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ABSTRACT

The automated transcript discovery and quantifica-
tion of high-throughput RNA sequencing (RNA-seq)
data are important tasks of next-generation sequenc-
ing (NGS) research. However, these tasks are chal-
lenging due to the uncertainties that arise in the in-
ference of complete splicing isoform variants from
partially observed short reads. Here, we address this
problem by explicitly reducing the inherent uncer-
tainties in a biological system caused by missing
information. In our approach, the RNA-seq proce-
dure for transforming transcripts into short reads
is considered an information transmission process.
Consequently, the data uncertainties are substan-
tially reduced by exploiting the information transduc-
tion capacity of information theory. The experimen-
tal results obtained from the analyses of simulated
datasets and RNA-seq datasets from cell lines and
tissues demonstrate the advantages of our method
over state-of-the-art competitors. Our algorithm is an
open-source implementation of MaxInfo.

INTRODUCTION

Due to the ever-increasing development of next-generation
sequencing (NGS) technology in genome biology (1–4),
powerful quantitative methods are needed to depict inher-
ent gene regulation and the transcriptome landscape from
high-throughput RNA sequencing (RNA-seq) data (5–7).

At the RNA level, isoform identification and abundance es-
timation are two important approaches for evaluating het-
erogeneous transcriptional functions, and their use in NGS
studies can reveal the underlying mechanisms of disease
and lead to novel insights. Transcript (isoform) assembly is
performed to structurally recover the splicing isoform vari-
ants of expressed genes from a large quantity of short se-
quencing reads. Abundance estimations (transcript quan-
tification) quantitatively evaluate the expression levels of
the discovered isoforms. However, the only available data
for de novo assembly in these two inference tasks are in-
complete sequencing results of isoform fragments. Obtain-
ing a complete understanding from limited observations is
essentially an ill-posed mathematical problem, and signifi-
cant uncertainties arise as a result of missing information.

Conventional transcript discovery and quantification
methods employ parametric statistical models established
from various perspectives, e.g. probabilistic generative mod-
els (8–11) and linear regressions (12–14). Although their
mathematical formulations broadly differ, the inherent con-
cepts fall into similar data-fitting categories. The process
for the transformation of transcripts to RNA-seq reads in-
troduces high-level uncertainties caused by missing infor-
mation and data ambiguities. For example, the indetermi-
nation of transcript components, the multiple mapping of
short RNA-seq reads to isoforms and non-uniform read
distributions over the isoforms (15–17) are all unknown fac-
tors that are difficult to control. When the data-fitting pro-
cess involves too many uncertainties, the estimated isoforms
may be inaccurate and exhibit great differences from the
true isoforms (18–21).
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Some data-fitting approaches rely on additional informa-
tion to reduce data uncertainties and might require partial
or full genome annotations for transcript assembly. SLIDE
(14) utilizes gene annotations to locate subexons. Although
iReckon (9) is more advanced, it still requires the start
and end sites of transcripts. While genome annotations are
available for certain species, novel gene splicing events are
continually being discovered, and the annotation process
has not been completed (13,14,22). Various annotation-
free methods, such as Cufflinks (11), RSEM (23) and Iso-
Lasso (13), are also available. However, the accuracies of
these methods are still relatively low, and methods with bet-
ter performance are desired. In addition, transcripts iden-
tified by different methods exhibit great diversity, and this
diversity has been observed even among transcripts iden-
tified by methods based on similar mathematical assump-
tions (24). Therefore, more accurate and general approaches
for annotation-free transcript inferences are highly desired.

Rather than exploiting the aforementioned data-fitting
strategy, a more reasonable method that directly targets the
uncertainties in the system is useful. Here we introduce a
maximal information transduction pursuit (MaxInfo) ap-
proach for the simultaneous identification and quantifica-
tion of isoforms based on information coding theory. In this
approach, the isoforms and reads are regarded as the ‘sig-
nal sources’ and ‘short codes’ of an information transmis-
sion channel, respectively. The uncertainties in the channel
are then reduced by maximizing the transduction capabil-
ity of the information system. Transduction capacity (a.k.a.
channel capacity) is conventionally quantified by mutual in-
formation, which is a formal term defined in information
theory (25,26). Intuitively, this transduction capacity well
depicts how much information about the isoform is well en-
coded on short reads after the RNA-seq process. Experi-
ments based on simulated datasets demonstrated that Max-
Info consistently outperforms state-of-the-art methods for
transcript and gene prediction. Moreover, MaxInfo showed
to exhibit good performance in experiments based on six
different datasets of human and Drosophila melanogaster
tissues. MaxInfo is also flexible and can be run with ref-
erence annotations. The open-source software MaxInfo is
available at http://maxinfo.sourceforge.net.

