometry that
pertains to things and narratives “out there.” Dreaming is a
beautiful example of this: my brain enters a particular
sleep (e.g., REM) state, characterized by a particular
physiology, while at the same time I dream about things in
my lived world. Crucially, the things I dream about are
essentially grounded in my navigation of that world. In
other words, REM dreams are always animated (hence in
the service of running motor programs offline), emotional
(with anxiety, aggression, and elation predominating),
bizarre (meaning only remotely associative) and so on
(13, 84). “Chase” dreams are common and well‐known, and
frequently overlap with—and merge—into nightmares. In
the dream state, one rehearses threatening situations
(running away, turning, and fighting) but also simulates
more abstract potentialities. One can fly or make love (85),
particularly when lucid (86).

An Intuitive Physics for the Mind
Technically, information geometries underwrite a
(Bayesian) mechanics of the self‐organizing brain and
thereby characterize the nature of belief spaces (82). This
can be appreciated from a number of complementary
perspectives. For example, one can apply gauge theoretic
treatments (87). Alternatively, one can think about the
notion of distance and information length—as measures of

how far beliefs move during inference or belief updating
(83, 88). All these treatments converge on the same
quantity; namely, the precision of beliefs—that is, the
confidence or inverse variance of a belief distribution.

Information geometry allows us to conceive of belief‐
spaces in which two beliefs are equipped with a measure
of distance between them. The key notion here is some
state‐space (e.g., the physiological states of the AIM
model), where every point in this space corresponds to a
Bayesian belief (i.e., a probability distribution). This
special sort of state‐space is called a statistical manifold.
For example, imagine I saw something fluttering out of the
corner of my eye. On foveating the source of “fluttering,”
I “see” it is a butterfly. This active sampling of the visual
scene moves my (prior) beliefs that there was a small
creature out there—with probability mass distributed over
all kinds of plausible alternatives (e.g., insect, bird, leaf,
etc.)—to a precise (posterior) belief (e.g., butterfly). This
belief updating corresponds to moving from one point on a
statistical manifold to another. So, what are the key
determinants of that movement and how is movement on a
statistical manifold measured?

In statistics, this measure is based on the Fisher infor-
mation metric. Under mild (i.e., Gaussian) assumptions,
this metric corresponds to the precision or confidence
associated with (probabilistic or posterior) beliefs. Intui-
tively, we can envisage a myriad of beliefs occupying some
belief space, all attracting each other to a greater or lesser
degree. This is very much like a celestial n‐body problem,
in which heavenly bodies, pull each other in different
directions—to find their minimum free energy configura-
tion. In this intuitive physics, precision corresponds to the
mass of each belief (or associated prediction error). In
other words, a belief (or associated prediction error) that is
afforded greater precision will behave like a massive
body—attracting smaller beliefs to it—and becoming
relatively impervious to others. For example, if sensory
precision were inordinately high, believes based upon
sensory evidence would acquire a gravity that pull other
(empirical prior) beliefs towards it. This attraction is the
manifestation of (mindful) forces that underwrite belief
updating from prior to posterior Bayesian beliefs, that is,
before and after the effects of sensory forces. Conversely, if
prior precision is high the forces exerted by sensory
impressions exert less influence on beliefs deep within a
hierarchical belief system. These two extremes are just the
difference between waking and sleep, respectively; in
waking we have information from the outside world to
shape perception, whereas in sleep, we are sequestered
from these sensory impressions.

On this view, one can see how getting precision right
becomes crucial: precision is the glue, or bridge that
realizes conditional dependencies among distinct beliefs
about the lived world. If this coupling were to fail, there
would literally be a disintegration of the psyche and loss of
central (deep) coherence that characterizes conditions like
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schizophrenia and autism (89–92). Indeed, as we will see
below, any form of belief updating must have precision
at its heart, suggesting that psychopathology is a pathology
of precision.

