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Abstract

Background: The Damerau-Levenshtein (DL) distance metric has been widely used in the biological science. It tries
to identify the similar region of DNA,RNA and protein sequences by transforming one sequence to the another using
the substitution, insertion, deletion and transposition operations. Lowrance and Wagner have developed an O(mn)
time O(mn) space algorithm to find the minimum cost edit sequence between strings of lengthm and n, respectively.
In our previous research, we have developed algorithms that run in O(mn) time using only O(s ∗ min{m, n} + m + n)
space, where s is the size of the alphabet comprising the strings, to compute the DL distance as well as the
corresponding edit sequence. These are so far the fastest and most space efficient algorithms. In this paper, we focus
on the development of algorithms whose asymptotic space complexity is linear.

Results: We develop linear space algorithms to compute the Damerau-Levenshtein (DL) distance between two
strings and determine the optimal trace (corresponding edit operations.)
Extensive experiments conducted on three computational platforms–Xeon E5 2603, I7-x980 and Xeon E5 2695–show
that, our algorithms, in addition to using less space, are much faster than earlier algorithms.

Conclusion: Besides using less space than the previously known algorithms,significant run-time improvement was
seen for our new algorithms on all three of our experimental platforms. On all platforms, our linear-space
cache-efficient algorithms reduced run time by as much as 56.4% and 57.4% in respect to compute the DL distance
and an optimal edit sequences compared to previous algorithms. Our multi-core algorithms reduced the run time by
up to 59.3% compared to the best previously known multi-core algorithms.
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Background
Introduction
The Damerau-Levenshtein (DL) distance between two
strings is the minimum number of substitutions, inserts,
deletes, and transpositions of adjacent characters required
to transform one string into the other. Some of the appli-
cations of the DL are spelling error correction [1–3],
comparing packet traces [4], data mining and cluster-
ing [5], quantifying the similarity of biological sequences,
and gene function prediction [6], analysis of B cell recep-
tor repertoire data [7], virus detection in software [8],
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clustering of RNA-seq read se6gments [9], DNA repeats
detection [10], and codes for DNA based storage [11]. In
some of these applications (e.g., spelling error correction),
the strings are rather small while in others (e.g., comparing
protein sequences) the strings could be tens of thousands
of characters long [12], and in yet others (e.g., compar-
ing chromosomes) they could be millions of characters
long [13].
Other string edit distances used in the literature per-

mit only a proper subset of the operations permitted by
the DL distance. For example, in the Levenshtein distance
[14] transpositions are not permitted, in the Hamming
distance [15] only substitutions are permitted, and in the
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Fig. 1DL distance recurrence. a substitution. b insertion. c deletion. d translate A[k:i] to B[l:j] where (ak, bj) and (bl, ai) form a transposition opportunity

Fig. 2 DL trace example [18]

Fig. 3 Traces with and without center crossings [18]. a No center crossing. bWith center crossing
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Table 1 Memory usage for DL distance algorithms on Xeon4

Algorithm Memory

Lowrance and Wagner 30100.88 MB

LS_ DL 41.93 MB

LS_ DL2 8.82 MB

LS_Strip 40.98 MB

LS_Strip2 8.73 MB

Jaro distance [16], only transpositions are permitted. The
correct distance metric to use depends on the application.
In the applications cited above, the DL distance is used as
all 4 edit operations are permitted.
Lowrance and Wagner [17] considered a generalization

of DL distance to the case when substitutions, inserts,
deletes, and transpositions have different costs. Through
a suitable choice of weights, the weighted DL distance can
be made equal to the DL distance, Levenshtein distance,
Hamming distance, and Jaro distance.
Lowrance and Wagner [17] have developed an O(mn)

time and O(mn) space algorithm to find the minimum
cost edit sequence (ie., sequence of substitutions, inserts,
deletes, and transpositions) that transforms a given string
of length m into a given string of length n provided that
2T ≥ I+D, whereT, I, andD, are respectively, the cost of a
transposition, insertion, and deletion. In the DL distance,
T = I = D = 1 and so, 2T = I + D. Hence, the algorithm
of Lowrance andWagner [17] may be used to compute the
DL distance as well as the corresponding edit sequence in
O(mn) time and O(mn) space. This observation has also
been made in [2]. In [18] we developed algorithms that

run in O(mn) time using only O(s ∗ min{m, n} + m + n)

space, where s is the size of the alphabet comprising the
strings, to compute the DL distance as well as the cor-
responding edit sequence. Since s << m and s << n
in most applications (e.g., s = 20 for protein sequences),
this reduction in space enables the solution of much larger
instances than is possible using the algorithm of [17]. Our
algorithms in [18] are much faster as well. In this paper,
we develop algorithms to compute the DL distance and
corresponding edit sequence using O(m + n) space and
O(mn) time. Extensive experimentation using 3 different
platforms indicates that the algorithms of this paper are
also faster than those of [18]. In fact, our fastest algorithm
for the DL distance is up to 56.4% faster than the fastest
algorithm in [18] when run on a single core. The single
core speedup to find the corresponding edit sequence is
up to 57.4%. Our algorithms may be adapted to run on
multicores providing a speedup of up to 59.3%.

DL dynamic programming recurrences
Let A[ 1 : m]= a1a2 · · · am and B[ 1 : n]= b1b2...bn be
two strings of length m and n, respectively. Let Hij be the
DL distance between A[ 1 : i] and B[ 1 : j]. So, Hmn is the
DL distance betweenA and B. The dynamic programming
recurrence for H is given below [17, 18].

Hi,0 = i, H0,j = j, 0 ≤ i ≤ m, 0 ≤ j ≤ n (1)

When i > 0 and j > 0,

Hi,j = min

⎧
⎪⎪⎨

⎪⎪⎩

Hi−1,j−1 + c(ai, bj)
Hi,j−1 + 1
Hi−1,j + 1
Hk−1,l−1 + (i − k − 1) + 1 + (j − l − 1)

(2)

Fig. 4 Cache misses for DL distance algorithms, in billions, on Xeon4
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Table 2 Cache misses for DL distance algorithms, in millions, on Xeon4

A B LS_DL LS_DL2 Strip_DL Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 265 14 6 1 94.9% 76.6% 90.4%

80000 80000 715 53 16 5 92.6% 66.0% 89.9%

120000 120000 2,180 121 42 11 94.4% 73.1% 90.7%

160000 160000 10,652 247 63 20 97.7% 68.4% 91.9%

200000 200000 19,751 397 147 32 98.0% 78.0% 91.9%

240000 240000 24,257 570 133 49 97.7% 63.2% 91.4%

280000 280000 38,119 781 188 66 98.0% 65.0% 91.6%

320000 320000 44,815 1,021 242 86 97.7% 64.4% 91.6%

360000 360000 61,296 1,290 1,352 111 97.9% 91.8% 91.4%

400000 400000 160,118 1,587 2,407 136 99.0% 94.4% 91.5%

where c(ai, bj) is 1 if ai �= bj and 0 otherwise, k =
lastA[ i] [ bj] is the last (i.e.,rightmost) occurrence of bj
in A that precedes position i of A, and l = lastB[ j] [ ai]
is the last occurrence of ai in B that precedes position
j of B. When k or l do not exist, case 4 of Eq. 2 does
not apply.
The four cases in Eq. 2 correspond to the four allow-

able edit operations: substitution, insertion, deletion and
transposition. These cases are illustrated in Fig. 1, which
depicts the possibilities for an optimal transformation of
A[ 1 : i] toB[ 1 : j]. Figure 1a illustrates the first case, which
is to optimally transform A[ 1 : i − 1] into B[ 1 : j − 1] and
then substitute bj for ai. If ai = bj, the substitution cost is
0, otherwise it is 1. Figure 1b shows the second case. Here,
A[ 1 : i] is optimally transformed into B[ 1 : j − 1] and
then bj is inserted at the end. In the third case (Fig. 1c)