MATERIALS AND METHODS

MaxInfo dissects RNA-seq processes based on information
transduction

In Shannon’s information theoretic configuration, a fun-
damental information transduction system (27) is always
composed of three parts: the information source, the cod-
ing channel and the receiver terminal. Briefly, the informa-
tion source continually sends signals to the coding channel,
where the signals are coded into short codes that accumu-
late in the receiver terminal. However, information loss be-
tween the original signal and the short codes may occur due
to channel noise and the shortening process. A basic pursuit
in information science is to identify the signals that exhibit
minimal information loss after passing through a particular
coding channel (27,28). Therefore, once the measurements
(short codes) reach the receiver, the property of the signals

from the information source can be characterized. This pro-
cess has been described in the context of the transduction
capacity problem in information theory (27–29).

The natural relationships between the RNA-seq process
and the aforementioned information transmission system
are of interest. As shown in Figure 1A, DNA can be viewed
as an information source that sends various transcripts (sig-
nals) with different probabilities (abundances) through an
RNA-seq channel (coding channel) to code the transcripts
as short reads (codes). A reduction of uncertainties and er-
rors in the biological signaling process is achieved by maxi-
mizing the information transmitted through the RNA-seq
channel. Mathematically this process is modeled through
the joint identification of transcripts T and their gener-
ative probabilities (abundances) P(T) at exhibit maximal
mutual information with the reads R at the receiver, i.e.
maxP(T) I(T; R). This formulation is the well-known chan-
nel capacity (27) pursuit in information science. Intuitively,
mutual information (25,30) measures the mutual depen-
dence of putative isoforms and sequencing reads, which ide-
ally depicts the level of uncertainty regarding the remaining
transcripts by observing the reads and vice versa.

Inspired by the information theoretic model, we propose
a maximal information transduction estimation approach,
MaxInfo, for transcriptome analyses using RNA-seq. In
this method, sequencing reads are first aligned to the ref-
erence genome (Figure 1B), and MaxInfo then begins the
initial gene and transcription start/end site predictions. Af-
ter generating the predictions, a directed graph is built for
path selection, and the paths connecting the source node
(the node with only outgoing edges) and the sink node (the
node with only incoming edges) are regarded as possible iso-
forms. Consequently, MaxInfo accomplishes simultaneous
isoform identifications and abundance estimations based
on maximal information transduction capacity (Figure 1C).
The uncertainties and errors generated in all the previous
steps, such as the gene prediction step, are reduced and re-
fined in this step. In addition, by considering the genera-
tive mechanism of RNA-seq data, a probabilistic likelihood
term is incorporated into the mutual information term to
improve the estimation accuracy.

Initial gene prediction and coarse isoform selection

When implemented in the de novo assembly mode, Max-
Info performs gene predictions directly from the read dis-
tribution and detected junctions. Gene prediction processes
generally consist of three steps: subexon discovery, gene
boundary determinations and transcription start/end sites
predictions. Reads are initially aligned to the genome with
junction-sensitive tools in TopHat 2, and the junctions
spanned by split reads are considered potential splice sites.
Suspicious splice sites with weak read support are excluded
to reduce assembly errors. Two types of expressed segments
are marked as putative subexons: the region between the ad-
jacent 3′ end and 5′ end splice sites and the region between
alternative splice sites (both 5′ ends or both 3′ ends).

After assembling the subexons, MaxInfo determines the
gene boundaries and allocates subexons into different gene
loci. Gene loci are initially identified with respect to their
orientation information. If junctions reported by TopHat

http://maxinfo.sourceforge.net
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Figure 1. Overview of MaxInfo. (A) Dissect RNA-seq procedures from the perspective of information transduction. The RNA-seq procedures construct
a coding channel that transmits the information from the source to the receiver. On both terminals of the channel, isoforms are the signal source and short
reads are the encoded codes. (B) Algorithmic gene prediction and candidate isoform reconstruction. For illustration purposes, two genes (A and B) are
located on the genome and determined by the read distribution. Within gene A, eight subexons are identified and used as nodes to construct the directed
graph. A pair of source (S1) and sink (S2) nodes are added to the graph to identify the start/end exon of a putative isoform. (C) Information transduction
capacity model. H(T) and H(R) represent the entropies of transcripts and reads, respectively. I(T; R) is the mutual information and used to measure the
information content shared by the transcripts and the reads. A probabilistic graphical model (in the rectangle) is incorporated to depict the read generation
procedures from transcripts (T) to RNA-seq data (R). R1, R2 indicate a pair of reads (paired-end). In the graphical model, S and L represent the starting
position along the transcript and the length of the fragment, respectively, and Q describes the match quality of the read alignment.