Predictive Processing and Precision
From the perspective of predictive coding (a canonical
scheme for predictive processing) (93, 94), precision is the
key quantity that coordinates belief updating by differen-
tially weighting prediction errors as they ascend cortical
hierarchies (75, 95–99). In these schemes, prediction
errors represent the difference between sensory input and
top‐down predictions of that input. Any mismatch then
revises Bayesian beliefs or expectations encoded by
neuronal activity to implement belief updating—and
provide better predictions that resolve prediction errors
(see Figure 3). In engineering, precision is known as Kal-
man gain (100) and scores the precision or reliability of
prediction errors; such that only precise prediction errors
have access to higher levels of belief updating (101). In this
setting, it can be seen that getting the precision or gain
right is crucial for veridical inference.

From a physiological perspective, precision is thought to
be encoded in the synaptic gain or excitability of particular
neuronal populations (e.g., superficial pyramidal cells
encoding prediction errors). It can be subsumed under no-
tions of excitation‐inhibition balance or cortical gain control
at the population level (102, 103). At the synaptic level, it
encompasses a broad range of neuromodulatory mecha-
nisms that generally involve fast‐spiking inhibitory in-
terneurons that Interact with pyramidal cells (104–108). In
turn, these (often synchronous) interactions depend upon
N‐methyl‐D‐aspartate (NMDA) receptor function and,
crucially, classical ascending modulatory neurotransmitter
systems (e.g., noradrenaline, serotonin, and acetylcholine)
(109, 110).

From a psychological perspective, precision manifests
as various forms of attentional gain control or selection
(101, 111). The right deployment of sensory precision in the
visual domain can be thought of as mediating spatial
attention, whereas higher in the hierarchy it can be asso-
ciated with feature attention and, possibly, internal atten-
tion states (112, 113).

It is at this point that we see the formal relationship
between precision and the AIM model (21). The activation
(A) of certain neuronal populations—that entail belief
updating—depends upon their input (I), which is under
modulatory control (M). The permissive requirements for
sleep rest upon a selective disconnection of sensory inputs
via aminergic neuromodulation, which can be thought of
as a physiologically mediated inattention to the sensorium.
In many respects, it is the exact complement of mindful-
ness, in which sustained attention to a specific sensory
input is maintained (114).

Finally, from a more philosophical perspective, the hi-
erarchical control or predictions of precision underwrite

notions of mental action and the distinction between the
phenomenal transparency and capacity (68, 115–117). When
associated with interoceptive inference, high level repre-
sentations—that themselves predict the precision of lower‐
level representations—may have a crucial role in emotional
inference and elaborating a minimal selfhood (98, 115, 118).

In summary, a ubiquitous and key aspect of belief
updating, or active inference, is the mechanics of encoding
uncertainty, by optimizing (Bayesian) beliefs about preci-
sion. Mechanistically, this speaks to a key role of neuro-
modulation and the context‐sensitive control of synaptic
efficacy. Psychologically, it ties in attention to any consid-
eration of mindful processing (i.e., inference). Finally,
these mechanisms are evinced most powerfully by the
greatest contrast of sentience we know; namely, the dif-
ference between waking perception and dreaming. We
now turn to aberrant precision in neuropsychiatry.

Aberrant Precision
In the past years, nearly every psychiatric condition has
been considered under the lens of precision; ranging from
autism through to schizophrenia; from tremor through to
Parkinson's disease; from obsessive‐compulsive disorder
through to post‐traumatic stress disorder; from depression
through to chronic stress; from fatigue through to func-
tional medical symptoms (65, 97, 119–130). Table 1 pro-
vides a selective survey of some key publications, all
pivoting on aberrant precision control. Each entry in
Table 1 deserves its own discussion, showing how the same
fundamental deficit in aberrant precision or attentional
processing can manifest in domains as diverse as motor
control to depersonalization. In what follows, we will
focus on a couple of cardinal examples.