A[ 1 : i−1] is optimally transformed into B[ 1 : j] and then
ai is deleted. For the fourth and final case (Fig. 1d), assume
that k and l exist. In this case, we are going to transpose
ak and ai. We first optimally transform A[ 1 : k − 1] into
B[ 1 : l − 1]. Since only adjacent characters may be trans-
posed, the transposition of ak and ai must be preceded
by a deletion of ak+1 through ai−1, which results in ak
and ai becoming adjacent. Following the transposition, we
insert bl+1 through bj−1 between the transposed ak and
ai, thereby transforming A[ 1 : i] into B[ 1 : j]. The cost of
optimally transforming A[ 1 : k − 1] into B[ 1 : l − 1] is
Hk−1,l−1. The ensuing deletions have a cost of i− k − 1 as
this is the number of deletions performed, the transposi-
tion ak and ai costs 1, and the final inserts cost l − k − 1.
So, the overall cost of case 4 is Hk−1,l−1 + (i − k − 1) + 1
+ (j − l − 1).

Fig. 5 Run time for DL distance algorithms on Xeon4
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Table 3 Run time in hh : mm : ss for DL distance algorithms on Xeon4

A B LS_DL LS_DL2 Strip_DL Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:17 0:00:09 0:00:13 0:00:08 47.6% 38.5% 15.9%

80000 80000 0:01:02 0:00:36 0:00:50 0:00:31 41.3% 38.1% 15.4%

120000 120000 0:02:40 0:01:22 0:01:52 0:01:09 48.9% 38.3% 15.4%

160000 160000 0:05:37 0:02:26 0:03:19 0:02:03 56.6% 38.2% 15.7%

200000 200000 0:09:38 0:03:48 0:05:14 0:03:12 60.6% 38.7% 15.5%

240000 240000 0:13:37 0:05:29 0:07:28 0:04:37 59.8% 38.2% 15.7%

280000 280000 0:18:34 0:07:28 0:10:10 0:06:17 59.8% 38.2% 15.7%

320000 320000 0:24:13 0:09:45 0:13:17 0:08:13 59.7% 38.2% 15.8%

360000 360000 0:33:10 0:12:21 0:17:22 0:10:24 62.8% 40.1% 15.8%

400000 400000 0:37:55 0:15:15 0:20:46 0:12:50 59.8% 38.2% 15.8%

The algorithm of Lowrance and Wagner [17] computes
Hm,n using a m × n array for H and one-dimensional
arrays of size s for lastA and lastB, where s is the size of
the alphabet from which the strings A and B are drawn.
It computes the Hi,j’s by rows beginning with row 1 and
within a row, the elements are computed left-to-right by
columns. While algorithm LS_DL of [18] also computes
H by rows and within a row by columns left-to-right, it
does this using a one-dimensional array of size n for the
current row being computed, a one-dimensional array of
size s for lastA, and an s × n array T with the prop-
erty that if w is the last row of H computed so far such
that A[w]= c, then T[ c] [ ∗]= H[w − 1] [ ∗]. As noted
in [18] when m < n, we may swap the strings A and B
resulting in a space requirement of O(smin{m, n} + n).
The time complexity of LS_DL isO(mn). A cache-efficient
version, Strip_DL, of LS_DL that computes H by strips

whose width is no larger than the cache size is also devel-
oped in [18]. This cache efficient algorithm has the same
asymptotic time and space complexities as does LS_DL.
But, as demonstrated in [18], Strip_DL is much faster
than LS_DL.
The linear space algorithms we develop in this paper

use a refined dynamic programming recurrence forH. We
make the observation that when either ai = bj or min{i −
k, j − l} ≥ 2 in the fourth case of Eq. 2, then it is sufficient
to consider only the first three cases. To see this, note that
when ai = bj the transposition of ak and ai done follow-
ing the deletion of ak+1 through ai−1 in case 4 (Fig. 1d) is
unnecessary as ak = bj = ai. So, one of the first three cases
has to result in a smaller value than case 4. Next, consider
the case when ai �= bj and min{i − k, j − l} ≥ 2. Suppose
that 2 ≤ i− k ≤ j − l. The cost of transforming A[ 1 : i] to
B[ 1 : j] by using an optimal transformation of A[ 1 : k− 1]

Fig. 6 CPU/cache energy for DL distance algorithms on Xeon4
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Table 4 CPU/cache energy in joules for DL distance algorithms on Xeon4

A B LS_DL LS_DL2 Strip_DL Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 107 56 77 47 47.3% 39.0% 17.1%

80000 80000 384 225 305 187 41.5% 38.7% 16.7%

120000 120000 997 509 687 422 49.0% 38.5% 17.0%

160000 160000 2088 907 1212 752 56.6% 38.0% 17.1%

200000 200000 3577 1406 1906 1167 60.7% 38.8% 17.0%

240000 240000 5058 2040 2714 1680 59.7% 38.1% 17.6%

280000 280000 6906 2781 3711 2302 59.7% 38.0% 17.2%

320000 320000 9000 3638 4852 3016 59.6% 37.9% 17.1%

360000 360000 12287 4619 6366 3822 62.4% 40.0% 17.3%

400000 400000 14218 5690 7615 4712 60.0% 38.1% 17.2%

to B[ 1 : l − 1] and then doing j − l + 1 substitutions and
inserts isHk−1,l−1 + j− l+ 1. Doing the transformation as
is case 4 has a cost Hk−1,l−1 + (i− k − 1) + 1+ (j− l − 1)
≥ Hk−1,l−1 + j− l+ 1. So, doing the transposition (case 4)
isn’t any better than using only substitutions and inserts.
Hence, case 4 need not be considered. The case when
2 ≤ j − l ≤ i − k is symmetric.
The preceding observation establishes the correctness

of the following refined recurrence for H.
Hi,0 = i, H0,j = j, 0 ≤ i ≤ m, 0 ≤ j ≤ n (3)

When i > 0 and j > 0,

Hi,j = min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hi−1,j−1 + c(ai, bj)
Hi,j−1 + 1
Hi−1,j + 1⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Hk−1,j−2 + (i − k)
if j − l = 1 and ai �= bj

Hi−2,l−1 + (j − l)
if i − k = 1 and ai �= bj

∞ otherwise

(4)

where c(ai, bj) is 1 if ai �= bj and 0 otherwise, k =
lastA[ i] [ bj] and l = lastB[ j] [ ai].
We observe that the above refined recurrence for H

holds even in the weighted setting provided that 2S ≤
I + D ≤ 2T , where S, I, D, and T are, respectively, the
cost of a substitution, insertion, deletion, and transposi-
tion; the cost of a substitution is > 0 when the characters
involved are different and 0 when these are the same. This
observation follows from the following.
When ai = bj, S = 0

Hk−1,l−1 + (i − k − 1)D + T + (j − l − 1)I
= Hk,l + (i − k − 1)D + T + (j − l − 1)I
≥ Hi−1,l + T + (j − l − 1)I
≥ Hi−1,j−1

= Hi,j

(5)

Fig. 7 Cache misses for DL trace algorithms on Xeon4
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Table 5 Cache misses in millions for DL trace algorithms on Xeon4

A B LS_Trace LS_Trace2 Strip_Trace Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 423 20 24 3 95.2% 88.1% 86.2%