2 are marked with different orientations, they should be-
long to different genes. In a local genetic region, MaxInfo
uses high-quality subexons to estimate the probabilistic dis-
tribution of subexon lengths, and extremely long subex-
ons are noted as suspicious segments that likely span two
gene loci. Within these suspicious segments, MaxInfo lo-
cates gene boundaries in positions that present an obvious
discontinuity of read distribution.

With the predicted gene structures, a directed graph is
built to interpret the splicing variants of the gene. On the
graph, nodes represent subexons obtained via de novo as-
sembly, and two nodes are linked by a directed edge if their
corresponding subexons are adjacent or spanned by split
reads. A pair of source/sink nodes is added to the graph
to connect the potential transcription start/end sites of a
putative isoform. Entire possible isoforms can be enumer-
ated through path searches over the graph. To reduce the
size of the candidate isoform set, we employed the concept
of ‘flow’ on the directed graph for isoform selection. Specifi-
cally, flow on an edge is defined as the number of reads span-
ning the linked nodes (subexons). Each path p is evaluated
according to the flow cost ω(p) = ϕ(p) + η(p) along with
the balance cost ϕ(p) d connectivity cost η(p). The balance
cost measures the possibility of the candidate isoform with
considered beginning and ending exons, while the connec-
tivity cost measures the probability of the putative isoform
of a certain length (Supplementary Note 1). One path is dis-
carded if its cost exceeds the threshold. We should note that

the isoforms selected in this step are only preliminary coarse
candidates for subsequent precise selection by the informa-
tion theoretic model.

Information theoretic model

MaxInfo exploits the principle of information transduction
to simultaneously conduct isoform discovery and abun-
dance estimation from the coarse isoform set. In this pro-
cess, the RNA-seq processing technique is analogous to a
noisy information channel that encodes the signal source
(isoform) into short codes (RNA-seq reads) (Figure 1A). In
this context, reducing uncertainties during isoform discov-
ery is subject to an information theoretic optimization by
maximizing the information transmitted through the chan-
nel. Mathematically, the channel capacity is defined as fol-
lows:

C (R, T) = supp(T) I(R; T|�), (1)

where, I(R; T) is the mutual information between the reads
and isoforms, T = {t1, t2, . . . , tK} is the set of isoform can-
didates and R = {r1, r2, . . . , rN} represents the observed
RNA-seq (paired-end or single-end) reads. P(T) represents
the generative probability of the isoform, which is related to
the abundance. For clarity, we define θk = P(T = tk) and
� = { θ1, θ2 . . . , θK}. It can be seamlessly converted to a
formal abundance measurement, e.g. fragments per kb per
million reads (FPKM).
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Channel capacity defines the maximum amount of infor-
mation that can be transmitted throughout a noisy chan-
nel, and its objective function is quantitatively defined in
the probabilistic form with the parameter set �:

I (R; T|�)

= ∑K
k=1

∑N
i=1 P (R = ri , T = tk|�) log

(
P(R=ri , T=tk|�)

P(R=ri |�)P(T=tk|�)

)
.

(2)

Intuitively, the mutual information term can be explained
as the level of uncertainty on the isoforms that is reduced
after observing the RNA-seq data. Mathematically, this
value should be maximized to reduce the uncertainty. Us-
ing Equation (2), we attempt to solve T and � based on the
sequenced reads R.