The thesis developed here helps clarify why the AIM
model translates so gracefully when describing psychopa-
thology and other disorders of movement and perception.
This follows from the simple observation that if psychology
(i.e., the mind) and physiology (i.e., the brain) inherit from
the same (Bayesian) mechanics, it follows that psychopa-
thologymustbeapathologyof inference.Theparticularkind
of false inference—implied by the key role of precision—is
then grounded in synaptic gain control that selects the
sensory inputs (and, in predictive coding, ascending
prediction errors throughout cortical hierarchies) respon-
sible for inference or belief updating. This immediately
suggests that any pathophysiology that can be framed as a
synaptopathy, which interferes with synaptic gain control,
can be understood in terms of aberrant precision control
(131). We will focus on a couple of canonical examples to
illustrate the crosscutting themes.

Perhaps the poster child for this line of thinking is
autism, in which the belief updating has been proposed to
rest on an imbalance between sensory evidence and prior
beliefs—mediated by their relative precision (91, 132–134).
The synaptic mechanisms that underwrite this imbalance
are much less well developed but a compelling story can
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TABLE 1. A selection of recent papers dealing with predictive coding, precision and psychiatry

Syndrome symptom Selected papers

Precision, predictive coding and Bayesian
inference in schizorphenia

Pollak TA, Corlett PR. Blindness, psychosis, and the visual Construction of the world.
Schizophr Bull. 2019 Oct 11. pii: sbz098. doi: https://doi.org/10.1093/schbul/sbz098.
[Epub ahead of print]

Benrimoh et al. (2019) (135)
Sterzer et al. (2018) (158)
Dzafic I, Burianová H, Martin AK, Mowry B. Neural correlates of dynamic emotion
perception in schizophrenia and the influence of prior expectations. Schizophr Res. 2018
Dec; 202:129–137

Heinz A, Murray GK, Schlagenhauf F, Sterzer P, Grace AA, Waltz JA. Towards a Unifying
cognitive, neurophysiological, and computational neuroscience account of
schizophrenia. Schizophr Bull. 2019 Sep 11; 45 (5):1092–1100

Limongi R, Bohaterewicz B, Nowicka M, Plewka A, Friston KJ. Knowing when to stop:
Aberrant precision and evidence accumulation in schizophrenia. Schizophr Res. 2018
Jul; 197:386–391

Randeniya R, Oestreich LKL, Garrido MI. Sensory prediction errors in the continuum of
psychosis. Schizophr Res. 2017 Apr 27. pii: S0920‐9964 (17)30206‐2

Griffin JD, Fletcher PC. Predictive processing, source monitoring, and psychosis. Annu Rev
Clin Psychol. 2017 May 8; 13:265–289

Corlett PR. I predict, Therefore I Am: Perturbed predictive coding under ketamine and in
schizophrenia. Biol Psychiatry. 2017 Mar 15; 81 (6):465–466

Tschacher W, Giersch A, Friston K. Embodiment and schizophrenia: A review of
implications and applications. Schizophr Bull. 2017 Mar 3

van Schalkwyk GI, Volkmar FR, Corlett PR. A predictive coding account of psychotic
symptoms in autism spectrum disorder. J Autism Dev Disord. 2017 May; 47 (5):1323–1340

Schmack K, Rothkirch M, Priller J, Sterzer P. Enhanced predictive signalling in
schizophrenia. Hum Brain Mapp. 2017 Apr; 38 (4):1767–1779

Sterzer P, Mishara AL, Voss M, Heinz A. Thought Insertion as a self‐Disturbance: An
integration of predictive coding and Phenomenological approaches. Front Hum
Neurosci. 2016 Oct 12; 10:502. eCollection 2016

Kort NS, Ford JM, Roach BJ, Gunduz‐Bruce H, Krystal JH, Jaeger J, Reinhart RM, Mathalon
DH. Role of N‐Methyl‐D‐Aspartate receptors in action‐based predictive coding deficits in
schizophrenia. Biol Psychiatry. 2017 Mar 15; 81 (6):514–524

Friston K, Brown HR, Siemerkus J, Stephan KE. The dysconnection hypothesis (2016).
Schizophr Res. 2016 Oct; 176 (2‐3):83–94