80000 80000 1,970 89 29 12 95.5% 58.5% 86.6%

120000 120000 5,100 212 66 25 95.8% 61.8% 88.1%

160000 160000 16,350 403 115 44 97.5% 61.9% 89.1%

200000 200000 33,998 622 513 72 98.2% 85.9% 88.3%

240000 240000 42,252 897 268 101 97.9% 62.4% 88.8%

280000 280000 70,370 1,244 358 139 98.2% 61.3% 88.9%

320000 320000 91,501 1,576 453 181 98.3% 60.1% 88.5%

360000 360000 146,103 2,001 2,120 230 98.6% 89.1% 88.5%

400000 400000 221,690 2,435 6,032 276 98.9% 95.4% 88.6%

When 2 ≤ i − k ≤ j − l

Hk−1,l−1 + (i − k − 1)D + T + (j − l − 1)I
≥ Hk−1,l−1 + (i − k − 1)(2S − I) + S + (j − l − 1)I
= Hk−1,l−1 + (i − k + 1)S + ((j − l) − (i − k))I

+ (i − k − 2)S
≥ Hk−1,l−1 + (i − k + 1)S + ((j − l) − (i − k))I
≥ Hi,j

(6)

The case when 2 ≤ j − l ≤ i − k is symmetric.
The algorithms developed in this paper are based on our

refined recurrence for H.

Methods
DL distance algorithms
In this section, we develop two algorithms, LS_DL2 and
Strip_DL2, to compute the DL distance between two
strings of lengthm and n drawn from an alphabet of size s.
We note that when s > m+n, at least s−m−n characters
of the alphabet appear in neither A nor B. So, these non-
appearing characters may be removed from the alphabet
and we can work with this reduced size alphabet. Hence,
throughout this paper, we assume that s ≤ m + n. Our
algorithms, which take O(m + n) space, are based on the
recurrence of Eqs. 3 and 4 and are the counterparts of
algorithms LS_DL and Strip_DL of [18] that are based on
the recurrence of Eqs. 1 and 2.

Algorithm LS_DL2
Like algorithm LS_DL of [18], LS_DL2 (Algorithm 1) com-
putes H by rows from top to bottom and within a row

Fig. 8 Run time for DL trace algorithms on Xeon4
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Table 6 Run time in hh : mm : ss for DL trace algorithms on Xeon4

A B LS_Trace LS_Trace2 Strip_Trace Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:30 0:00:17 0:00:26 0:00:16 44.0% 37.8% 3.6%

80000 80000 0:01:54 0:01:06 0:01:40 0:01:04 42.1% 36.5% 3.8%

120000 120000 0:04:42 0:02:29 0:03:44 0:02:23 47.3% 36.2% 4.0%

160000 160000 0:09:21 0:04:25 0:06:37 0:04:14 52.8% 36.1% 4.2%

200000 200000 0:15:58 0:06:53 0:10:30 0:06:36 56.8% 37.1% 4.1%

240000 240000 0:23:42 0:09:56 0:14:52 0:09:31 58.1% 36.0% 4.2%

280000 280000 0:33:41 0:13:29 0:20:13 0:12:57 60.0% 36.0% 4.1%

320000 320000 0:45:26 0:17:37 0:26:24 0:16:54 61.2% 36.0% 4.1%

360000 360000 1:04:18 0:22:21 0:34:01 0:21:23 65.2% 37.1% 4.3%

400000 400000 1:15:14 0:27:33 0:41:11 0:26:24 63.4% 35.9% 4.2%

by columns from left to right. For convenience, we aug-
ment H with row −1 and column −1. All values on this
row and on this column are maxVal, where maxVal is
a large value. Algorithm LS_DL2 uses 4 one-dimensional
arrays last_row_id[ 1 : s], R[−1 : n], R1[−1 : n], and
FR[−1 : n] and a few simple variables that have the fol-
lowing semantics when we are computing Hij. k and l are
as in Eqs. 4.

1. FR[ q]= Hk−1,q−2 for the current i in case q ≥ j and
for the next i in case q < j

2. R[ q]= Hi,q if q < j and Hi−2,q if q ≥ j.
3. R1[ q]= Hi−1,q
4. last_row_id[ c] = largest k < i such that A[ k]= c
5. last_col_id = largest l < j such that B[ l]= A[ i]
6. T is the value to use for Hi−2,l−1 should this be

needed in the computation of Hij

7. last_i2l1 = Hi−2,j−1
8. diag · · · Case 1 of Eq. 4
9. left · · · Case 2 of Eq. 4
10. up · · · Case 3 of Eq. 4
11. transpose · · · Case 4 of Eq. 4
Lines 2 and 3 of the algorithm initialize FR, R1, and R so

that following the swap of line 6, R1[ q]= H0,q and R[ q]=
H−1,q, −1 ≤ q ≤ n. In other words, at the start of iteration
i = 1 of the for loop of lines 9-30, R1 and R, respectively,
correspond to rows i − 1 (i.e., row 0) and i − 2 (i.e., row
-1) of H. At this time, FR[−1 : n]= maxValue, which
corresponds to the initial situation that k = lastA[ i] [ bj]
is undefined. This will be updated as lastA[ i] [ bj] gets
defined. last_row_id[ 1 : s] is initialized to −1 in line 4
for each character c to indicate the fact that at the start
of the i = 1 loop, A[ p], p < 1 isn’t a character of the

Fig. 9 CPU/cache energy for DL trace algorithms on Xeon4
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Table 7 CPU/cache energy in joules for DL trace algorithms on Xeon4

A B LS_Trace LS_Trace2 Strip_Trace Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 181.4 103.1 157.0 97.8 43.2% 37.7% 5.2%

80000 80000 703.1 413.8 610.7 389.3 41.1% 36.3% 5.9%

120000 120000 1,736.9 929.9 1,365.3 873.4 46.5% 36.0% 6.1%

160000 160000 3,443.8 1,644.4 2,407.9 1,540.3 52.3% 36.0% 6.3%

200000 200000 5,843.6 2,556.4 3,818.7 2,398.1 56.3% 37.2% 6.2%

240000 240000 8,665.3 3,659.6 5,403.6 3,430.8 57.8% 36.5% 6.3%

280000 280000 12,275.0 4,970.5 7,372.3 4,665.3 59.5% 36.7% 6.1%

320000 320000 16,536.9 6,486.5 9,609.6 6,084.6 60.8% 36.7% 6.2%

360000 360000 23,396.4 8,224.1 12,439.7 7,725.9 64.8% 37.9% 6.1%

400000 400000 27,551.9 10,229.2 15,167.8 9,616.6 62.9% 36.6% 6.0%

alphabet. last_col_id is set to −1 at the start of each iter-
ation of the loop of lines 5–32 as at the start of this loop,
no character of B has been examined and so there is no
last seen occurrence of A[ i] in B (for this iteration of the
for loop of lines 5–32). Also, at the start of the computa-
tion of each row of H, last_i2l1 is set to R[ 0], because, by
the semantics of last_i2l1, when we are computing Hi,1,
last_i2l1 = Hi−2,0 = R[ 0]. Following this, R[ 0] is set to i
to indicate that the cheapest way to transformA[ 1 : i] into
B[ 0 : 0] is to do i deletes at a total cost of i (hence, whenwe
are computing Hi,1 in the loop of lines 9–30, R[ q]= Hij,
q < 1), andT is set tomaxVal as whenwe start a row com-
putation, l is undefined. So, the initializations establish the
variable semantics given above.
In lines 10–12 of the loop of lines 9–30, diag, left, and