In addition to modeling the uncertainty from the iso-
forms to the reads, another issue that should be addressed is
the likelihood of read generation, i.e. P(R|�). In detail, this
term depicts the probability of generating RNA-seq data
that explain how the estimated model fits the data. This gen-
eral objective has also been adopted by other data-fitting
approaches (31). Using this term alone for model estima-
tion is not reasonable because P(R|�) tends to use com-
plex model structures (e.g. many isoforms) to over-fit the
observed RNA-seq data. However, when considering mu-
tual information term, the uncertainty regarding the read
source of the isoform will be high if complex isoforms are
used. Therefore, the optimization process will force to ob-
tain simple model structures in order to minimize the uncer-
tainty. Accordingly, the objective of the MaxInfo method is
as follows:

max I (T; R|�) + λL (�; R) , (3)

where, L(�; R) = log P(R|�) is the log-likelihood term.
The optimization objective function involves two additive
terms: log-likelihood and mutual information. λ balances
the relative importance of these two terms. In our approach,
we selected the value based on simulation studies and then
varied it over a relatively wide range (from 0.001 to 1000)
and observed the corresponding performances of MaxInfo
under these different parameters. We found that different
parameter settings over a flexible range (from 0.1 to 100) all
yielded reasonable recoveries (Supplementary Note 3).

The two terms in (3) require explicit probabilistic defini-
tions. Here, we model the read generation mechanism us-
ing a graphical model (Figure 1C) that considers the start-
ing position of fragmentation, the length of the selected
fragments and the read matching quality (Supplementary
Note 2). The above model is solved within an Expectation-
Maximization (EM) framework (32–34) to iteratively and
alternatively update the latent variables (T) and the model
parameters (�) (Supplementary Note 3).

Forward selection for isoform set refinement

Mathematically, the optimization in (1) is not convex and
could guarantee only the local optimum. Therefore, for
complex gene structures, the EM solution is implemented
multiple times with varying initializations. If the identified
isoforms of different runs are not consistent, a sequential
forward isoform selection procedure is adopted. Before the
sequential selection, we assign a confidence score to each
isoform, and the isoforms with low confidence are excluded.

In the forward selection, S(k)
0 and S(k)

1 are defined as the
selected and unselected isoform set after the kth selection,
respectively. Then, isoform tk+1 is selected in the (k + 1)th
selection with the function

t(k+1) = arg maxt∈S(k)
1

I
(
S(k)

o ∪ {t}; R|�) + λL(�; R). (4)

The sequential forward isoform selection is stopped when
the objective function reaches the maximum.

Implementation with genome annotation

MaxInfo also works when the genome annotations are
known. In the software, MaxInfo combines the initial gene
and isoform predictions with the provided authentic anno-
tations. If an initially predicted gene locus is consistent with
an annotated gene, MaxInfo utilizes the annotation to refine
the assembly of isoforms. If the gene locus is not covered
by any annotated gene, MaxInfo reconstructs isoforms in
the locus similar to that in the de novo assembly mode. The
expressed annotated isoforms and the novel discovered iso-
forms are collectively used for the investigation.

RESULTS

Evaluating the identification performance of MaxInfo on
simulation datasets

We evaluated the performance of MaxInfo in identifying
isoforms from simulated data generated with true tran-
scripts. Based on the known transcripts in chromosome 1
(Chr. 1) of the UCSC Known Genes annotation, we sim-
ulated 15 million 75-bp pair-ended RNA-seq reads for an
in silico study using Flux Simulator software (35) (Supple-
mentary Notes). We then mapped the generated reads to the
UCSC hg19 reference genome using TopHat 2. For evalua-
tion purposes, MaxInfo was compared with the other lead-
ing methods, including SLIDE, iReckon, IsoLasso and Cuf-
flinks. It is worth noting that the two latter methods are au-
tomated methods that do not require genome annotations
to guide the assembly, whereas SLIDE and iReckon require
gene or transcript annotations. In this study, we configured
iReckon to handle unannotated cases by providing it with
only minimal annotations based on the boundaries of ref-
erence transcripts, while for SLIDE we provided full anno-
tations.

To assess the accuracy of the assembly results in relation
to the known true transcripts, we followed the representa-
tive study Cufflinks and employed precision and recall as
criteria. We considered each true transcript as correctly dis-
covered only if all of the exons inside the transcript were cor-
rectly identified. We considered exons located at the tran-
script boundaries as correctly identified if they fell within
100 bp of the true positions in the known transcripts. For
extremely long transcripts (>20 exons), if 90% of the exons
were correctly identified, the prediction was considered cor-
rect.