Roa Romero Y, Keil J, Balz J, Gallinat J, Senkowski D. Reduced frontal theta oscillations
indicate altered crossmodal prediction error processing in schizophrenia. J
Neurophysiol. 2016 Sep 1; 116 (3):1396–1407

Wacongne C. A predictive coding account of MMN reduction in schizophrenia. Biol
Psychol. 2016 Apr; 116:68–74

Powers et al. (2015) (136)
Adams RA, Huys QJ, Roiser JP. Computational psychiatry: Towards a mathematically
informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2016 Jan; 87
(1):53–63

Rentzsch J, Shen C, Jockers‐Scherübl MC, Gallinat J, Neuhaus AH. Auditory mismatch
negativity and repetition suppression deficits in schizophrenia explained by irregular
computation of prediction error. PLoS One. 2015 May 8; 10 (5):e0126775

Castelnovo A, Ferrarelli F, D'Agostino A. Schizophrenia: From neurophysiological
abnormalities to clinical symptoms. Front Psychol. 2015 Apr 20; 6:478

Notredame et al. (2014) (137)
Fogelson et al. (2014) (149)
Horga G, Schatz KC, Abi‐Dargham A, Peterson BS. Deficits in predictive coding underlie
hallucinations in schizophrenia. J Neurosci. 2014 Jun 11; 34 (24):8072–8082

Jardri R, Denève S. Circular inferences in schizophrenia. Brain. 2013 Nov; 136(Pt 11):3227–
3241

Ford JM, Palzes VA, Roach BJ, Mathalon DH. Did I do that? Abnormal predictive processes
in schizophrenia when button pressing to deliver a tone. Schizophr Bull. 2014 Jul; 40
(4):804–812

Adams et al. (2013) (138)
Nazimek JM, Hunter MD, Woodruff PW. Auditory hallucinations: Expectation‐perception
model. Med Hypotheses. 2012 Jun; 78 (6):802–810

Lalanne L, van Assche M, Giersch A. When predictive mechanisms go wrong: Disordered
visual synchrony thresholds in schizophrenia. Schizophr Bull. 2012 May; 38 (3):506–513
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TABLE 1 (Continued)

Syndrome symptom Selected papers

Precision, predictive coding and Bayesian
inference in autism and autistic
spectrum disorder

Lanillos P, Oliva D, Philippsen A, Yamashita Y, Nagai Y, Cheng G. A review on neural network
models of schizophrenia and autism spectrum disorder. Neural Netw. 2019 Nov 13;
122:338–363

Van de Cruys S, Perrykkad K, Hohwy J. Explaining hyper‐sensitivity and hypo‐responsivity in
autism with a common predictive coding‐based mechanism. Cogn Neurosci. 2019 Jul;
10 (3):164–166

Lawson et al. (2017) (133)
Chambon V, Farrer C, Pacherie E, Jacquet PO, Leboyer M, Zalla T. Reduced sensitivity to
social priors during action prediction in adults with autism spectrum disorders.
Cognition. 2017 Mar; 160:17–26

van Schalkwyk GI, Volkmar FR, Corlett PR. A predictive coding account of psychotic
symptoms in autism spectrum disorder. J Autism Dev Disord. 2017 May; 47 (5):1323–
1340

Van de Cruys S, Van der Hallen R, Wagemans J. Disentangling signal and noise in autism
spectrum disorder. Brain Cogn. 2017 Mar; 112:78–83

Manning C, Kilner J, Neil L, Karaminis T, Pellicano E. Children on the autism spectrum
update their behaviour in response to a volatile environment. Dev Sci. 2016 Aug 6. doi:
https://doi.org/10.1111/desc.12435

Chan JS, Langer A, Kaiser J. Temporal integration of multisensory stimuli in autism
spectrum disorder: a Predictive coding perspective. J Neural Transm (Vienna). 2016 Aug;
123 (8):917–923

von der Lühe T, Manera V, Barisic I, Becchio C, Vogeley K, Schilbach L. Interpersonal
predictive coding, not action perception, is impaired in autism. Philos Trans R Soc Lond B
Biol Sci. 2016 May 5; 371 (1693)