up are set to the values specified in cases 1–3 of Eq. 4.
Note that from the semantics of the variables, R1[ j− 1]=
Hi−1,j−1, R[ j − 1]= Hi,j−1, and R1[ j]= Hi−1,j at this time.
Line 13 computes the minimum of the terms in the first
3 cases of Eq. 4. If A[ i]= B[ j] (line 14), then Hij is deter-
mined by cases 1–3 and the value of temp computed in
line 13 is Hi,j. At this time, we need to update last_col_id
as the most recently seen occurrence of A[ i] is now at
position j of B. Since A[ i]= B[ j], lastA[ i + 1] [ bj]= i. So,
the Hk−1,j−2 to use for the next i in case 4 is Hi−1,j−2 =
R1[ j − 2]. This value is saved in FR[ j] in line 16. Since
A[ i]= B[ j], the value to use for Hi−2,l−1 in case 4 of Eq. 4
in future iterations of the for j loop (until, of course, we
encounter another j where A[ i]= B[ j]) becomes Hi−2,j−1,
which by the variable semantics is last_i2l1. This value is
saved in T in line 17.
When A[ i] �= B[ j], lines 19–26 are executed. From the

semantics of last_row_id and last_col_id, it follows that
line 19 correctly sets k and l. Lines 22 and 24, respectively,
compute the cost of case 4 when j − l = 1 and i − k =
1, respectively. Note that by the semantics of FR and T,
FR[ j]= Hk−1,j−2 and T = Hi−2,l−1. So, lines 22 and 25

Algorithm 1 Algorithm LS_DL2

1: LS_DL2(A[ 1 : m] ,B[ 1 : n] )
2: FR[−1 : n]← R1[−1 : n]← R[−1]← maxVal
3: R[ j]← j, 0 ≤ j ≤ n
4: last_row_id[ 1 : s]← −1
5: for i ← 1 tom do
6: swap(R,R1)
7: last_col_id ← −1
8: last_i2l1 ← R[ 0] ;R[ 0]← i;T ← maxVal
9: for j ← 1 to n do

10: diag ← R1[ j − 1]+c(A[ i] ,B[ j] )
11: left ← R[ j − 1]+1
12: up ← R1[ j]+1
13: temp ← min{diag, left,up}
14: if A[ i]= B[ j] then
15: last_col_id ← j // last occurrence of ai
16: FR[ j]← R1[ j − 2] // save H_k − 1, j − 2
17: T ← last_i2l1 // save H_i − 2, l − 1
18: else
19: k = last_row_id[B[ j] ] , l = last_col_id
20: if (j − l) == 1 then
21: transpose ← FR[ j]+(i − k)
22: temp ← min{temp, transpose}
23: else if (i − k) == 1 then
24: transpose ← T + (j − l)
25: temp ← min{temp, transpose}
26: end if
27: end if
28: last_i2l1 ← R[ j]
29: R[ j]← temp
30: end for
31: last_row_id[A[ i] ]← i
32: end for
33: return R[ n]
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Fig. 10 Run time of parallel DL distance algorithms, in seconds, on Xeon4

update temp to be Hi,j. When we reach line 29, regardless
of whether A[ i]= B[ j] or A[ i] �= B[ j], R[ j]= Hi−2,j and
temp = Hi,j.
In line 28, we set last_i2l1 = R[ j]= Hi−2,j. While this

momentarily upsets the semantics of last_i2l1, the seman-
tics are restored upon the start of next iteration of the for
j loop as j increases by 1 or in line 8 if the for j loop termi-
nates and we advance to the next iteration of the for i loop.
Line 29 sets R[ j]= Hij, which similarly upsets the seman-
tics of R but correctly sets up the semantics for the next
iteration. Finally, line 31 correctly updates last_row_id so
as to preserve its semantics for the next iteration of the for
i loop.
The correctness of LS_DL2 follows from the preced-

ing discussion. The space and time complexities are
readily seen to be O(m + n + s) = O(m + n) and

O(mn + s) = O(mn), respectively. When m < n,
the space complexity may be reduced by a constant
factor by swapping A and B. Using the LRU cache
model of [18], one may show that LS_DL2 has approxi-
mately 3mn/w cache misses, where w is the width of a
cache line. By comparison, the number of cache misses
for LS_DL ismn(1 + 3/w).

Strip algorithm Strip_DL2
As in [18], we can reduce cache misses, which in turn
reduces run time, by partitioning H into n/q strips of size
m×q, where q is the largest strip width for which the data
needed in the computation of the strip fits into the cache.
H is computed by strips from left to right and the compu-
tation of each strip is done using LS_DL2. To enable this
computation by strips, one strip needs to pass computed

Table 8 Run time of parallel DL distance algorithms, in hh : mm : ss, on Xeon4

A B PP_LS_DL PP_LS_DL2 PP_Strip_DL PP_Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:05 0:00:03 0:00:03 0:00:02 42.4% 38.1% 33.8%

80000 80000 0:00:20 0:00:12 0:00:13 0:00:08 41.8% 38.1% 33.6%

120000 120000 0:00:56 0:00:26 0:00:28 0:00:17 52.8% 38.5% 33.8%

160000 160000 0:01:49 0:00:47 0:00:50 0:00:31 57.2% 38.3% 33.9%

200000 200000 0:02:55 0:01:13 0:01:19 0:00:48 58.3% 38.4% 33.9%

240000 240000 0:04:09 0:01:45 0:01:53 0:01:10 57.9% 38.3% 33.5%

280000 280000 0:05:48 0:02:22 0:02:34 0:01:35 59.1% 38.3% 33.4%

320000 320000 0:07:21 0:03:07 0:03:20 0:02:04 57.5% 38.2% 33.8%

360000 360000 0:10:13 0:03:58 0:04:24 0:02:37 61.2% 40.6% 34.2%

400000 400000 0:11:41 0:04:50 0:05:13 0:03:14 58.6% 38.2% 33.3%
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Fig. 11 Run time of parallel DL trace algorithms, in seconds, on Xeon4

values to the next using three additional one-dimensional
arrays C, C1, and FC of size m each. C records the values
of H computed for the rightmost column in the strip; C1
records the values of H computed for the next to right-
most column in the strip; and FC[ i] is the value of T
(i.e., H[ i − 2] [ l − 1]) at row i, where l is the last column
where B[ l]= A[ i] in the strip. We name this new algo-
rithm as Strip_DL2. The space complexity of Strip_DL2
is O(m + n) and its time complexity is O(mn). For the
LRU cache model of [18] the number of cache misses is
approximately 6mn

wq .

DL trace algorithms
Wagner and Fischer [19] introduced the concept of a trace
to describe an edit sequence when the edit operations
are limited to insert, delete, and substitute. Lowrance
and Wagner [17] extended the concept of a trace to
include transpositions. We reproduce here the definition

and example used by us in [18]. A trace for the strings
A = a1 · · · am and B = b1 · · · bn is a set T of lines,
where the endpoints u and v of a line (u, v) denote posi-
tions in A and B, respectively. A set of lines T is a
trace iff:

1. For every (u, v) ∈ T , u ≤ m and v ≤ n.
2. The lines in T have distinct A positions and distinct

B positions. That is, no two lines in T have the same
u or the same v.

A line (u, v) is balanced iff au = bv and two lines
(u1, v1) and (u2, v2) cross iff (u1 < u2) and (v1 > v2).
It is easy to see that T = {(1, 2), (3, 1), (4, 3), (5, 6)} (see
Fig. 2) is a trace for the strings A = dafac and B =
fdbbec. Line (4,3) is not balanced as a4 �= b3. The remain-
ing 3 lines in the trace are balanced. The lines (1,2) and
(3,1) cross.