The precision and recall (Figure 2A) performances were
reported for the overall isoforms. The corresponding F-
1 scores of different methods are summarized in Supple-
mentary Figure S1. With respect to both criteria, MaxInfo
achieved the best overall discovery accuracy. The results of
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Figure 2. Performance of MaxInfo based on a simulation study of the human genome. (A) Precision and recall of MaxInfo with respect to isoform discovery
compared with other state-of-the-art methods. (B) Box plot of the precision and recall for 100 replicated experiments on human datasets. The upper and
lower whiskers indicate the 10th and 90th percentiles, respectively. (C) Significance tests under the hypothesis that the accuracy attained by MaxInfo is worse
than that of each competitor. The rank sum test was performed based on 100 replicated experiments on human datasets. (D) Analysis of the abundance
estimation accuracy for the isoforms. Spearman’s correlations were calculated between the true abundances and predicted abundances in FPKM. (E)
Fractions of isoforms whose abundances were correctly estimated under different error tolerance thresholds.

all competitors fluctuated across different isoform numbers,
whereas MaxInfo presented stable performances.

We also calculated the precision and recall performances
of each method in terms of gene discovery. In the simula-
tion, we regarded a multi-transcript gene as correctly iden-
tified if at least one transcript generated from it was dis-
covered. For the discovery accuracy (Supplementary Fig-
ure S2), MaxInfo attained better precision than all other
methods. In addition, MaxInfo also outperformed the other
methods in recall. The precision and recall results were com-
bined to determine the F-1 score, and we observed that
MaxInfo achieved the highest score among all five bench-
mark methods (Supplementary Figure S3). In the simula-
tion process using the Chr. 1 dataset, the computational
costs for each method were recorded for comparison (Sup-
plementary Figure S4). The speed of MaxInfo was similar
to that of Cufflinks and IsoLasso and was better than that
of iReckon and SLIDE.

To better compare the robustness and consistency of the
methods, we performed statistical analyses of the predic-
tion accuracies. We generated 100 different datasets with
the Flux Simulator, and each of the datasets contained 1
million 75-bp paired-end reads. In addition, the datasets
were simulated using 100 randomly selected genes from Chr.
1 as a reference, and the aforementioned evaluation strat-
egy was employed. The precision and recall distributions of
the 100 different datasets determined by the different meth-

ods are shown in Figure 2B. The MaxInfo results exhibited
smaller variances and higher median accuracies than the
other methods. We also performed a rank-sum test (Figure
2C) and a one-sided paired t-test (Supplementary Figure
S5) to compare the results of MaxInfo with the results of the
other methods. The null hypothesis for the test was that the
accuracy of MaxInfo was not better than that of the com-
peting methods (SLIDE, iReckon, IsoLasso and Cufflinks).
The P-values suggested that the precision of MaxInfo was
significantly better than that of the other methods.

To evaluate the performance of MaxInfo for the analysis
of different species, we also performed a simulation study
using Chr. 3R of D. melanogaster, a chromosome that con-
tains 880 genes and 2327 isoforms. A set of 5 million 75-bp
paired-end reads was generated for this in silico study, and
these D. melanogaster data were utilized to determine the
transcript accuracies and gene accuracies (Supplementary
Figure S6). Most of the comparisons performed revealed
that MaxInfo also outperformed the other approaches.

Evaluating the quantification performance of MaxInfo using
simulated datasets

We also evaluated the accuracy of MaxInfo in estimating
isoform abundance. Using the simulated dataset, Flux Sim-
ulator provided the exact number of fragments generated
from each isoform. We calculated the abundance in the form
of FPKM for the evaluation and considered only compar-
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isons between the correctly identified transcripts and the
corresponding true transcripts. When more than one of the
predicted transcripts was matched to the same true isoform,
we merged these transcripts into one by adding the frag-
ments to each together.

The abundance estimations were first evaluated by calcu-
lating the Spearman’s rank correlation coefficients between
the true transcripts and the assembled transcripts from each
method (Figure 2D). All methods showed positive correla-
tions between the two abundance results, and the results of
MaxInfo were generally better than others. We also calcu-
lated the Pearson’s correlation coefficients for the predicted
transcripts using the log-transformed abundances (Supple-
mentary Figure S7).