Gonzalez‐Gadea ML, Chennu S, Bekinschtein TA, Rattazzi A, Beraudi A, Tripicchio P,
Moyano B, Soffita Y, Steinberg L, Adolfi F, Sigman M, Marino J, Manes F, Ibanez A.
Predictive coding in autism spectrum disorder and attention deficit hyperactivity
disorder. J Neurophysiol. 2015 Nov; 114 (5):2625–2636

Palmer CJ, Seth AK, Hohwy J. The felt presence of other minds: Predictive processing,
counterfactual predictions, and mentalising in autism. Conscious Cogn. 2015 Nov;
36:376–389

Precision, predictive coding and Bayesian
inference in depression, stress and
anxiety

Linson A, Parr T, Friston KJ. Active inference, stressors, and psychological trauma: A
neuroethological model of (mal)adaptive explore‐exploit dynamics in ecological context.
Behav Brain Res. 2019 Dec 9; 380:112421

Kube T, Schwarting R, Rozenkrantz L, Glombiewski JA, Rief W. Distorted cognitive
processes in major depression: A predictive processing perspective. Biol Psychiatry. 2019
Jul 29. pii: S0006‐3223 (19)31550‐1

Adams RA, Huys QJ, Roiser JP. Computational psychiatry: Towards a mathematically
informed understanding of mental illness. J Neurol Neurosurg Psychiatry. 2016 Jan; 87
(1):53–63

Clark et al. (2018) (128)
Adam Linson, Karl Friston. Reframing PTSD for computational psychiatry with the active
inference framework. Cogn Neuropsychiatry. 2019; 24 (5): 347–368

Barrett LF, Quigley KS, Hamilton P. An active inference theory of allostasis and
interoception in depression. Philos Trans R Soc Lond B Biol Sci. 2016 Nov 19; 371 (1708).
pii: 20160011

Seth and Friston (2016) (97)
Stephan et al. (2016) (129)
Schutter DJ. A Cerebellar framework for predictive coding and Homeostatic Regulation in
depressive disorder. Cerebellum. 2016 Feb; 15 (1):30–33

Chekroud (2015) (168)
Cornwell et al. (2017) (127)
Kim MJ, Shin J, Taylor JM, Mattek AM, Chavez SJ, Whalen PJ. Intolerance of uncertainty
predicts increased Striatal volume. Emotion. 2017 May 18

Trapp S, Kotz SA. Predicting Affective information ‐ an evaluation of Repetition Suppression
effects. Front Psychol. 2016 Sep 9; 7:1365

Garfinkel SN, Seth AK, Barrett AB, Suzuki K, Critchley HD. Knowing your own heart:
Distinguishing interoceptive accuracy from interoceptive awareness. Biol Psychol. 2015
Jan; 104:65–74

Lawson RP, Rees G, Friston KJ. An aberrant precision account of autism. Front Hum
Neurosci. 2014 May 14; 8:302

(Continues)
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still be told at the level of psychopathology. Schizophrenia,
has, arguably, the more advanced story—of abnormal
synaptic gain control—to accompany the concomitant
failures of belief updating and inference (64, 125, 135–140).
As with many psychiatric syndromes, the story starts with
a failure of sensory attenuation—in the sense of a failure to
modulate sensory precision (141–147). This explains some
key soft neurological signs in schizophrenia such as an
attenuation of the mismatch negativity, failures of slow
pursuit eye movements and failures of sensory attenuation
that underlie the force matching illusion (138).

In many instances, these examples demonstrate a par-
adoxical veracity of perception that renders it difficult to
elicit illusions in schizophrenia (137, 148). The evidence for
this kind of (paradoxical) deficit usually rests upon a
careful use of psychophysics and computational modeling
to illustrate aberrant precision control; for example (149).
The physiological concomitants are easily articulated in
terms of neuronal processing (e.g., abnormal excitation‐
inhibition balance) (150), right down to the receptors that
may mediate this control (e.g., NMDA receptors and
GABAergic neurotransmission) (103, 110, 136, 151–158). In
this sense, schizophrenia may be a paradigm example of a
(synaptic) disconnection syndrome that is largely manifest
in terms of abnormal perception and belief updating

(i.e., hallucinations and delusions). If this is the right story,
then one would expect to see very similar phenomenology
in other conditions that compromise synaptic gain control.
Key examples here are synaptopathies; for example, Lewy
body disease leading to hallucinosis (25, 159).