Table 9 Run time of parallel DL trace algorithms, in hh : mm : ss, on Xeon4

A B PP_LS_Trace PP_LS_Trace2 PP_Strip_Trace PP_Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:10 0:00:06 0:00:07 0:00:05 40.8% 27.1% 10.4%

80000 80000 0:00:38 0:00:23 0:00:27 0:00:19 39.9% 30.7% 19.2%

120000 120000 0:01:39 0:00:51 0:00:59 0:00:40 48.3% 33.0% 22.6%

160000 160000 0:03:05 0:01:31 0:01:43 0:01:09 51.0% 33.5% 24.2%

200000 200000 0:05:03 0:02:21 0:02:43 0:01:47 53.5% 34.2% 24.0%

240000 240000 0:07:50 0:03:23 0:03:50 0:02:30 56.8% 34.7% 26.0%

280000 280000 0:11:11 0:04:36 0:05:13 0:03:26 58.8% 34.2% 25.6%

320000 320000 0:15:07 0:06:00 0:06:46 0:04:25 60.3% 34.8% 26.4%

360000 360000 0:21:25 0:07:37 0:08:44 0:05:38 64.5% 35.4% 25.9%

400000 400000 0:24:10 0:09:22 0:10:34 0:06:55 61.3% 34.6% 26.1%
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Fig. 12 Run time for DL distance algorithms on Xeon6

In a trace, unbalanced lines denote a substitution oper-
ation and balanced lines denote retaining the character of
A. If ai has no line attached to it, ai is to be deleted and
when bj has no attached line, it is to be inserted. When
two balanced lines (u1, v1) and (u2, v2), u1 < u2 cross,
au1+1 · · · au2−1 are to be deleted from A making au1 and
au2 adjacent, then au1 and au2 are to be transposed, and
finally, bv2+1 · · · bv1−1 are to be inserted between the just
transposed characters of A.
The edit sequence corresponding to the trace of Fig. 2 is

delete a2, transpose a1 and a3, substitute b for a4, insert

b4 = b and b5 = e, retain a5. The cost of this edit sequence
is 5.
In [18], we used a divide-and-conquer strategy similar

to that used by Hirschberg [20] to determine an optimal
trace inO(mn) time andO(smin{m, n}+n) space. In [18],
we made a distinction between traces that have a center
crossing and those that do not. A trace has a center cross-
ing iff it contains two lines (u1, v1) and (u2, v2) such that
v2 ≤ n/2 and v1 > n/2, u1 < u2, while satisfying (a)
ai �= au1 = bv1 , u1 < i < u2 and (b) bj �= bv2 = au2 ,
v2 < j < v1. In words, u1 is the last (i.e., rightmost)

Fig. 13 Run time for DL trace algorithms on Xeon6
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occurrence of bv1 in A that precedes position u2 of A and
v2 is the last occurrence of au2 in B that precedes position
v1 of B. (Figure 3).
In [18], we showed that the cost of an optimal trace T is

given by Eq. 7 when T has no center crossing and by Eq. 8
when T has a center crossing. Hence, the cost of T is the
smaller of these two costs.

costNoCC(T) = min
1≤i≤m

{H[ i]+H ′[ i + 1] } (7)

where H[ i] is the cost of an optimal trace for A[ 1 : i]
and B[ 1 : n/2] and H ′[ i + 1] that for an optimal trace for
A[ i + 1 : m] and B[ n/2 + 1 : n].

costCC(T) = min{H[u1−1] [ v2−1]+H ′[u2+1] [ v1+ 1]
+(u2 − u1 − 1) + 1 + (v1 − v2 − 1)}

(8)

where H[ i] [ j] is the cost of an optimal trace for A[ 1 : i]
and B[ 1] [ j] and H ′[ i] [ j] is that for an optimal trace for
A[ i : m] and B[ j] [ n]. For the min{}, we try 1 ≤ u1 < m
and for each such u1, we set v1 to be the smallest i > n/2
for which bi = au1 . For each u1 we examine all characters
other than au1 in the alphabet. For each such character c,
v2 is set to the largest j ≤ n/2 for which bj = c and u2 is
the smallest i > u1 for which ai = c.
Our new algorithms, LS_TRACE2 and Strip_TRACE2,

are based on an adaptation of Eqs. 7 and 8 using Eq. 4.

Algorithm LS_TRACE2
Consider the case when the optimal trace has no center
crossing. Let Rf [ ] be the value of R[ ] when LS_DL2(B[ 1 :
n/2] ,A[ 1 : m] ) terminates and let R′f [ ] be the value of
R[ ] when LS_DL2(B[ n : n/2 + 1] ,A[m : 1] ) terminates.
Let R1f , R1′f , FRf , and FR′f be the corresponding final val-
ues for R1 and RF. From Eq. 7 and LD_DL2, we obtain

costNoCC(T) = min
1≤i≤m

{H[ i]+H ′[ i + 1] }
= min

1≤i≤m
{Rf [ i]+R′f [ i + 1] } (9)

When T has a center crossing {(u1, v1), (u2, v2)}, then it
follows from Eq. 4 that either u1 and u2 are adjacent in A
or v1 and v2 are adjacent in B (or both). When v1and v2 are
adjacent in B, then v2 = n

2 and v1 = n
2 + 1. Substituting

into Eq. 8, we get

costCC(T)=min{H[u1−1] [ v2 − 1]+H ′[u2+1] [ v1+1]
+ (u2 − u1 − 1) + 1 + (v1 − v2 − 1)}
= min{H[u1−1] [

n
2

−1]+H ′[u2+1] [
n
2

+ 2]

+ (u2 − u1)}
= min

{
R1f [u1−1]+R1′f [u2 + 1]+(u2−u1)

}

(10)

When u1 and u2 are adjacent in A, then u2 − u1 = 1, v2
is the right most occurrence of A[u2] in B that precedes
position n

2 +1 (i.e., v2 ≤ n/2) and v1 is the left most occur-
rence of A[u1] in B after position n

2 (i.e., v1 ≥ n/2+1). So,
we have

costCC(T) = min{H[u1−1] [ v2−1]+H ′[u2+1] [ v1+1]
+ (u2 − u1 − 1) + 1 + (v1 − v2 − 1)}
= min

{
H[u1−1] [ v2−1]+H ′[u2+1] [ v1 + 1]

+(v1 − v2)}
=min

{
FRf [u1+1]+FR′f [u2−1]+(v1 − v2)

}

(11)

Algorithm LS_TRACE2 (Algorithm 2) provides the
pseudocode for our linear space computation of an opti-
mal trace. It assumes that LS_DL2 has been modified to
return the arrays R,R1 and FR.

Algorithm 2 Linear space optimal trace
1: LS_TRACE2(A[ 1 : m] ,B[ 1 : n] )
2: ifm ≤ 1 or n ≤ 1 then
3: Do a linear search to find an optimal trace forA and

B
4: Return optimal trace
5: else
6: (R,R1, FR) ← LS_DL2(B[ 1 : n

2 ] ,A[ 1 : m] )
7: (R′,R1′, FR′) ← LS_DL2(B[ n : n

2 + 1] ,A[m : 1] )
8: Compute costNoCC(T) using Eq. 9. Let i′ be the i

that minimizes the cost.
9: Compute costCC(T) using Eqs. 10 and 11. Let

(u′
1,u′

2) and (v′
1, v′

2) be the indexes that minimize
the cost.