To analyze the detailed abundance errors, we calculated
the same ratio between the true and predicted abundance
estimation, as described for iReckon. The evaluation strat-
egy yielded the abundance accuracies under different error
tolerance rates. In detail, defining the error tolerance rate as
� , if the difference between an estimated abundance and the
true abundance is less than � , it is regarded as correctly esti-
mated. For each correctly predicted isoform, we conducted
this comparison of abundance and plotted the overall pro-
portion of correctly predicted isoforms (Figure 2E). Under
the same error tolerance rate, MaxInfo consistently gener-
ated the highest fractions of correct estimates, indicating its
high accuracy for abundance estimation. The abundance es-
timation results for D. melanogaster were also summarized
(Supplementary Table S1).

Performance of MaxInfo with genome annotation

The aforementioned evaluations verified that MaxInfo gen-
erally outperformed other state-of-the-art methods when
implemented without genome annotations. However, the
performance can be further improved by providing refer-
ence annotations. The released software can be flexibly ad-
justed between unannotated and annotated modes depend-
ing on the type of data source that is provided.

In this study, SLIDE and iReckon are methods that re-
quire annotation, and Cufflinks, MaxInfo can work both in
annotation and de novo modes. We used these four methods
for analysis and conducted experiments on the human Chr.
1 dataset generated by Flux Simulator. We first provided the
known transcripts from the UCSC Known Genes annota-
tion as a reference. With such high-quality annotations, the
accuracy of all methods was greatly improved (Supplemen-
tary Figure S8a) compared with the de novo results. Max-
Info exhibited the best performance under this condition.

We also provided the assembled transcripts of MaxInfo
to other methods as a reference. In this case, we evaluated
the difference between the transcripts from MaxInfo and
the transcripts assembled by other methods. The results in-
dicated that the performance of Cufflinks could also be im-
proved using MaxInfo transcripts as a reference (Supple-
mentary Figure S8b).

Application of MaxInfo to real datasets

To test the performance of MaxInfo in practice, we applied
the method to three human RNA-seq datasets: H1 human

embryonic stem cells (H1-hESC), neurons derived from
H1 embryonic stem cells (H1-Derived Neurons) and hu-
man pulmonary alveolar epithelial cells (HPAEpiC) (Sup-
plementary Note 9). We first mapped the reads to the Homo
sapiens (hg19) genome using TopHat 2. Compared with the
simulated data, the real sequence data contained more prac-
tical factors that were hardly covered by the simulation. One
known problem associated with evaluating real sequence
data is the lack of ground truths to define the expressed
transcripts. Alternatively, we evaluated the assembled iso-
forms with known genes in the RefSeq, Ensembl or UCSC
Known Genes annotation datasets. For transcript accuracy,
we compared the assembled transcripts with known tran-
scripts following the aforementioned transcript matching
criteria. In our evaluation, a known gene was considered
to be identified if at least one of its known isoforms was
correctly predicted.

For isoform discovery over all the datasets across differ-
ent tissues, MaxInfo could identify more than 20% of the
known human transcripts, regardless of the cell type (Figure
3A and Supplementary Table S2). In the precision evalua-
tion, the scores of MaxInfo for the different datasets were
also better than those of the other methods (Figure 3A).
MaxInfo also showed consistent advantages in gene predic-
tion and achieved >30% accuracy in recall and ∼40% accu-
racy in precision (Figure 3B).

To provide a comprehensive perspective of the recovered
isoforms, we analyzed the number of correct transcripts
and genes that were consistently identified in all the three
datasets. Although the reads data were sequenced from dif-
ferent bio-samples, their basic transcriptomes shared ho-
mogeneity. If a method produced diverse predictions on
these inherently related biological data, then it was regarded
as data source sensitive. MaxInfo exhibited increased con-
sistency compared with the other methods (Supplementary
Figure S9). We also assessed the performances of MaxInfo
on cancer cell (human colorectal cell line HT-29) and nor-
mal tissue (human sigmoid colon) datasets (Supplementary
Table S3). When run on these two human samples, MaxInfo
showed similar performances with known annotations.

For the evaluation of estimated abundances, there was
no abundance ground truth for comparisons. Alternatively,
we only plotted the distributions of the estimated abun-
dances for each method (Figure 3C). SLIDE tended to be
more tightly distributed than the other methods. MaxInfo
had a similar distribution center as IsoLasso but predicted
more transcripts with low abundances (long tail in the left
of the distribution). For the different datasets, the estimated
abundances using different assemblers varied. For example,
the centers of abundances in H1-hESC and HPAEpiC were
close to zero but were much closer to −1 in H1-Derived
Neurons.