One key question in schizophrenia research, in this
setting, is the emergence of delusions—which at first
glance seem a prime candidate for high‐level belief
systems that are afforded “too much” precision. This
appears to fly in the face of a failure of sensory attenu-
ation (i.e., too much sensory precision). Although
consensus has not yet emerged, this might be an inter-
esting example of a (perceptual) paradoxical lesion
(160–162). In other words, a synaptopathy at higher levels
of cortical (hierarchical) processing that partially reverses
the effects of a primary insult at the sensory level. In
other words, a compensatory increase in precision of
higher level belief systems may be necessary to balance a
loss of attenuation at lower levels; thereby engendering
delusional belief systems as the best Bayesian explanation
for sensory evidence—that one has lost the capacity to
ignore. This clearly has close relationships with earlier
notions, such as the aberrant salience hypothesis
(163, 164) and fits nicely with the effects of psychedelic
and psychomimetic drugs (165).

TABLE 1 (Continued)

Syndrome symptom Selected papers

Precision, predictive coding and Bayesian
inference in hallucinations and
hallucinosis

Powers AR, Corlett PR, Ross DA. Guided by Voices: Hallucinations and the psychosis
spectrum. Biol Psychiatry. 2018 Sep 15; 84 (6):e43–e45

Powers et al. (2017) (64)
Corlett PR, Horga G, Fletcher PC, Alderson‐day B, Schmack K, powers AR 3rd.
Hallucinations and Strong priors. Trends Cogn Sci. 2019 Feb; 23 (2):114–127

Sterzer et al. (2018) (158)
O'Callaghan C, Hall JM, Tomassini A, Muller AJ, Walpola IC, Moustafa AA, Shine JM, Lewis
SJG.Visual hallucinations are characterized by Impaired sensory evidence Accumulation:
Insights from hierarchical Drift Diffusion modeling in Parkinson's disease. Biol Psychiatry
Cogn Neurosci Neuroimaging. 2017 Nov; 2 (8):680–688

Sterzer P, Mishara AL, Voss M, Heinz A. Thought Insertion as a self‐Disturbance: An
integration of predictive coding and Phenomenological approaches. Front Hum
Neurosci. 2016 Oct 12; 10:502

Powers AR III, Kelley M, Corlett PR. Hallucinations as top‐down effects on perception. Biol
Psychiatry Cogn Neurosci Neuroimaging. 2016 Sep; 1 (5):393–400

Griffin JD, Fletcher PC. Predictive processing, source monitoring, and psychosis. Annu Rev
Clin Psychol. 2017 May 8; 13:265–289

Schmack K, Rothkirch M, Priller J, Sterzer P. Enhanced predictive signalling in
schizophrenia. Hum Brain Mapp. 2017 Apr; 38 (4):1767–1779

Sterzer P, Mishara AL, Voss M, Heinz A. Thought Insertion as a self‐Disturbance: An
integration of predictive coding and Phenomenological approaches. Front Hum
Neurosci. 2016 Oct 12; 10:502

Roa Romero Y, Keil J, Balz J, Gallinat J, Senkowski D. Reduced frontal theta oscillations
indicate altered crossmodal prediction error processing in schizophrenia. J
Neurophysiol. 2016 Sep 1; 116 (3):1396–1407

Teufel C, Subramaniam N, Dobler V, Perez J, Finnemann J, Mehta PR, Goodyer IM, Fletcher
PC. Shift toward prior knowledge confers a perceptual advantage in early psychosis and
psychosis‐prone healthy individuals. Proc Natl Acad Sci U S A. 2015 Oct 27; 112
(43):13401–13406

Powers et al. (2015) (136)
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Fromapractical point of view, the foregoing suggests that
pharmacotherapy—targeting neuromodulatory systems—is
exactly the right way to proceed. Having said this, the
multiple factors involved in synaptic gain control make
psychopharmacology a challenging avenue to remediate a
loss of delicate balance in hierarchical neuronal message
passing. On a more positive note, if one subscribes to the
above story, then the top‐down control of precision
weighting becomes another therapeutic target. In this sense,
it speaks to the possibility of using psychotherapy in
conjunction with psychopharmacology (166–168), to
improve a patient's ability to orchestrate the many facets of
attention.