10: if costNoCC(T) ≤ costCC(T) then
11: T1 = LS_TRACE2(A[ 1 : i′] ,B[ 1 : n

2 ] )
12: T2 = LS_TRACE2(A[ i′ + 1 : m] ,B[ n

2 + 1 : n] )
13: Return T1

⋃
T2

14: else
15: T1 = LS_TRACE2(A[ 1 : u′

1 − 1] ,B[ 1 : v′
2 − 1] )

16: T2 = LS_TRACE2(A[u′
2+1 : m] ,B[ v′

1+1 : n] )
17: Return T1

⋃
T2

⋃{(u′
1, v′

1), (u′
2, v′

2)}
18: end if
19: end if

Using an analysis similar to that used by us in [18] for the
analysis ofDL_TRACE, we see that the time complexity of
DL_TRACE2 is O(mn). The space required is the same as
for LS_DL2. The number of cache misses is approximately
twice that for LS_DL2 when invoked with strings of size
n and m. Hence, the cache miss count for LS_TRACE2 is
≈ 6mn/w.
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Table 10 Run time in hh : mm : ss for DL distance algorithms on Xeon6

A B LS_DL LS_DL2 Strip_DL Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:14 0:00:05 0:00:08 0:00:05 63.2% 41.7% 9.8%

80000 80000 0:00:55 0:00:21 0:00:32 0:00:19 61.9% 41.5% 9.9%

120000 120000 0:02:12 0:00:47 0:01:13 0:00:42 64.3% 41.5% 9.7%

160000 160000 0:05:19 0:01:24 0:02:09 0:01:15 73.7% 41.5% 9.9%

200000 200000 0:10:16 0:02:11 0:03:23 0:01:58 78.7% 41.8% 9.9%

240000 240000 0:16:17 0:03:09 0:04:50 0:02:50 80.7% 41.5% 10.0%

280000 280000 0:24:19 0:04:17 0:06:36 0:03:51 82.4% 41.7% 10.1%

320000 320000 0:33:32 0:05:35 0:08:36 0:05:02 83.3% 41.5% 10.0%

360000 360000 0:45:50 0:07:06 0:10:58 0:06:22 84.5% 42.0% 10.2%

400000 400000 0:55:44 0:08:44 0:13:27 0:07:52 84.3% 41.6% 10.1%

Strip trace algorithm Strip_TRACE2
This algorithm differs from LS_TRACE2 in that it uses
a modified version of Strip_DL2 rather than a modified
version of LS_DL2. The modified version of Strip_DL2
returns the arrays C, C1 and FC computed by Strip_DL2.
The asymptotic time complexity of Strip_TRACE2 is also
O(mn) and it takes the same amount of space as does
Strip_DL2. The number of cache misses is approximately
twice that for Strip_DL2.

Results
We benchmarked the single-core algorithms LS_DL2,
Strip_DL2,DL_TRACE2, and Strip_TRACE2 of this paper
against the corresponding single-core algorithms devel-
oped by us in [18]. Using the parallelization techniques
of [18], we obtained multi-core versions of our new algo-
rithms. Their names are obtained by prefixing PP_ to
the single-core name (e.g., PP_LS_DL2 is the multi-core
version of LS_DL2). The new multi-core versions also
were benchmarked against the corresponding multi-core
algorithms of [18].

Platforms and test data
The single-core algorithms were implemented using C
and the multi-core ones using C and OpenMP. The rela-
tive performance of these algorithms wasmeasured on the
following platforms:

1. Intel Xeon CPU E5-2603 v2 Quad-Core processor
1.8GHz with 10MB cache.

2. Intel I7-x980 Six-Core processor 3.33GHz with
12MB LLC cache.

3. Intel Xeon CPU E5-2695 v2 2x12-Core processors
2.40GHz with 30MB cache.

For convenience, we will, at times, refer to these plat-
forms as Xeon4, Xeon6, and Xeon24 (i.e., the number of
cores is appended to the name Xeon).
All codes were compiled using the gcc compiler with

the O2 option. On our Xeon4 platform, the benchmark-
ing included a comparison of memory, cache misses, run
time, and energy consumption. The cache miss count and
the energy consumption was measured using the "perf"
[21] software through the RAPL interface. For the Xeon6

Table 11 Run time in hh : mm : ss for DL trace algorithms on Xeon6

A B LS_Trace LS_Trace2 Strip_Trace Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:22 0:00:11 0:00:17 0:00:10 51.4% 37.6% 3.2%

80000 80000 0:01:24 0:00:43 0:01:05 0:00:41 49.1% 36.9% 3.5%

120000 120000 0:03:33 0:01:36 0:02:26 0:01:33 54.9% 36.8% 3.6%

160000 160000 0:07:20 0:02:51 0:04:20 0:02:44 61.2% 36.7% 3.8%

200000 200000 0:13:19 0:04:27 0:06:46 0:04:17 66.6% 36.8% 3.9%

240000 240000 0:20:51 0:06:24 0:09:43 0:06:10 69.3% 36.6% 3.8%

280000 280000 0:31:19 0:08:43 0:13:14 0:08:23 72.1% 36.6% 3.8%

320000 320000 0:43:24 0:11:24 0:17:16 0:10:57 73.7% 36.6% 3.9%

360000 360000 0:59:27 0:14:23 0:21:55 0:13:52 75.8% 36.8% 3.7%

400000 400000 1:13:51 0:17:47 0:26:57 0:17:07 75.9% 36.5% 3.8%
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Fig. 14 Run time of parallel DL distance algorithms, in seconds, on Xeon6

and Xeon24 platforms only the run time was bench-
marked.
For test data, we used randomly generated protein

sequences as well as real protein sequences obtained
from the Protein Data Bank [22] and DNA/RNA/protein
sequences from the National Center for Biotechnology
Information (NCBI) database [23]. The results for our
randomly generated protein sequences were comparable
to those for similarly sized sequences used from the two
databases [22] and [23]. So, we present only the results for
the random data sets here.
Xeon E5-2603 (Xeon4)
DL distance algorithms
Table 1 gives the memory required to process random
protein sequences of length 400,000 using each of the

single-core DL scoring algorithms considered in this
paper. LS_DL takes 4.75 times the memory taken by
LS_DL2 and LS_Strip takes 4.69 times the memory taken
by LS_Strip2.
Figure 4 and Table 2 give the number of cache misses

on our Xeon4 platform for randomly generated sequences
of size between 40,000 and 400,000. The column of
Table 2 labeled LvsL2 gives the percentage reduction in
cache misses achieved by LS_DL2 relative to LS_DL, that
labeled SvsS2 gives this percentage for Strip_DL2 relative
to Strip_DL, and that labeled L2vsS2 gives this percent-
age for Strip_DL2 relative to LS_DL2. Strip_DL2 has the
fewest cache misses. Strip_DL2 reduces cache misses by
up to 91.9% relative to LS_DL2 and by up to 94.4% relative
to Strip_DL.