Experiments were also conducted on three D.
melanogaster datasets from the Gene Expression Om-
nibus (GEO): head, testis and ovary. Each dataset was
processed using TopHat 2 and analyzed using all the
methods as previously described. We report the results for
transcript prediction (Supplementary Table S4) and gene
discovery (Supplementary Table S5). All methods tended to
achieve better accuracies for the D. melanogaster datasets
than the human datasets. Compared with its competitors,
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Figure 3. Performance of MaxInfo for isoform discovery using unannotated genes in human datasets. (A) Overall performance evaluation for isoform
discovery over three RNA-seq datasets: H1-hESC, H1-Derived Neurons and HPAEpiC. (B) Overall performance evaluation for gene prediction. (C)
Distribution of the predicted abundance for each dataset. Abundance was quantified in FPKM with log-transformations.

MaxInfo also exhibited an enhanced ability to identify
transcripts (>30% accuracy) and genes (40–50% accuracy).

DISCUSSION

In this study, we proposed the information theoretic model
MaxInfo, which is capable of simultaneously performing
isoform discovery and abundance estimation from high-
throughput RNA-seq data. The novelty of the method is
the formulation of the RNA-seq process via channel cod-
ing theory. According to a review of transcript reconstruc-
tion methods (24), the transcript identification results were
shown to vary greatly among different assemblers, even if
the methods were developed based on similar mathematical
assumptions. MaxInfo tackles the isoform discovery prob-
lem from an information theory perspective, introducing a
novel mathematical framework to this field. We thus believe
that MaxInfo could illustrate this challenging problem from
a fresh new perspective compared with the existing assembly
methods. To evaluate the performance of MaxInfo, we ex-
perimentally compared it with four benchmark NGS tech-
nologies: SLIDE, iReckon, IsoLasso and Cufflinks.

Using simulated human and D. melanogaster datasets,
we achieved transcript assembly accuracies of >60% and
∼70%, respectively. However, we noted that the predictive
accuracy for transcripts from real sequence data was con-
siderably reduced compared with that for transcripts from
simulated data because the accuracy scores were calculated
according to real data for which the evaluation ground truth
was not known. Therefore, we followed previously pub-
lished evaluation strategy and used the human genome an-
notations as a ‘surrogate’ ground truth. The human genome
annotations offer only partial information regarding the
‘true’ ground truth. For instance, although various isoforms
recovered by computational methods might be correct, they

have not been annotated in the human genome annotations.
Such recoveries are regarded as false negatives when using
known annotations as true transcripts. This ‘partial ground
truth’ problem with real datasets decreases the calculated
accuracy. The best evaluation includes validating the dis-
coveries with functional studies and in vivo experiments.
However, accurately identifying tens of thousands of tran-
scripts is difficult with the current experimental technology.

Although the results demonstrated that MaxInfo
presents improved assembly performance, we should note
that there is room for further enhancement. For example,
instead of using the uniform distribution to model the start-
ing position of the fragments, non-uniform assumptions
can be considered in the RNA-seq process. Alternative
error models of alignment quality evaluations could also
be used in the MaxInfo framework. A super-read strategy
can also be employed to extend the length of short reads
into super-reads. When the super-reads are mapped to the
reference genome, less ambiguity and better accuracy could
be expected. MaxInfo framework is flexible and can be
integrated with these advanced modifications for potential
performance improvements. However, such modifications
will also increase the complexity of our model. Therefore,
we prefer to adopt the simplest implementation of Max-
Info because our evaluations demonstrate the simple and
natural choices lead to improved performance.

AVAILABILITY

The MaxInfo software package is available at http://
maxinfo.sourceforge.net for public usage, and the source
code is included.

http://maxinfo.sourceforge.net
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The RNA-seq datasets are downloaded from the Gene
Expression Omnibus (GEO) under the access num-
ber SRR317039 (H1 human embryonic stem cells),
SRR3192700 (neurons derived from H1 embryonic stem
cells), SRR3192690 (human pulmonary alveolar ep-
ithelial cells), SRR3659025 (head of D. melanogaster),
SRR3663888 (testis of D. melanogaster), SRR3664030
(ovary of D. melanogaster), GSE78684 (human colorectal
cell lines HT-29), and GSE88557 (human sigmoid colon).
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and Sammeth,M. (2012) Modelling and simulating generic RNA-Seq
experiments with the flux simulator. Nucleic Acids Res., 40,
10073–10083.