In concluding this section, we briefly consider move-
ment disorders. The link between movement disorders and
false inference is mandated by active inference accounts of
how we sample our world. There are many examples here;
for example, the difficulties schizophrenic patients have
with slow pursuit eye movements (125, 169). Perhaps a
more fanciful example would be Parkinson's disease.
However, the inferential (mindful) mechanics could be
exactly the same as seen in other conditions ranging from
alpha synucleinopathies (76, 158, 170) through to auto-
nomic dysfunction (123, 171).

The idea here is that our motor and autonomic reflexes
are just in the service of fulfilling top‐down predictions (97).
This tenet of active inference inherits from ideomotor
theories and 20th‐century formulations such as equilibrium
point hypothesis (172) andperceptual control theory and the
passive movement paradigm (173, 174). In brief, if all our
(motor and autonomic) actions are realizations of
descending (proprioceptive and interoceptive) predictions,
then the precision afforded descending predictions, relative
to the peripheral prediction errors that drive reflexes, be-
comes crucial. Indeed, Parkinson's disease could be regar-
ded as a complete failure to attenuate proprioceptive
precision, such that the intention to move is immediately
subverted on the basis of (unattenuated) proprioceptive
evidence one is not moving (138). The neuromodulatory
correlates—on an active inference reading of motor control
—of this putative failure are well characterized in terms of
dopamine neurotransmission (175)—and, indeed, the elec-
trophysiological correlates of precision control such as beta
activity (176).

Summary
In summary, a broad range of psychiatric and neurological
disorders may yield to a coarse‐grained but mechanistic
explanation in terms of aberrant precision control.
Crucially, the mechanics at hand are of two sorts. On the
one hand, there is the Bayesian mechanics of belief
updating, which underwrites our perceptions and experi-
ence of the world—and how it is actively sampled—on the
other hand, the synaptic mechanisms are, at a physiolog-
ical, computational and population level, clearly situated in
terms of their role in belief updating. In short, the

encoding of uncertainty or precision in the brain inherits
from a dual aspect monism.

DISCUSSION

In the foregoing, we have appealed to the fundaments of
sleep research; both in terms of its implications for
sentience and its neurophysiology to argue for a holistic
framing of neuropsychiatric disorders that dissolves Car-
tesian dualism by treating mindful processes (i.e., belief
updating) and neuronal processes (i.e., synaptic physi-
ology) as two sides of the same coin. One could of course
consider disorders cortical gain (i.e., precision) control
and, indeed, sleep per se within this framework.

A particularly instructive example is the rich history of
seizure disorder. Excitability is an intrinsic and essential
aspect of neuronal electrical function (103, 150, 177–179),
but it also constitutes a natural problem because that
excitability must be controlled (180)—and this control has
been considered in relation to precision (181). The brain–
mind is particularly vulnerable to escape from excitability
control (71). Epileptic seizures are the result when local
foci of seizure discharge become generalized. The patho-
physiology of epilepsy and the normal occurrence of
paroxysmal neuronal firing in REM sleep have been
detailed elsewhere (182). Here, we focus on two related
themes: temporal lobe epilepsy and normal dreaming.

In temporal lobe epilepsy, a hyperexcitable focus ari-
ses in the limbic brain and spreads so as to take over
waking consciousness. An affected subject becomes sus-
picious to the point of paranoia, convinced that others
are talking about them, and harboring delusions of self‐
importance. Great writers like Fyodor Dostoyevsky may
have had hyperexcitable temporal lobes which drove
their creative, and some would say, “hypergraphic” lit-
erary productivity (183).