Table 12 Run time of parallel DL distance algorithms, in hh : mm : ss, on Xeon6

A B PP_LS_DL PP_LS_DL2 PP_Strip_DL PP_Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:03 0:00:01 0:00:03 0:00:01 54.6% 64.1% 24.4%

80000 80000 0:00:11 0:00:05 0:00:06 0:00:04 54.2% 37.4% 27.2%

120000 120000 0:00:32 0:00:11 0:00:13 0:00:08 66.1% 39.4% 28.1%

160000 160000 0:01:18 0:00:21 0:00:23 0:00:14 72.8% 36.4% 32.5%

200000 200000 0:02:34 0:00:30 0:00:36 0:00:23 80.3% 35.9% 24.4%

240000 240000 0:03:47 0:00:44 0:00:52 0:00:31 80.8% 39.8% 28.5%

280000 280000 0:05:25 0:01:02 0:01:09 0:00:43 80.9% 38.4% 31.0%

320000 320000 0:06:59 0:01:20 0:01:32 0:00:56 80.9% 39.2% 29.6%

360000 360000 0:09:23 0:01:39 0:01:56 0:01:10 82.4% 39.6% 29.2%

400000 400000 0:11:03 0:02:01 0:02:23 0:01:29 81.7% 37.8% 26.7%
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Fig. 15 Run time of parallel DL trace algorithms, in seconds, on Xeon6

Figure 5 and Table 3 give the run times on our Xeon4
platform for our random data set. In the figure, the time
is in seconds while in the table, the time is given using the
format hh : mm : ss. The table also gives the percentage
reduction in run time.
As can be seen, on our Xeon4 platform, Strip_DL2

is the fastest followed by LS_DL2, Strip_DL, and
LS_DL. Strip_DL2 reduces run time by up to 15.9%
relative to LS_DL2 and by up to 40.1% relative
to Strip_DL.
Figure 6 and Table 4 give the CPU and cache

energy consumed, in joules, on our Xeon4 plat-
form. On our data sets, Strip_DL2 required up to
17.6% less CPU and cache energy than LS_DL2 and
up to 40.0% less than Strip_DL. It is interesting to

note that the energy reduction is comparable to the
reduction in run time suggesting a close relationship
between run time and energy consumption for this
application.

DL trace algorithms
Figure 7 and Table 5 give the number of cache misses
for the trace algorithms on our Xeon4 platform for ran-
domly generated sequences of size between 40,000 and
400,000. The column of Table 5 labeled LvsL2 gives
the percentage reduction in cache misses achieved by
LS_Trace2 relative to LS_Trace, that labeled SvsS2 gives
this percentage Strip_Trace2 relative to Strip_Trace, and
that labeled L2vsS2 gives this percentage Strip_Trace2 rel-
ative to LS_Trace2. Strip_Trace2 has the fewest cache

Table 13 Run time of parallel DL trace algorithms, in hh : mm : ss, on Xeon6

A B PP_LS_Trace PP_LS_Trace2 PP_Strip_Trace PP_Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:05 0:00:05 0:00:05 0:00:04 10.3% 20.6% 14.3%

80000 80000 0:00:19 0:00:10 0:00:16 0:00:09 44.8% 41.8% 11.0%

120000 120000 0:00:51 0:00:25 0:00:31 0:00:21 51.0% 31.8% 13.8%

160000 160000 0:01:49 0:00:40 0:00:56 0:00:33 63.3% 39.9% 16.3%

200000 200000 0:03:19 0:01:03 0:01:21 0:00:51 68.4% 36.7% 18.7%

240000 240000 0:05:04 0:01:29 0:01:56 0:01:10 70.7% 39.2% 21.0%

280000 280000 0:07:19 0:02:02 0:02:33 0:01:36 72.1% 37.6% 21.9%

320000 320000 0:09:55 0:02:43 0:03:21 0:02:09 72.5% 35.5% 20.8%

360000 360000 0:13:11 0:03:20 0:04:12 0:02:38 74.7% 37.4% 21.3%

400000 400000 0:16:14 0:04:10 0:05:03 0:03:14 74.3% 36.1% 22.5%
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Table 14 Run time in hh : mm : ss for DL distance algorithms on Xeon24

A B LS_DL LS_DL2 Strip_DL Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:14 0:00:06 0:00:10 0:00:05 58.0% 50.6% 13.8%

80000 80000 0:00:53 0:00:22 0:00:41 0:00:20 58.1% 51.6% 11.9%

120000 120000 0:02:01 0:00:57 0:01:31 0:00:49 53.1% 46.5% 13.5%

160000 160000 0:03:34 0:01:28 0:02:42 0:01:18 58.8% 51.9% 11.6%

200000 200000 0:06:08 0:02:19 0:04:15 0:02:01 62.1% 52.4% 12.9%

240000 240000 0:08:05 0:03:16 0:06:05 0:02:56 59.6% 51.8% 10.4%

280000 280000 0:11:32 0:04:27 0:08:20 0:03:59 61.5% 52.1% 10.2%

320000 320000 0:15:55 0:05:52 0:10:58 0:05:13 63.1% 52.4% 10.9%

360000 360000 0:26:41 0:07:24 0:15:11 0:06:38 72.2% 56.4% 10.5%

400000 400000 0:30:11 0:09:02 0:17:15 0:08:06 70.1% 53.0% 10.3%

misses. Strip_Trace2 reduces cache misses by up to 89.1%
relative to LS_Trace2 and by up to 95.4% relative to
Strip_Trace.
Figure 8 and Table 6 give the run times on our Xeon4

platform for our random data set. The table also gives
the percentage reduction in run time. Strip_Trace2 is the
fastest followed by LS_Trace2, Strip_Trace, and LS_Trace
(in this order). Strip_Trace2 reduces run time by up to
4.3% relative to LS_Trace2 and by up to 37.8% relative to
Strip_Trace.
Figure 9 and Table 7 give the CPU and cache energy

consumed, in joules, Strip_Trace2 required up to 6.3% less
CPU and cache energy than LS_Trace2 and up to 37.9%
less than Strip_Trace.

Parallel algorithms
Figure 10 and Table 8 give the run times for our parallel DL
distance algorithms on our Xeon4 platform. PP_LS_DL2 is

up to 61.2% faster than PP_LS_DL and PP_Strip_DL2 is up
to 40.6% faster than PP_Strip_DL. Also, PP_LS_DL2 and
PP_Strip_DL2 achieve a speedup of up to 3.15 and 3.98
compared to the corresponding single-core algorithms on
a four-core machine, respectively.
Figure 11 and Table 9 give the run times for our

parallel DL trace algorithms on our Xeon4 plat-
form. PP_LS_Trace2 is up to 64.5% faster than
PP_LS_Trace and PP_Strip_Trace2 is up to 35.4%
faster than PP_Strip_Trace. Also, PP_LS_Trace2 and
PP_Strip_Trace2 achieves a speedup up to 2.94 and 3.83
compared to the corresponding single-core algorithms,
respectively.

I7-x980 (Xeon6)
DL distance algorithms
Figure 12 and Table 10 give the run times of our single-
core distance algorithms on our Xeon6 platform. As can

Fig. 16 Run time for DL distance algorithms on Xeon24
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Fig. 17 Run time for DL trace algorithms on Xeon24

be seen, Strip_DL2 is the fastest followed by LS_DL2,
Strip_DL, and LS_DL (in this order). Strip_DL2 reduces
run time by up to 10.2% relative to LS_DL2 and by up to
42.0% relative to Strip_DL.

DL trace algorithms
Figure 13 and Table 11 give the run times of our
single-core trace algorithms on our Xeon6 platform.
Strip_Trace2 is the fastest followed by LS_Trace2,
Strip_Trace, and LS_Trace (in this order). Strip_Trace2
reduces run time by up to 3.9% relative to LS_Trace2 and
by up to 37.6% relative to Strip_Trace.

Parallel algorithms
Figure 14 and Table 12 give the run times for our par-
allel DL distance algorithms on our Xeon6 platform.
PP_LS_DL2 is up to 82.4% faster than PP_LS_DL and
PP_Strip_DL2 is up to 39.8% faster than PP_Strip_DL.

Also, PP_LS_DL2 and PP_Strip_DL2 achieves a speedup
up to 4.32 and 5.44 compared to the corresponding single
core algorithms on a six core machine, respectively.
Figure 15 and Table 13 give the run times for

our parallel DL trace algorithms on our Xeon6
platform. PP_LS_Trace2 is up to 74.7% faster than
PP_LS_Trace and PP_Strip_Trace2 is up to 41.8%
faster than PP_Strip_Trace. Also, PP_LS_Trace2 and
PP_Strip_Trace2 achieves a speedup up to 4.32 and 5.30
compared to the corresponding single-core algorithms,
respectively.

Xeon E5-2695 (Xeon24)
DL distance algorithms
Figure 16 and Table 14 give the run times of our
single-core distance algorithms on our Xeon24 platform.
Strip_DL2 is the fastest followed by LS_DL2, Strip_DL,

Table 15 Run time in hh : mm : ss for DL trace algorithms on Xeon24

A B LS_Trace LS_Trace2 Strip_Trace Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:25 0:00:12 0:00:21 0:00:11 52.7% 49.7% 9.4%

80000 80000 0:01:36 0:00:40 0:01:23 0:00:37 58.5% 55.4% 7.1%

120000 120000 0:03:38 0:01:28 0:03:04 0:01:22 59.5% 55.5% 7.0%

160000 160000 0:06:26 0:02:36 0:05:27 0:02:26 59.5% 55.4% 6.6%

200000 200000 0:10:26 0:04:08 0:08:54 0:03:47 60.3% 57.4% 8.4%

240000 240000 0:14:44 0:05:51 0:12:14 0:05:30 60.3% 55.0% 6.0%

280000 280000 0:20:22 0:07:57 0:16:39 0:07:28 61.0% 55.2% 6.1%

320000 320000 0:27:39 0:10:26 0:21:51 0:09:48 62.3% 55.1% 6.1%

360000 360000 0:41:56 0:13:10 0:28:55 0:12:21 68.6% 57.3% 6.2%

400000 400000 0:50:01 0:16:42 0:34:16 0:15:43 66.6% 54.1% 5.9%

2020, 21(Suppl 1):4



Zhao and Sahni BMC Bioinformatics Page 19 of 21

Fig. 18 Run time of parallel DL distance algorithms, in seconds, on Xeon24

and LS_DL (in this order). Strip_DL2 reduces run time by
up to 13.8% relative to LS_DL2 and by up to 56.4% relative
to Strip_DL.

DL trace algorithms
Figure 17 and Table 15 give the run times of our
single-core trace algorithms on our Xeon24 platform.
Strip_Trace2 is the fastest followed by LS_Trace2,
Strip_Trace, and LS_Trace (in this order). Strip_Trace2
reduces run time by up to 9.4% relative to LS_Trace2 and
by up to 57.4% relative to Strip_Trace.
Parallel algorithms
Figure 18 and Table 16 give the run times for our par-
allel DL distance algorithms on our Xeon24 platform.

PP_LS_DL2 is up to 68.7% faster than PP_LS_DL and
PP_Strip_DL2 is up to 54.6% faster than PP_Strip_DL.
Also, PP_LS_DL2 and PP_Strip_DL2 achieves a speedup
up to 11.2 and 21.36 compared to the corresponding
single core algorithms on a twelve-four core machine,
respectively.
Figure 19 and Table 17 give the run times for

our parallel DL trace algorithms on our Xeon24
platform. PP_LS_Trace2 is up to 58.3% faster than
PP_LS_Trace and PP_Strip_Trace2 is up to 59.3%
faster than PP_Strip_Trace. Also, PP_LS_Trace2 and
PP_Strip_Trace2 achieves a speedup up to 9.65 and 16.4
compared to the corresponding single-core algorithms,
respectively.

Table 16 Run time of parallel DL distance algorithms, in hh : mm : ss, on Xeon24

A B PP_LS_DL PP_LS_DL2 PP_Strip_DL PP_Strip_DL2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:01 0:00:01 0:00:01 0:00:00 30.9% 48.6% 41.6%

80000 80000 0:00:04 0:00:02 0:00:02 0:00:01 41.8% 47.2% 51.4%

120000 120000 0:00:08 0:00:06 0:00:04 0:00:02 30.2% 47.4% 57.4%

160000 160000 0:00:18 0:00:09 0:00:08 0:00:04 48.1% 54.6% 60.3%

200000 200000 0:00:28 0:00:13 0:00:11 0:00:06 53.8% 47.6% 54.2%

240000 240000 0:00:37 0:00:19 0:00:16 0:00:09 48.4% 47.3% 54.8%

280000 280000 0:00:59 0:00:24 0:00:23 0:00:12 59.8% 47.2% 50.0%

320000 320000 0:01:33 0:00:32 0:00:30 0:00:15 65.0% 50.3% 54.8%

360000 360000 0:02:01 0:00:40 0:00:40 0:00:19 66.9% 53.1% 53.0%

400000 400000 0:02:44 0:00:51 0:00:45 0:00:23 68.7% 48.7% 55.3%
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Fig. 19 Run time of parallel DL trace algorithms, in seconds, on Xeon24

Discussion
We have developed linear space algorithms to compute
the DL distance between two strings and also to deter-
mine an optimal trace (edit sequence). Besides using
less space than the space efficient algorithms of [18],
these algorithms are also faster. Significant run-time
improvement (relative to known algorithms) was seen
for our new algorithms on all three of our experimental
platforms.
Conclusion
On all platforms, the linear-space cache-efficient algo-
rithms Strip_DL2 and Strip_TRACE2 were the best-
performing single-core algorithms to determine the
DL distance and optimal trace, respectively. Strip_DL2
reduced run time by as much as 56.4% relative to

the Strip_DL and Strip_TRACE2 reduced run time by
as much as 57.4% relative to the Strip_Trace. Our
multi-core algorithms reduced the run time by up to
59.3% compared to the best previously known multi-core
algorithms.
The linear space string correction algorithm developed

in this paper requires 2S ≤ I + D ≤ 2T , where S,
I, D and T are, respectively, the cost of a substitution,
insertion, deletion and transposition. As noted earlier, this
requirement is met by the DL distance as for this met-
ric, S = I = D = T = 1. When only I + D ≤ 2T is
satisfied, the more general algorithm ([18]) that runs in
O(mn) time and uses O(s ∗ min{m, n} + m + n) space,
where s is the size of alphabet comprising the strings,
may be used.

Table 17 Run time of parallel DL trace algorithms, in hh : mm : ss, on Xeon24

A B PP_LS_Trace PP_LS_Trace2 PP_Strip_Trace PP_Strip_Trace2 L vs L2 S vs S2 L2 vs S2

40000 40000 0:00:03 0:00:02 0:00:02 0:00:01 38.0% 59.3% 53.3%

80000 80000 0:00:11 0:00:06 0:00:07 0:00:04 40.3% 49.2% 42.5%

120000 120000 0:00:21 0:00:12 0:00:15 0:00:09 42.3% 44.1% 29.2%

160000 160000 0:00:35 0:00:19 0:00:24 0:00:12 45.8% 50.2% 36.5%

200000 200000 0:00:53 0:00:26 0:00:41 0:00:22 50.6% 45.2% 14.2%

240000 240000 0:01:13 0:00:36 0:00:53 0:00:26 50.4% 51.7% 29.4%

280000 280000 0:01:52 0:00:51 0:01:10 0:00:30 54.4% 56.7% 40.4%

320000 320000 0:02:30 0:01:09 0:01:26 0:00:41 54.0% 52.3% 40.6%

360000 360000 0:03:20 0:01:23 0:01:40 0:00:48 58.2% 51.4% 41.9%

400000 400000 0:04:14 0:01:46 0:02:08 0:00:58 58.3% 55.1% 45.5%
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