A more physiological temporal lobe stimulation occurs
in REM sleep dreaming. Four or five times a night the
brainstem sends excitatory signals to the temporal lobe
such that we see, hear and feel sensations and emotions
not entirely unlike those of the epileptic patient. Are we to
suppose that dreaming is pathological? No, but we might
consider the kinship of our normal brain–mind state to the
psychosis of people we call patients. Our understanding of
their hallucinations and delusions makes discussion of
these so‐called symptoms more direct and naturalistic.
“Your visions are like my dreams” we might say. This
statement is more than reassuring.

Abundant neurophysiological findings of REM abnor-
malities in psychiatric patients (184–186), further support
the notion that psychopathology and inference have a
common grounding in neuromodulatory control that
transcends waking and sleeping. Furthermore, evidence of
NREM sleep alterations, including deficits in sleep spin-
dles and slow waves, have been increasingly reported in
neuropsychiatric disorders, especially in patients with
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schizophrenia (185, 187–191), implicating these electro-
physiological correlates of sleep in the pathophysiology of
these disorders; particularly in the consolidation or
learning usually associated with NREM sleep (50).

The state dependency of vital functions is illustrated
by the cessation of breathing in sleep due to neuronal
deactivation in the brainstem (192, 193), pointing to the
role of ascending modulatory neurotransmitter systems in
the control of breathing and the generation of central
apneas. Furthermore, when aggravated by age or obesity,
the obstructive sleep apnea may become gravely disabling
and even fatal (194). The understanding of sleep disor-
ders may be informed by a pathophysiological approach
that integrates clinical and basic biological science (195).
For the mind–brain integrationist this—and other sleep
disorders—provide an interdisciplinary bridge for neu-
rologists, psychiatrists and internists. The oxygen
dependence of the brain–mind is further testimony to the
physical basis of waking, sleeping, and dreaming. Fortu-
nately, sleep apnea can be treated by the application of
positive airway pressure and when nocturnal brain–mind
anoxia is reduced, normal waking cognition is typically
restored (196).

Vital functions underwrite (and inform) belief updating
from the subpersonal and interoceptive to the proposi-
tional and prosocial. This speaks to the importance of
communication and psychotherapy. It is the whole brain–
mind that is the target of psychotherapy. And it is sensitive
to what is said. Psychological intervention is thus seen to
be qualitatively akin to neurosurgery but has the twin
advantages of having no structurally damaging side effects
and a more global reach. This concept should delight all
practitioners of talking treatment. Psychotherapy is a
physical modality.

A caveat is that therapeutic efficacy must remain the
gold standard of all patient treatment. It is clear that
cognitive behavior therapy is the treatment of choice for
most phobias—and insurance systems are wise to license
it because of its efficiency and efficaciousness. But in-
dividuals of private means, who wish to investigate the
psychodynamic nature of their family experience, may
expect no lesser causal effects on their world view from
analytically oriented psychotherapy. In fact, psychoana-
lytic psychotherapy may now transcend Freud's own
adherence to Cartesian dualism; at the same time, the
brain–mind concept fulfills his abandoned goal for a
scientific psychology.

Limitations
AIM is a preliminary model, which should be regarded as a
demonstration project. Its limitations with respect to the
many already well‐known alterations of conscious state
have been emphasized previously. One must also appre-
ciate the anatomical problems associated with regional
brain differentiation. To be true to reality, AIM—or its
derivatives—should describe brain–mind conditions at all

scales, not just at the level of the whole system. Is con-
sciousness really a winner‐take‐all phenomenon or does it
consist of multiple substrates, each with its own AIM? And
speaking of AIM, are three dimensions adequate to define
state‐space? Almost certainly not. Skeptics ask for many
more and nay‐sayers believe the brain–mind problem to be
beyond the reach of science. Others may consider them-
selves to be descendants of Lucretius, Aristotle—or even
Spinoza—and there is a clear invitation to join in this
glorious conceit.
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